
Cosmological Parameters Estimation

Statistical inference



Statistical inference

To solve the problem requires the use of random variables and the 
calculation of probabilities.

The standard way to estimate the values of the model free parameters (the 
cosmological parameters and the nuisance parameters) in cosmological analyses 
is through Bayesian inference.
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Cosmological datasets are usually large, noisy and with systematics   à the 
problem to solve is not a straightforward system of equations relating precise 
values of an observable with a cosmological function of the parameters.



Forward Probability 
(the frequentist approach)

The goal is to compute the probability 
distribution of the data given the fixed and 
true value of the parameters. Data are 
random variables with a probability 
density function (pdf). Their probability 
corresponds to the frequency with which 
its values occur in repetitions of the 
experiment. 

A statistic is computed from the data and 
a pdf is derived for the statistic. From 
values obtained for a statistic with a 
known pdf, a rejection level may be 
assigned to a hypothesis (a parameter 
value). 

There is no probability distribution
of the parameter values, they are 
absolute quantities.

vs. Inverse Probability
(the Bayesian approach)

Here the vector of  parameters 
is a random variable, and has
a probability function.
They are unobserved variables.

We want to compute that 
probability: a conditional
probability given the data.

Data are also random 
variables and a joint 
probability
may be defined: P(m,d)

Note: 
d = data (the estimated 
physical property)
m = model (the values of the 
parameters)



Example : using the chi-square statistic in the frequentist approach

The chi-square is an example of a statistic

with known pdf (also called the chi-squared distribution)

Computing the chi-square value and knowing the pdf
we can compute the p-value à if p_value < threshold then 
the data rejects the hypothesis (the fact of the parameter
value being the assumed one)



Example : using the chi-square statistic in the Bayesian approach

The conditional probability of the data given the model is a Gaussian 
in the chi-square statistic.

Through Bayes theorem this implies that the conditional probability 
of the model given the data is well sampled by the values of that Gaussian.

Both methods use the chi-squared statistic, but in frequentist
hypothesis testing the crucial information is the chi-squared distribution,
while in Bayesian parameter inference the crucial information is the
theoretical d(m) expression.



The joint probability may be written in terms of the Probability of m conditional to d 
(the probability of m to equal mi, given that the data equals di), and the intrinsic 
probability of the data to be equal to di :

P(m,d) = P(m|d) P(d)

or also the other way around : 

P(m,d) = P(d|m) P(m)

So, in Bayesian Inference we consider 2 spaces:

the data space (where random variables d live)  P(d|m)

the parameter space (where random variables m live) P(m|d)

parameter data 
forward

inverse



The two spaces are related through Bayes theorem, which we can obtain 
by equating the two expressions:

P(m|d) is the probability of the parameter values given the data. It is a
distribution in the parameter space. 
It is known as the posterior distribution à this is what we want to get.

P(m) is the probability of the parameter values independently of these data à it 
can be something we know beforehand from another experiment, or from some 
intrinsic property of the model, or it may just be flat (no special restriction on that 
parameter). 
It is known as the prior.



P(d|m) is the probability of getting the measured data given the parameter values. 
It is a distribution in the data space. 

Remember, in inverse probability we do not want to study the properties of the data 
space but rather we want to use P(d|m) to compute/infer P(m|d). 

Now, it is reasonable to assume that if the probability of the observed data, given a 
parameter value, is low (high), then that value is unlikely (likely) to occur. 

For these two reasons P(d|m) is named the likelihood of the parameters,
L(m), even though it is a quantity in the data space. 



P(d) is the probability of the data independently of the parameter values. 
It may be obtained from the joint probability by integrating over the full range of 
parameter values, i.e., marginalizing over all parameters.

Being independent of m, it is a normalization constant for P(m|d), in Bayes theorem. 

Note that it is independent of the parameter values, but not on the modeling, and its 
value may be used as a criteria for model comparison. 
For this reason, it is known as the evidence.

Note that for any  parametrization/theory/model (e.g.: Ωm , ΩΛ), 
(e.g. Ωm , ΩΛ , Ων) the whole universe of possible models/parameter values has a 
total probability of 1. 

Thus, when working within one case, P(m|d) may be renormalized to 1 and the 
evidence is not needed. But when comparing two cases, the absolute value has 
valuable information: the highest absolute value is the preferred case, hence the 
name à there is highest evidence for that case.



The data space

We know many things about the data space:

- we have a sample of the distribution there (the measured data)

- we know moments of the distribution - the mean, the variance-covariances
(either from computing the average and dispersion of the measured sample, or 
computing from theory e.g. d(m) )

For most practical applications, data is large (even one measurement of SN 
magnitude involves a large number of independent photons) and the central limit 
theorem tells us that the full distribution (for which we just have a sample) must be a 
Gaussian. 











The parameter space

From Bayes theorem we can compute the posterior from the likelihood, if we know 
the prior and if we renormalize the evidence.

Notice that a Gaussian likelihood does not necessarily lead to a Gaussian posterior 
(even in the case of a flat prior), because changing from one space to the other 
involves an inversion  d(m) à m(d)

Only in the case that the response of the observable is linear in the parameter 
values, will the posterior also be a Gaussian. 

à this is the case for geometrical probes D(z;m), i.e., for SN, BAO, but not for 
structure formation probes P(k;m).







To estimate the parameter values and their uncertainties from data, we need to find 
their distribution in the parameters’ space, i.e., the posterior distribution (or its 
moments, since in practice we do not need the full distribution).

There are two general ways of doing this:

- Sampling the distribution - we can get a sample of the posterior distribution by 
direct computation of the likelihood on a grid, or by using stochastic methods 
(Monte Carlo)

- Fisher matrix - we can compute a lower limit for the second-order moments of 
the posterior distribution (i.e., the variance of the parameters) in a deterministic 
way. However, we cannot compute the first-order moment in a similar way (i.e, 
the values of the parameters).



Sampling the distribution: in a deterministic way

Grid

Since the likelihood is proportional to the posterior distribution that we want to find, 
a direct way to sample it is to compute its values at some points in the parameter 
space:

compute the likelihood in a grid - a hypercube of likelihoods.

This does not give us a sample distributed as the posterior, but just give us some 
values of that function. 

Disadvantages: 
- the resolution of the grid may be too low to make contours,
- will waste time computing in low likelihood places,
- the number of required points increase fast with dimension of the grid

Maximization means to reduce a dimension by fixing it in the grid.

Marginalization means to reduce a dimension by summing along it on the grid.



Analytical marginalization (over nuisance parameters)

One way to decrease the dimension of the problem, making it possible to compute 
a grid of lower dimension is to marginalize the likelihood in advance, 

i.e., to integrate the likelihood dependence on one or more parameters, obtaining 
a new likelihood with less dimensions. This should mainly be done to parameters 
we are not interested in.

Let us consider a data vector xi (for example the distance modulus measurements 
at various redshifts, with associated error bars σi), and the theoretical vector mi 
(for example the distance modulus computed for the same redshifts, which is a 
function of the values of the cosmological parameters). 

The Gaussian likelihood of a theoretical model given the data vector is:



Marginalization with an additive bias

Now, consider that there is a systematic effect contributing to the distance modulus 
in an additive way, parameterized by a parameter α. 

Therefore, the theoretical prediction, now including that effect, is:

di à di + α

This means that the theoretical model that will be applied to fit the data gets an extra 
parameter: d (p1 , …., pn) + α

We need to estimate the cosmological parameters (pi) in the presence of α, i.e., 
allowing for all possible values of α. 

Instead of building a N+1 dimension grid (and since we are not interesting in 
estimating α, but only in including its impact on the estimation of pi), we can 
marginalize a priori over all possible values of α.





Notice that the result of this integral only depends on 
the width of the Gaussian ( S0

-1/2 ) and not on its 
central point S1/S0. 

So it is just a constant, i.e., it is independent on the 
cosmological parameters contained in S1 and S2 .  





The values of this likelihood on the points of a grid in the n-dimensional space of the 
cosmological parameters (p1 … pn) , are identical to the ones that would be obtained
by first computing the original likelihood on the points of a grid in the (n+1)-dim space 
of the cosmological parameters (p1 … pn , α) , and then summing up all the likelihood 
values along the α dimension on each p (dim n) point à so this method only requires 
an n-dimension grid, instead of an (n+1)-dimension one.
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Marginalizing over α, (using the same approach as in the previous calculation) the 
n-dim likelihood becomes:

Marginalization with a multiplicative bias

If the systematic effect contributes to the distance modulus in a multiplicative way, 
parameterized by an α parameter, the (n+1)-dim likelihood is:

where



Note that the result depends on the way the effect is included in the modelling. 

If the multiplicative bias parameter is applied to correct the data (instead of being 
included in the theoretical modelling), the (n+1)-dim likelihood is written as

In this case, after marginalizing over α the resulting n-dim likelihood obtained is 
different. 

It is given by



It a way is to get a sample of the distribution, i.e., a group of points in the 
parameter space in the same proportion as in the full distribution - and not just to 
know the values of the probability at certain points of the space (as with the grid).

Importance Sampling

One possible way to do this is to sample from a known distribution (Q), that we 
assume will be similar to our target distribution (P). 

(for example, Q may be a smooth approximation of P) 

Sampling the distribution: in a stochastic way



We need to define weights to get a true sample of P from a sample of Q.

This is impossible if we know nothing about P.

But if we suspect it may be similar to Q then this method is very useful, because we 
do not need to generate any points for P.

We just need to get the Q points and change their weights - for example computing 
the likelihood of those points (with our data).

The ratio between likelihood and their probability value under Q will be the new 
weight à the Q sample is changed into a P sample.

The advantage is that we did not need to compute likelihoods in points of a grid 
(which might be a bad coverage of the P sample) but on the sample points of Q 
(which are a better coverage of the P sample).



Monte Carlo Markov chain (MCMC)

The Markov method is related with importance sampling in that we sample from an 
auxiliary distribution Q.

But now Q does not need to be similar to P. 

We start sampling one point of P and center Q on that point.

Then we sample from Q - but Q depends on the current position in space.

Q is not important - it may change from point to point.

This method builds correlated samples: each point depends on the previous one -
this is the definition of a Markovian process.



This works if it fulfills the following properties:

It must be irreducible à there is a non-zero probability of reaching any model 
from any starting model. 

For example, if the target distribution has several local maxima, it may happen 
that the chain cannot pass from one of those regions to another. In this case it 
may converge to different distributions, depending on the starting point of the 
chain. 

It must be aperiodic à it must not oscillate between different sets of models in a 
periodic movement.

It must be invariant à once the chain follows the target distribution, all
subsequent iterations will also have that same distribution.



The most used algorithm of Markov chain Monte Carlo (MCMC), has these three 
properties. It is called Metropolis-Hastings:

P are the likelihoods of the two points.
If Q are symmetric distributions à Q(m’|m)=Q(m|m’)

Given a point m, a candidate new point m’ is generated from Q(m,m’).
The point is accepted to be part of the sample with a certain probability:

In summary:

If P(m’) > P(m) à m’ becomes a new point of the sample
If P(m’) < P(m) à m’ may or may not become a new point, with a probability 

P(m’)/P(m). The better it is, the better chance to be accepted.

When m’ is not accepted, the chain stays at m à the weight of m in the sample 
increases.



Properties of MCMC

Starting point

Sampling a binomial distribution
with different choices of starting points.



Step (scale of Q)

In comparison with the typical scale of P:

if too large à once the chain gets into a high posterior region, most of the 
subsequent proposed models will be in regions of lower posterior, 
and are likely to be rejected. 

if too small à acceptance rate will be larger and the chain will move frequently.   
However, it will move in small steps, taking a long time to probe all 
space and being virtually non-irreducible.

increasing steps:

dot 
dash
solid



Each point in the line is made 
from a full chain.

Optimal acceptance rate 
0.3 - 0.5

Optimal step size 
2 x σ_parameter

Q may have different scales on different directions.

Q may be chosen to be aligned with degeneracy directions for 
larger efficiency.

Acceptance rate



Convergence 

How to assess convergence? 

Convergence is related with the amount of time needed for the chain to start 
sampling from the target.

Comparing chains:  the one with small step is the least efficient.

The part of the chain built before convergence need to be removed: the burn-in
(it may be a large fraction of the chain).



How to quantify convergence?  the Gelman-Rubin convergence test

within-chain dispersion

between-chain dispersion

Convergence may require a long time
(e.g. order 106 points)

For a large number of parameters (N > 4), 
MCMC is usually faster than grid 
computation



Correlation

The resulting chain is correlated à samples are not independent

We can compute the correlation between points as function of separation in the 
chain:  (values of a parameter p in positions i and i+j)

variance = < (pi - p0) (pi+j - p0) > =  <pi pi+j - pi p0 - p0 pi+j + p0 p0 > 

since < pi > = < pi+j > = p0 à variance = < pi pi+j > - p0
2

covariance = < (pi - p0) >2 = < pi pi > - p0
2

The correlation is the variance normalized by the covariance (and it has a value < 1) :

Reduce the correlation length of the chain : for each point of the chain remove the j 
subsequent points such that the cj correlation is larger than a certain threshold (e.g. 
cj > 0.5)  à thin-out the chain



The resulting chain - converged, with burn-in removed, and thinned-out - is a 
sample of the posterior in parameter space, P(m|d).

A plot of the cloud of points directly shows the probability density of the sample 
P(m|d).

Output sample



Having obtained a converged representative sample of values of  P(m|d), the values 
of the likelihood are no longer needed to compute parameter constraints (they were 
only needed to build the chain).

We can compute averages, dispersions and correlations for all parameters 
directly  from the chain  à they are moments of the P(m|d) distribution.

Notice that the results for each parameter are already marginalized over all the other 
parameters.

We can also draw contour plots: iso-probability contours, enclosing a given 
fraction of the total probability

The resulting P(m|d) is not necessarily 
Gaussian à contours are not necessarily 
ellipses.

Parameter constraints



Fisher Information Matrix

Assume the posterior is a Gaussian distribution in the parameters’ space, centred in 
the best-fit m0
This method allows us to compute the covariance of the posterior distribution from 
the curvature matrix of the likelihood. 

Since it is a Gaussian distribution, the covariance matrix in the parameters space 
(that represents the uncertainty of the parameters estimation) is computed from

where m = m0 is the parameter value with maximum probability, i.e., the peak
of the posterior.
This is also the mean value, since it is a Gaussian (symmetric) distribution.



Inserting this in Bayes theorem we can write

i.e., the inverse covariance matrix of the posterior is the second-order derivative of 
the ln(prior) (which is zero for flat priors) + the Fisher matrix,

The Fisher matrix is defined as the second-order derivative of the chi-square 
function (the ln(likelihood)) with respect to the parameters, averaged over all 
parameter values. 

For a Gaussian or any symmetric distribution this is just the second-order derivative 
taken at the peak, known as the curvature matrix (also known as the Hessian),
i.e.,

Fij is an Np x Np matrix, where Np is the number of parameters.



Naturally, the parameter values at the peak (the vector m0) are not known. 

But the goal of this method is to find the uncertainty on the parameters
(called the credible intervals in the Bayesian approach - also called the 

confidence intervals a name from the hypothesis testing in the frequentist
approach) 

and not the actual parameter values (the peak of the distribution - called 
the best-fit values). 

So, any reasonable value may be chosen for m0 - this is called the fiducial value. 
The result we are looking for is Fij, the inverse covariance matrix in the parameters’ 
space à it will give us the uncertainty of the parameters’ values around the 
fiducial value.

For this reason, this method is only used to make forecasts of the precision of 
achievable with future data, while with real data we want to find out not only the 
uncertainty of the estimates but the actual predictions for the parameters à
likelihood sampling methods are used with real data  (e.g. MCMC).



Now, even if the posterior distribution is not Gaussian in reality, it is still useful to 
consider the Fisher matrix method, because the Rao-Cramer inequality states 
that:

the parameters confidence intervals obtained from a Fisher matrix 
analysis are a lower limit of the true ones. 

This result may be derived from the Cauchy-Schwarz inequality,

(OL stands for linear operation and f and g are general functions).

If we choose the linear operator to be the expectation value, i.e. the ensemble 
average <> :

OL(g2) = E [(m-m0)2] , i.e., the variance (E denotes the expectation value  <>)

OL(f2) = E [(dlnL/dm)2]

the Cauchy-Schwartz inequality becomes: 



The numerator is

while the denominator is:

which proves the Rao-Cramer inequality:   Var (m) >=  F-1

In other words, the elements of the covariance matrix in the parameter space are 
larger than the elements of F-1

i.e., the inverse Fisher matrix is a lower limit of the covariance matrix.

Notice that large values of Fisher matrix mean small uncertainties on the 
parameters’ values
(this is consistent with the Fisher matrix being the curvature matrix à large 
curvature in the likelihood means a peaked distribution à small sigma).



Computing the Fisher matrix in practice

The Fisher matrix approximation is very useful because it is very fast to compute, 
being basically the derivative of the cosmological function with respect to the 
cosmological parameters.

Let us start from the log-likelihood:

here written considering SN data μobs(z) and the corresponding true value μth that is 
function of the cosmological parameters: μth (z; Ω); Czz’ is the covariance matrix of 
the data.

Now, remember that the Fisher matrix is computed from the second-order 
derivatives of the log-likelihood computed at the fiducial value, i.e., at the peak of 
the distribution, i.e., at μobs = μth (fiducial parameters).



This allows us to simplify the computation. Consider one element of the Χ2 sum 
and a diagonal covariance with elements σ2. The derivation is:

So, in practice we just need to compute the first derivative of the 
cosmological function μth with respect to the cosmological parameters, due 
to the condition μobs = μth. 

This result is valid if the covariance matrix does not depend on the cosmological 
parameters. If this is not the case the covariance (i.e. 1/σ2 in this example) also 
needs to be differentiated). Usually that dependence is weaker, and the above 
formula is a good approximation.

0

[ ]
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σ2 σ2
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So, the general practical formula of the Fisher matrix is:

We just need to compute the derivatives of μ with respect to all cosmological 
parameters. For each parameter we will have a vector (a discretized function of z), 
that contracted with the covariance matrix will produce a number for each pair of 
cosmological parameters.

In other words, the Fisher matrix has dimension of Np x Np and is the sum of the 
products of two derivatives over the redshift range, normalized by the variances:

(written here for the case of a diagonal covariance).

Ω Ω (notice that the factor 2 
cancels out with the ½ of 
the Χ2)



The diagonal terms of the Fisher matrix (for a diagonal covariance matrix) are just:

If the derivative of the cosmological function with respect to a certain 
parameter is larger than with respect to another one, it means that the 
cosmological function is more sensitive to the first one à the corresponding 
component of the Fisher matrix is larger à the corresponding F-1 value is smaller 
à the uncertainty on the first parameter is smaller than on the second one.

But what about the absolute value of the uncertainty? We saw it is smaller, but is 
it small? That depends on the data covariance matrix that equally affects the 
derivatives with respect to all parameters:
If the data errors are small à the derivatives are divided by a small number à
the components of the Fisher matrix are larger à the corresponding F-1 value are 
smaller à the parameters are estimated with smaller uncertainties.



In summary: 

The inverse of the Fisher matrix is a covariance matrix in the parameters 
space.

The square root of its diagonal gives the error bars on the estimated parameters. 
As in the data space, if the parameters are correlated, the full Fisher matrix is 
needed to quantify the errors.

The error associated with the estimate of a cosmological parameter depends 
on two factors:

- the sensitivity of the cosmological function to the parameter (the derivatives)

- the precision and accuracy of the data (the data covariance matrix)



Finding the credible intervals in the parameters space (the contours)

The computation of the Fisher matrix we just did is exact, regardless of the posterior 
being a Gaussian or not. 

Now, to plot the contours in the parameters’ space we will consider the 
approximation that the posterior is a Gaussian and consider a Taylor expansion of 
the log-posterior in the parameters space:

Accuracy of the method:

- The expansion shows explicitly that the Fisher matrix method gives a lower limit for 
the parameters’ variance. The result is only exact if higher-order derivatives are zero 
(which happens for a Gaussian, which is fully described by only two moments).

- Moreover, the result of this method is not accurate (even in the case of a Gaussian 
posterior) if the fiducial value chosen is not at the peak of the distribution.



The first term of the Taylor expansion, (∂L/∂m)|m0 is zero, since the derivative is 
taken at the maximum of the likelihood (the peak). 

This equation, to second order, is a quadratic equation in the variables Δpi, with 
the center of the coordinates in m0. 

Note the Fisher matrix is semi-definite positive by construction from the 
derivatives of the likelihood (also from Cauchy-Schwartz).

(i.e., the correlation coefficients are smaller than 1)

à the points of constant ΔL define a (hyper)ellipse. 

A value of  ΔL = L0 - L(pi) gives a contour level, or (n-sigma) confidence interval, 
that connects all points pi in the parameter space that have the same likelihood.



1D “contours”:  (1 parameter)

In a 1D normalized Gaussian posterior distribution, consider the parameter values 
pmin and pmax (respectively to the left and the right of the peak at p0) such that 

lnL(p0) - lnL(pmin) = lnL(p0) - lnL(pmax) = 1

i.e., the log-likelihood of those two points differs ΔL=1 from the log-likelihood of the 
peak. This is called the 1-sigma level

For 1-sigma the quadratic equation is simply:  

ΔL = L0 - L(pi) =1 à F (p-p0)2 = 1 à (p-p0) = sqrt(1/F)     

à The 1-sigma error is sqrt(1/F)

Incidently, if we compute the integral of the normalized Gaussian from pmin to pmax
the result is 0.683, meaning that the volume enclosed by the contour ΔL=1 contains 
68.3% of the total probability. 

Other probability levels are also usually defined:

ΔL=4 is 2-sigma à contains 95.4% of the total probability
ΔL=9 is 3-sigma à contains 99.7% of the total probability



2D contours:  (2 parameters)

Integrating a 2D normalized Gaussian, we find that the 68.3%, 95.4% and 99.7% 
values correspond to different  likelihood levels than in a 1D Gaussian. 

The levels are now ΔL = 2.3, 6.2, 11.8, respectively. 
Nevertheless, they are still called 1, 2 and 3-sigma levels.
(For example, in 2D, ΔL=1 only encloses 40% of the probability).

The quadratic equation for a fixed ΔL is

ΔL = Fxx (x-x0)2 + 2Fxy (x-x0)(y-y0) + Fyy (y-y0)2 à this defines an ellipse.

So iso-probability contours in the Fisher matrix method are ellipses. Larger ellipses 
correspond to larger probability volumes

In this way, the components of the inverse Fisher matrix give us directly:

sig2
xx - variance of parameter x

sig2
xy - covariance (correlation of x and y)

sig2
yy - variance of parameter y 

If F is diagonal there is no correlation and the matrix axes are along the parameter 
axes x and y.



The (hyper-)ellipse equation for a fixed ΔL is

ΔL = Fxx (x_x0)2 + 2Fxy (x-x0)(y-y0) + Fyy (y-y0)2 + 2Fxz (x-x0)(z-z0) + 2Fyz (y-
y0)(z-z0) + Fzz (z-z0)2

The components of the inverse Fisher matrix give us directly:

sig2
xx- variance of parameter x

sig2
xy - covariance (correlation of x and y)

sig2
yy - variance of parameter y 

sig2
xz - covariance between x and z

sig2
yz - covariance between y and z

sig2
zz - variance of parameter z

3D contours:  (3 parameters)



But how can we plot ellipses (2D contours) in this case?

There are two ways to plot the ellipses on each of the 3 planes (x,y), (x,z), (y,z).

Consider the contour in the (x,y) plane. The two ways are:

Maximizing: one of the parameters is kept fixed at the maximum (in the x,y case, we 
fix z = z0).

This corresponds to a 2D slice through the 3D hyper-ellipse.

In pratice à remove z line and column from F à use this reduced F to plot the 
contour (x,y) or invert it to read the uncertainties directly on the new F-1



Marginalizing: integrating over the full range of the 3rd parameter.

This corresponds to projecting the hyper-ellipse on a 2D plane.

Integrating the likelihood will remove the dependence on the third parameter from the 
multivariate Gaussian, obtaining a Gaussian without that parameter that can be 
differentiated to get a (reduced) Fisher matrix.

In practice à remove z-axis line and column from the covariance F-1, obtaining 
a reduced F-1 à use it to read directly the uncertainties or invert it to insert in 
the ellipse equation and plot the contour.

Notice that marginalizing results in a larger ellipse than maximizing.

The uncertainty volume can also be reduced by neglecting the axis that have small variance à
Principal Components Analysis

Notice that it is also possible to marginalize on a reduced interval instead of 
integrating to infinity. 
This is equivalent to introducing a prior, restricting the interval of a given parameter. 
In this case the prior contribution needs to be added to the Fisher matrix à this 
should result in larger error bars than the maximization but smaller than the full 
marginalization.



The area of a 1-sigma ellipse is:

π a b = 2.3 π  / sqrt(det F)

The square-root of the determinant of the 2D Fisher matrix is proportional to 
the inverse of the area of the ellipse.

The Figure-of-Merit (FoM) is defined as

FoM = sqrt(det F)

The FoM of the ellipse in the w0, wa plane is used to quantify the constraining 
power of cosmological surveys: it is the called the dark energy FoM

Figure-of-Merit


