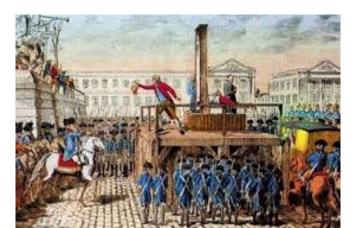
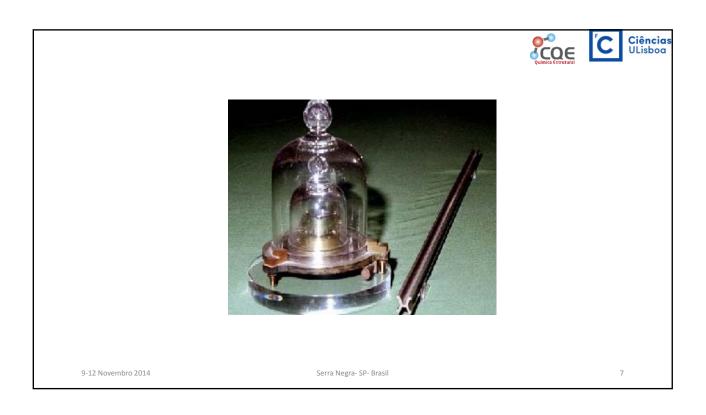


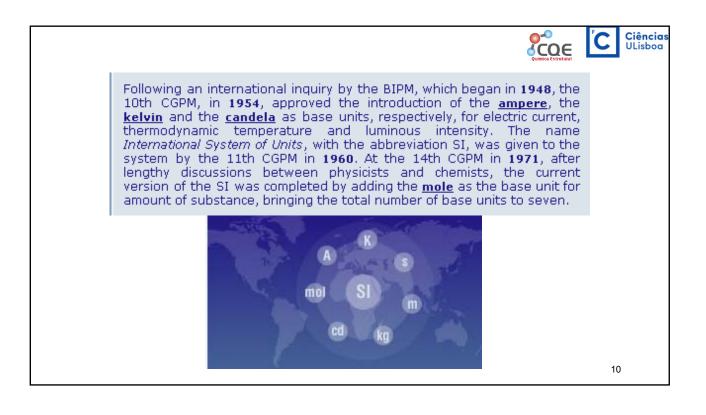
Lei de conservação da massa


Antoine Laurent de Lavoisier, 1743-1794

2 HgO → 2Hg + O₂

Nada se ganha, nada se perde, tudo se transforma




" Apenas levou uns segundos a tirarem-lhe a cabeça, e, talvez, um século não seja o tempo suficiente para aparecer outra cabeça como a dele (A. Lavoisier).

Joseph-Louis Lagrange, 1736-1813

Introdução à Metrologia Química

Construção de uma sólida infraestrutura de medições químicas

© European Communities, 2003-2007

Este curso é destinado a...

- Executantes de medições que
 - Se projectam para fora do laboratório (ex: bases de dados conjuntas/comuns)
 - Atravessam fronteiras (ex: comércio)
 - São usadas em contextos legais (ex: controlo do laboratório e organismos oficiais)

MiC-2

- Vendedores (ou candidatos a) de serviços de medição
- Agentes de Ensino de profissionais destas áreas
- Auditores técnicos (ex: 17025)

Novembro de 2014 © European Communities, 2003- 2007

<u>Sumário</u>

- O que é a Metrologia Química?
- Por que é necessária?
- Quais são as diferenças para a Metrologia Física?
- Mostrar a sua importância
- Como pode ser implementada

Definir: Uma linguagem comum Procedimentos comuns

• Evidenciar a relevância na melhoria da qualidade das medições

A nova abordagem global do CIPM-MRA: foco na metrologia & na integração

MiC-2

13

Novembro de 2014

© European Communities, 2003-2007

O que é a Metrologia?

Metrologia = Ciência da Medição

Trata de fazer compreender o processo de medição

(não de como medir com a menor incerteza possível))

MiC-2

Novembro de 2014 © European Communities, 2003- 2007

Por que é necessária?

As sociedades modernas utilizam medições

- em tecnologia
- em trocas comerciais
- no estabelecimento de regulamentos (cerca de 40% das Directivas Europeias envolvem medições)

A Metrologia é importante

e a Comissão Europeia promove-a!

MiC-2 Novembro de 2014 © European Communities, 2003 - 2007

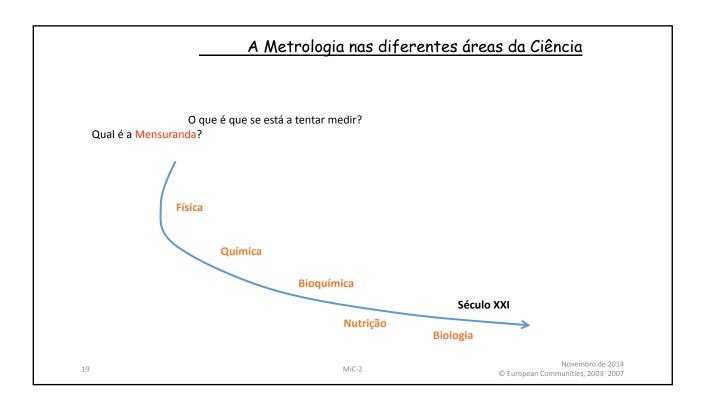
A Abordagem Metrológica Abordagem da Química Analítica Trádicional Metrológica Alguns princípios: • mantêm-se... • são melhorados! • são modificados!

Algumas "crenças" vulgares

- O meu resultado está correcto, mas não preciso de provar porquê
- Não é necessário afirmar & demonstrar a rastreabilidade
- Não é possível escrever uma equação modelo
- Não é possível usar uma base comum para estimativa de incertezas
- Quanto mais pequeno for o número sob "±" melhor é o meu laboratório
- Faço assim há muito e sei muito bem como fazer!

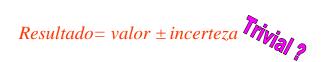
MiC-2 Novembro de 2014 © European Communities, 2003- 2007

Algumas ideias-base em Metrologia


- Informação limitada: "a Verdade" só existe em teoria, pois apenas pode ser aproximada
- Realismo: faça-se como se fizer nunca estará perfeito
- Transparência: registe-se tudo com clareza, sem deixar nada de fora
- Revisão crítica: nunca se verão problemas se não se olhar de forma crítica
- Linguagem e práticas normalizadas/unificadas entre disciplinas & sectores

Progrida-se na senda da melhoria contínua

18 MiC-2


17

Novembro de 2014 © European Communities, 2003- 2007

Metrologia, uma visão unificada

Os laboratórios dão os resultados aos Clientes

- Incerteza 2 exprime confiança intrínseca no resultado
- ISO-GUM 2 a forma corrente de avaliar a incerteza
- Vocabulário de Metrologia, VIM 🛭 Terminologia Unificada

20 MiC-2 Novembro de 2014 © European Communities, 2003 - 2007

Metrologia Química

Tradicional

É suficiente rastrear as medições a

> Cada sector decide como exprimir a confiança

algum padrão de medição <u>local</u>

A repetição de medições dá toda a informação necessária

Nova

- Explicitar, estabelecer e demonstrar a rastreabilidade
- ✓ Incerteza GUM ② abordagem normalizada entre sectores
- A repetição de medições só dá parte da informação necessária

MiC-2 Novembro de 2014 © European Communities, 2003 - 2007

<u>Metrologia Química</u>

- Está relacionada com os fundamentos da Química
 Analítica
- 2. É necessária para obter resultados de medições de boa qualidade

MiC-2

3. É da responsabilidade <u>do laboratório</u> que executa medições

Novembro de 2014 © European Communities, 2003- 2007

22

Metrologia Física/MiP vs.Química/MiC

MiP: Assenta geralmente em medições directas
② na grande maioria "independente da amostra" (comprimento, massa, temperatura,...)

MiC : Vários factores afectam a qualidade dos "dependentes da amostra" resultados 2 fortemente

Concentração de Cádmio em...

24

- √ água do mar
- ✓ solos
- ✓ sangue
- ✓ comida de bebés

D_{iferença}

23 MiC-2 Novembro de 2014 © European Communities, 2003- 2007

Metrologia Física/MiP vs.Química/MiC

MiP : Medição=comparação de uma quantidade (ex: temperatura) ② relacioná-la com uma unidade (ex: K) Maior impacto : calibração (equipamento)

Semelhança

MiC : Medição química=comparação da quantidade de um analito (ex: [DDT] em leite) 🛽 relacioná-la com uma unidade (ex: mol/kg; mg/kg)

Maior impacto: amostragem, extracção de DDT, soluções de calibração, digestão da matriz, e... calibração (equipamento)

MiC-2 Novembro de 2014 © European Communities, 2003- 2007

Glossário Básico

"Medição": determinação de um valor de uma quantidade

"Mensuranda": o que se tenta medir

"Analito": o composto, ou a espécie que se mede

"Modelo": a equação usada para calcular o resultado final (usase sempre uma!)

Este modelo é uma descrição aproximada da realidade

A definição completa destes termos pode ser encontrada no VIM 3. 2007

MiC-2

25

26

Novembro de 2014 © European Communities, 2003- 2007

Termos correntes

Grandeza	Analito	Mensuranda	Unidade	Referência determinada
Fracção mássica w	DDT	w(DDT) no solo	ng/kg	SI
Concentração c	Pb	c(Pb) em água residual	ng/L	SI
Contagem	E. Coli	Número de <i>E. Coli</i> por unidade de superfície	m ⁻²	SI
Actividade	amilase	A(amilase)	Katal	SI
рН	Iões H⁺	a(H₃O ⁺) em água residual	unidades de pH	Escala de pH
Dureza da água	CaCO ₃	Concentração CaCO₃	Grau	Escala da dureza da água
Número de octanas		Número de octanas	N° de octanas	Escala do número de octanas

MiC-2

Novembro de 2014 © European Communities, 2003- 2007

Uma medição química envolve...

- Preparação da amostra no laboratório (sub-amostragem, digestão, pré-concentração, separação, diluição,...)
- ☑ Calibração
- ☑ Medição (Instrumental)
- ✓ Avaliação crítica dos resultados
- ✓ Apresentação dos resultados: valor ± incerteza

Tenha os cuidados adequados de armazenamento e manipulação da amostra !

27

Novembro de 2014 © European Communities, 2003- 2007

MiC-2

A qualidade dos resultados de medições químicas na actualidade

- Não olhar só para o sistema & processo (ex: gestão de qualidade de um sistema, normas escritas); mas também para os RESULTADOS

Novembro de 2014 © European Communities, 2003- 2007

28 MiC-2

Conclusões ERRADAS

- ...se se tem um sistema de gestão de qualidade no laboratório, os <u>resultados</u> têm <u>automaticamente</u> melhor qualidade...
- se se têm procedimentos escritos, os <u>resultados</u> têm <u>automaticamente</u> melhor qualidade...
- se se usa um Material de Referência Certificado/CRM, os resultados têm automaticamente melhor qualidade...

... alguns conceitos simplistas no percurso para resultados de medições com melhor qualidade!

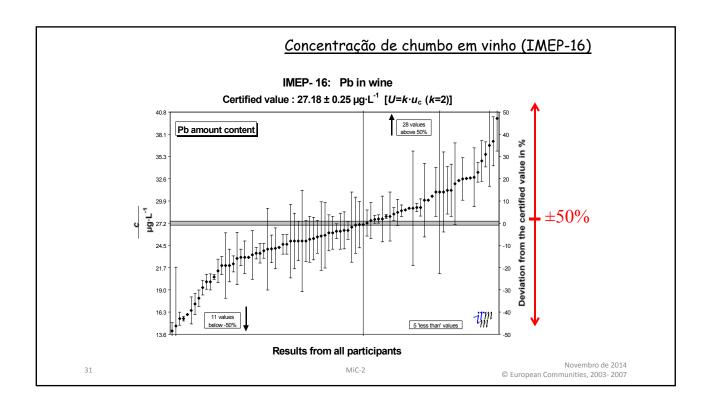
29 MiC-2

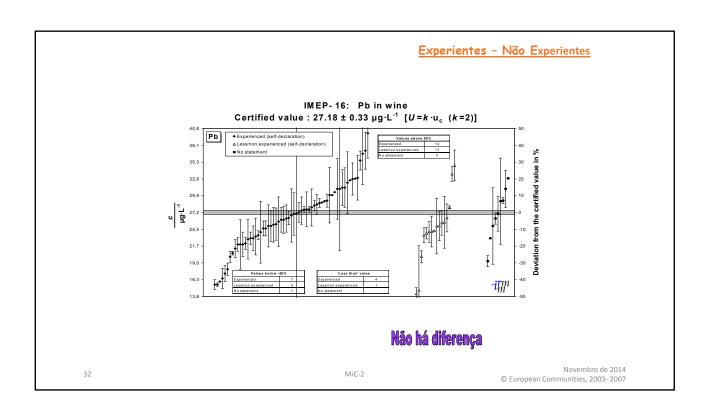
Concentração de chumbo em vinho (IMEP-16)

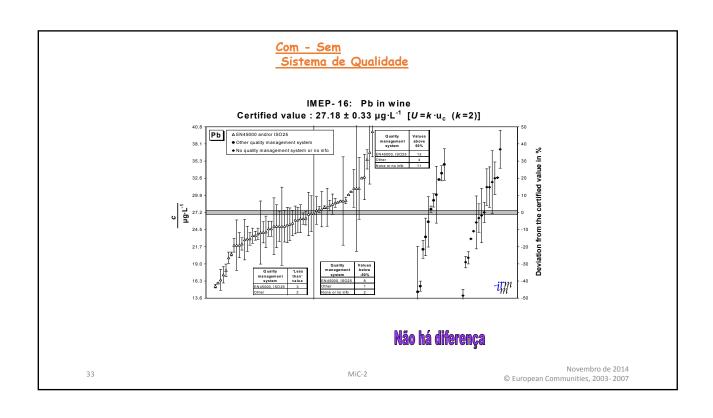
Directiva EC 2001/22
Regulamento EC 2676/90
Regulamento EC 466/2001

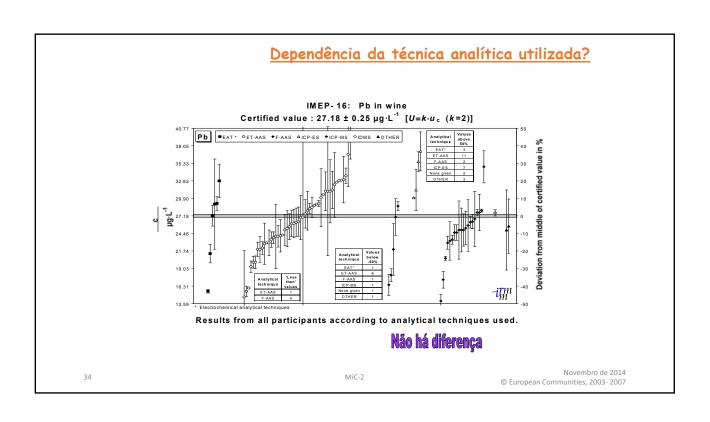
MiC-2

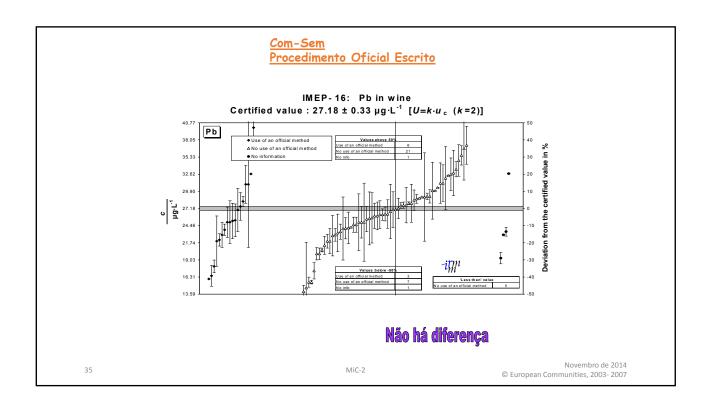
Novembro de 2014 © European Communities, 2003- 2007


15


30




Novembro de 2014


© European Communities, 2003-2007

Alguns conceitos melhores...

- Há coisas básicas que se aplicam a toda e qualquer medição (incluindo as medições químicas)
- Isto tem consequência na forma como os cientistas se organizam (de preferência NÃO por níveis sectoriais)
- Um laboratório também necessita de agir "em bloco", como uma organização
- Nada se sobrepõe à evidência experimental para substanciar uma afirmação de competência

MiC-2 Novembro de 2014 © European Communities, 2003- 2007

ISO/IEC 17025

Requisitos de Gestão

- Controlo de documentos
- Controlo de Registos
- Recepção de equipamento
- Responsabilização

Requisitos Técnicos

- Funcionários com formação/competência
- Procedimentos validados
- Utilização de CRM
- Balanço de incertezas
- Calibração de instrumentos
- Rastreabilidade de resultados
- Comparações Inter-Laboratoriais

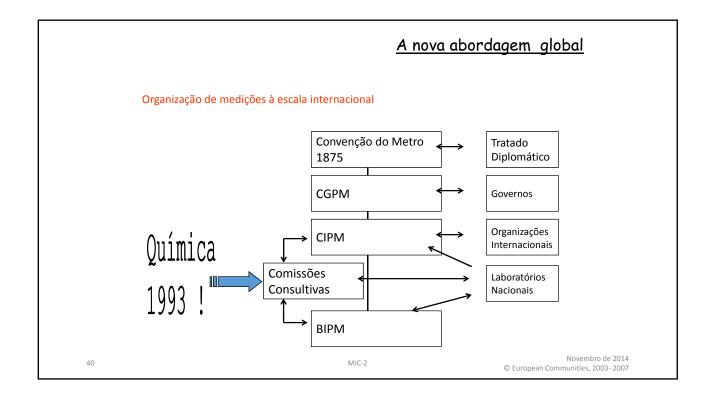
37 MiC-2

Novembro de 2014 © European Communities, 2003- 2007

A "culinária" da Metrologia

- ✓ Escolher o sistema de medição correcto, adoptar um procedimento validado e demonstrá-lo/confirmá-lo
- ✓ Descrever correctamente o sistema de medição (lei/equação analítica)
- ✓ Indicar a referência a que os resultados são rastreáveis e demonstrar como o são
- ✓ Avaliar a incerteza dos resultados
- Escolher os CRM adequados e usá-los de forma apropriada

38 MiC-2


Novembro de 2014 © European Communities, 2003- 2007

A nova abordagem global

- · Iniciativa mundial das organizações metrológicas
- Observando a Convenção do Metro
- Abordagem global: implementação de um sistema geral (em vez de sector-a-sector!)

Metrologia : incidindo de novo nas competências básicas da medição!

MiC-2 Novembro de 2014 © European Communities, 2003 - 2007

O Acordo de Reconhecimento Mútuo (MRA)

Os países industrializados acordaram

'uma vez medidos, todos os resultados de medições são aceites em qualquer lado"

[assinado na CIPM, Paris (Outubro 1999)]

Fácil de dizer, difícil de fazer

MiC-2

Novembro de 2014 © European Communities, 2003- 2007

41

42

Download from www.bipm.fr

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures

MiC-2

Bureau Organisation international intergouvernementale des poids de la Convention et mesure du Mètre

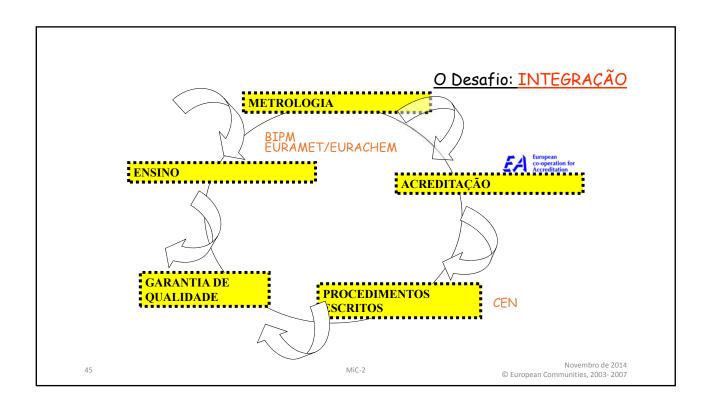
Novembro de 2014 © European Communities, 2003- 2007

http://www.bipm.fr/enus/8_Key_Comparisons/welcome2.html

Acordo de Reconhecimento Mútuo(MRA) Base de dados de comparações-chave JRCB e BIPM

Num encontro em Paris a 14 de Outubro de 1999, os directores dos institutos metrológicos nacionais (NMI) de 33 Estados Membros da Convenção do Metro e representantes de duas organizações internacionais assinaram o Acordo de Reconhecimento Mútuo(MRA) de padrões nacionais de medição e de certificados de calibração e medição emitidos pelos institutos metrológicos nacionais.

Este Acordo de Reconhecimento Mútuo é uma resposta à necessidade crescente de um esquema transparente e compreensivo para dar aos utilisadores informação quantitativa credível sobre a comparabilidade dos serviços metrológicos nacionais e para fornecer uma base técnica para um acordo mais amplo negociado para o comércio internacional e questões de regulamentação.


Actualmente (2007) o CIPM MRA foi assinado por representantes de 67 institutos -de 45Estados Membros, 20 Associados da CGPM e 2 organizações internacionais-e cobre ainda mais 115 institutos designados pelas instituições signatárias.

Novembro de 2014 43 MiC-2 © European Communities, 2003-2007

Organizações Metrológicas

- Institutos Nacionais de Medições (e os seus parceiros em medições químicas)
- Organização Metrológica Regional (EURAMET, SIM, APMP ...)
- × Fornecedores de produtos "já prontos" para a disseminação da rastreabilidade (ex: o valor atribuído a um material de referência certificado, CRM ou a uma medição de referência)
- × Redes organizadas (ex: www.euromet.org) (podem ser contactadas para informações)
- × Transparência: necessidade de documentar e demonstrar a capacidade para a execução da medição)

Novembro de 2014 MiC-2 © European Communities, 2003-2007

Copyright notice © European Communities, 2003-2007

A reprodução ou tradução de qualquer parte deste trabalho sem autorização das Comunidades Europeias é ilegal. A reprodução ou uso de qualquer parte deste trabalho está sujeita a autorização prévia. Os pedidos de autorização ou informações adicionais devem ser dirigidos a JRC-IRMM-TRAINMIC@ec.europa.eu.

47 MiC-2 Novembro de 2007 © European Communities, 2003- 2007