Apresentação.

Docentes e Web

Docentes, gabinete, e-mail, horário de dúvidas, PL:

Susana Custódio, 8.3.05, <u>susana@fc.ul.pt</u>, 3a-f 13:00-14:00, PL22

Ana Machado, 8.3.41, <u>ammachado@fc.ul.pt</u>, 2a-f 14:00-15:00, PL25 Carlos Pires, 8.3.39, <u>clpires@fc.ul.pt</u>, 5a-f 16:00-17:00, PL23 Fernando Santos, 8.3.22, <u>fasantos@fc.ul.pt</u>, 2a-f 14:00-15:00, PL21 Miguel Nogueira, 8.3.26, <u>mdnogueira@fc.ul.pt</u>, 5a-f 11:30-12:30, PL24

Página da cadeira: http://modnum.ucs.ciencias.ulisboa.pt

Horário

Ter 2/14	Qua 2/15	Qui 2/16	Sex 2/17	
4:30 PM - 5:30 PM T 8.2.39	5:00 PM - 6:00 PM T 3.2.13	1:00 PM - 3:00 PM L 1.5.10 PL22	3:00 PM - 5:00 PM L 1.4.20 PL25	
		4:00 PM - 6:00 PM L 1.5.10 PL24 5:00 PM - 7:00 PM L	4:30 PM - 6:30 PM L 1.5.10 PL21	

As aulas PL começam esta semana (16 e 17/Fev).

Turmas PL

Mudança de turmas PL:

Nr aluno	Nome	Turma PL original	Nova turma PL
40539	Luís Paulo Moreira Matos		PL23, 5a-f, 17:00 - 19:00
43252	Nuno Amaral Fragoeiro		PL21, 6a-f, 16:30 - 18:30
43689	João Pedro Filipe Santos	PL24	PL21, 6a-f, 16:30 - 18:30
43694	Telmo Mendes Teixeira Barbosa		PL21, 6a-f, 16:30 - 18:30
44085	Célio Agostinho Exposto Saldanha	PL24	PL23, 5a-f, 17:00 - 19:00
45276	Gabriel Bexiga Simões	PL24	PL21, 6a-f, 16:30 - 18:30
45760	Guilherme Alexandre Correia Canas Martins	PL22	PL21, 6a-f, 16:30 - 18:30
45859	João Luis Ventura Manita	PL24	PL23, 5a-f, 17:00 - 19:00
48055	Joana Rocha Araújo	PL25	PL21, 6a-f, 16:30 - 18:30
48071	Tiago Miguel Rivero Ermitão Rodrigues da Silva	PL25	PL21, 6a-f, 16:30 - 18:30
48236	Bruno Alexandre Narciso Soares	PL22	PL23, 5a-f, 17:00 - 19:00
48244	Luis Pedro Ribeiro da Costa	PL22	PL23, 5a-f, 17:00 - 19:00
48739	Miguel Alexandre de Sá e Sousa Carvalho Dias	PL22	PL23, 5a-f, 17:00 - 19:00
48063	Ana Patricia Assomar José	PL25	PL21, 6a-f, 16:30 - 18:30

 Representação numérica de sistemas físicos espaçotemporais. Análise de Fourier e caracterização de séries de dados (teorema da amostragem, propriedades da transformada de Fourier). Filtros digitais.

 Representação numérica de sistemas físicos espaçotemporais. Análise de Fourier e caracterização de séries de dados (teorema da amostragem, propriedades da transformada de Fourier). Filtros digitais.

Custódio et al, 2003

 Representação numérica de sistemas físicos espaçotemporais. Análise de Fourier e caracterização de séries de dados (teorema da amostragem, propriedades da transformada de Fourier). Filtros digitais.

Custódio et al, 2003

 Representação numérica de sistemas físicos espaçotemporais. Análise de Fourier e caracterização de séries de dados (teorema da amostragem, propriedades da transformada de Fourier). Filtros digitais.

 Solução numérica de equações diferenciais ordinárias.
 Solução numérica de equações diferenciais às derivadas parciais. Problemas estacionários e transientes.

Energy2D

 Solução numérica de equações diferenciais ordinárias.
 Solução numérica de equações diferenciais às derivadas parciais. Problemas estacionários e transientes.

3. Ajuste de parâmetros e optimização.

3. Ajuste de parâmetros e optimização.

Referências bibliográficas

- 1. Notas das aulas, Fénix.
- 2. Numerical Recipes, Press et al, Cambridge Press.

Avaliação

- Exame final: 40%
- Presenças nas aulas práticas: 10%

(nota corresponde linearmente à assiduidade)

- Trabalhos práticos: 35%
- Apresentações orais dos trabalhos: 15%

Trabalhos práticos

- Serão elaborados 3 projectos práticos, um sobre cada um dos temas abordados na cadeira.
- Os projectos serão feitos em grupos de 2 alunos.
- Os 3 projectos serão entregues para avaliação.
- Os projectos incluem a solução de um problema e a sua apresentação gráfica.
- Cada grupo defenderá oralmente os projectos (ppt).

2a-f, Entregas	3a-f, T21	4a-f, T21	5a-f, PL22	5a-f, PL24	5a-f, PL23	6a-f, PL25	6a-f, PL21]
	14/Fev	15/Fev	16/Fev	16/Fev	16/Fev	17/Fev	17/Fev	
	T1	T2	Intro-1	Intro-1	Intro-1	Intro-1	Intro-1	
	21/Fev	22/Fev	23/Fev	23/Fev	23/Fev	24/Fev	24/Fev	
	Т3	T4	Intro-2	Intro-2	Intro-2	Intro-2	Intro-2	
	28/Fev	1/Março	2/Março	2/Março	2/Março	3/Março	3/Março	
	Carnaval	T5, Protoc.	Ex1-1	Ex1-1	Ex1-1	Ex1-1	Ex1-1	
	7/Março	8/Março	9/Março	9/Março	9/Março	10/Março	10/Março	
	Т6	Т7	Ex1-2	Ex1-2	Ex1-2	Ex1-2	Ex1-2	
	14/Março	15/Março	16/Março	16/Março	16/Março	17/Março	17/Março	
	Т8	Т9	Ex1-3	Ex1-3	Ex1-3	Ex1-3	Ex1-3	
20/Março, 17:00	21/Março	22/Março	23/Março	23/Março	23/Março	24/Março	24/Março	Apresentações
Entrega Ex1	T10	T11	Ex1-4	Ex1-4	Ex1-4	Ex1-4	Ex1-4	
	28/Março	29/Março	30/Março	30/Março	30/Março	31/Março	31/Março	
	T12	T13, Protoc.	Ex2-1	Ex2-1	Ex2-1	Ex2-1	Ex2-1	
	4/Abr	5/Abr	6/Abr	6/Abr	6/Abr	7/Abr	7/Abr]
	T14	T15	Ex2-2	Ex2-2	Ex2-2	Ex2-2	Ex2-2	
	11/Abr	12/Abr	13/Abr	13/Abr	13/Abr	14/Abr	14/Abr	
	T16	Páscoa	Páscoa	Páscoa	Páscoa	Páscoa	Páscoa	
	18/Abr	19/Abr	20/Abr	20/Abr	20/Abr	21/Abr	21/Abr	
	Páscoa	Dia Ciências	Ex2-3	Ex2-3	Ex2-3	Ex2-3	Ex2-3	
26/Abr, 9:00	25/Abr	26/Abr	27/Abr	27/Abr	27/Abr	28/Abr	28/Abr	Apresentações
Entrega Ex2	Feriado	T18	Ex2-4	Ex2-4	Ex2-4	Ex2-4	Ex2-4	
	2/Mai	3/Mai	4/Mai	4/Mai	4/Mai	5/Mai	5/Mai	
	T19	T20, Protoc.	Ex3-1	Ex3-1	Ex3-1	Ex3-1	Ex3-1	
	9/Mai	10/Mai	11/Mai	11/Mai	11/Mai	12/Mai	12/Mai	
	T21	T22	Ex3-2	Ex3-2	Ex3-2	Ex3-2	Ex3-2	
	16/Mai	17/Mai	18/Mai	18/Mai	18/Mai	19/Mai	19/Mai	
	T23	T24	Ex3-3	Ex3-3	Ex3-3	Ex3-3	Ex3-3	
22/Mai, 17:00	23/Mai	24/Mai	25/Mai	25/Mai	25/Mai	26/Mai	26/Mai	Apresentações
Entrega Ex3	T25	T26	Ex3-4	Ex3-4	Ex3-4	Ex3-4	Ex3-4	
	30/Mai							
	T27							

Trabalhos práticos

- Serão elaborados 3 projectos práticos, um sobre cada um dos temas abordados na cadeira.
- Os projectos serão feitos em grupos de 2 alunos.
- Os 3 projectos serão entregues para avaliação.
- Os projectos incluem a solução de um problema e a sua apresentação gráfica.
- Cada grupo defenderá oralmente os projectos (ppt).
- As primeiras duas semanas de práticas não têm avaliação.
- Constituição dos grupos na 1^a PL (esta semana).
- Pensem na constituição dos grupos antes das PLs.

Trabalhos práticos - Avaliação

- Relatório entregue na forma de 2 ficheiros :
 - Exemplo:

EX1PL25G08.py, EX1PL25G08.pptx (Projecto 1, PL 25, Grupo 8)

- No interior dos ficheiros devem estar anotados os nomes dos autores).

- Entrega, por e-mail para o professor da TP
 - Assunto do e-mail: ModNum2017
 - Entrega: 2a-f da semana das discussões, até às 17:00.
 - Cada dia de atraso desconta 1 valor.
 - Excepção: 25/Abril. Entrega dia 26/Abril, 9:00.
- Nota: Só um dos membros do grupo apresentará o Projecto 1 (10 min). Ambos apresentam o Projecto 2 (2×5min). O outro membro apresentará o Projecto 3 (10 min). A escolha é dos grupos.

Representação (simplificada) da realidade.

(O conhecimento baseia-se sempre em "modelos".)

 Modelos conceptuais (qualitativos, esquemáticos, identificando causas e efeitos e/ou evolução típica).

Modelos teóricos (e.g. traduzidos em equações analíticas entre variáveis).
 Por vezes não têm solução...

Equações da Meteorologia:

$$\frac{\partial \vec{v}}{\partial t} = -(\vec{v}.\nabla)\vec{v} + \vec{g} - \frac{1}{\rho}\nabla p + \eta\nabla^{2}\vec{v} - 2\vec{\Omega}\times\vec{v}$$

$$= -(\vec{v}.\nabla)\vec{v} + \vec{g} - \frac{1}{\rho}\nabla p + \eta\nabla^{2}\vec{v} - 2\vec{\Omega}\times\vec{v}$$

$$= -(\vec{v}.\nabla)\vec{v} + \vec{g} - \frac{1}{\rho}\nabla p + \eta\nabla^{2}\vec{v} - 2\vec{\Omega}\times\vec{v}$$

$$= -(\vec{v}.\nabla)\vec{v} + \vec{g} - \frac{1}{\rho}\nabla p + \eta\nabla^{2}\vec{v} - 2\vec{\Omega}\times\vec{v}$$

$$= -(\vec{v}.\nabla)\vec{v} + q_{radiativo} + q_{Latente} + \kappa\nabla^{2}\theta$$

$$= -(\vec{v}.\nabla)\vec{v} + q_{radiativo} + q_{Latente} + \kappa\nabla^{2}q_{radiativo}$$

$$= -\nabla \cdot (\rho\vec{v}) + \frac{\partial q_{radiativo}}{\partial t} = -(\vec{v}.\nabla)q_{radiativo} + rase transitions + \kappa_{D}\nabla^{2}q_{radiativo}$$

$$= R\rho T(1+0.61q) + q_{radiativo} + q_{radiati$$

• Modelos analógicos (túnel de vento, tanque hidráulico, sandbox).

• Modelos analógicos (túnel de vento, tanque hidráulico, sandbox).

Representação (simplificada) da realidade.

(O conhecimento baseia-se sempre em "modelos")

 Modelos numéricos (traduzidos em relações matemáticas discretas entre variáveis).

Objectivos

- Experiências "controladas" (o que acontece se...)
- Trabalhar na "escala laboratorial" (no espaço e no tempo): o modelo só é útil se for realizável...
- Exemplos: modelos de doenças humanas em cobaias; túnel de vento (modelos analógicos)...
- Caracterizar processos individuais (isolar causas e efeitos).
- Prever o futuro.