


## Departamento de Engenharia Geográfica, Geofísica e Energia

## Época especial de Topografia 13 de Julho de 2009

## O exame é sem consulta e tem a duração de 2h30

1. Pretendendo-se determinar a altura do edifício figurado, estacionou-se uma estação total no ponto E, mediu-se a altura do instrumento ( $a_i$ =1.60 m) e visou-se o ponto P no topo do edifício, registando-se o valor do ângulo zenital  $z_1$ =71.982 gon. Em seguida, encostou-se o bastão com o prisma reflector à fachada do edifício no ponto B (altura visada=1.50 m), na vertical de P, obtendo-se os valores seguintes na pontaria para o prisma a partir de E:  $d_i$ =38.265 m,  $z_2$ =97.496 gon. Sabendo que a cota do ponto estação é igual a 250.00 m, determine a altura do edifício e a cota do ponto P.



- 2. Utilizando uma estação total, foi executada uma irradiada simples com distância horizontal 679.311 m e rumo 173<sup>9</sup>.9803. Sabendo que a precisão de medida angular e linear do aparelho utilizado é, respectivamente, 15" e 3mm±5ppm, calcule a precisão das coordenadas do ponto visado relativamente ao ponto estação.
- 3. Nos pontos P<sub>1</sub> e P<sub>2</sub> do terreno estacionaram-se dois teodolitos, visando-se mutuamente a zero. Sabendo que

|                | M (m)   | P (m)  |
|----------------|---------|--------|
| P <sub>1</sub> | -132.10 | 204.53 |
| P <sub>2</sub> | -180.32 | 268.26 |
| Α              | -99.85  | 268.26 |

- a) Determine o valor de R<sub>0</sub> em cada estação.
- b) Calcule que leituras obteria para implantar por intersecção directa os pontos A e B, sabendo que B dista 100.00 m de A, o segmento AB é paralelo ao segmento definido pelos pontos P<sub>1</sub> e P<sub>2</sub> e que o rumo R<sub>AB</sub> é menor que 200 grados.

4. O nivelamento geométrico permite determinar desníveis entre pontos do terreno utilizando níveis. Para determinar a cota dos pontos A, B e C do terreno, estabeleceu-se uma linha de nivelamento fechada, apoiada na marca M com cota 202.268 m, tendo-se registado as seguintes observações:

| Pontos visados | Leitura atrás | Leitura à frente |
|----------------|---------------|------------------|
| M              | 1.289         |                  |
| A              | 1.173         | 1.852            |
| В              | 1.459         | 1.632            |
| С              | 1.048         | 0.806            |
| M              |               | 0.688            |

Determine as cotas ajustadas dos pontos referidos, supondo que os 4 pontos definem um quadrado com 50 m de lado (os pesos associados a um desnível dependem do quadrado do comprimento desse troço).

Formulário:

$$\begin{split} & \left\{ \sigma_{M_k}^2 = \sum_{i=1}^{k-1} (P_k - P_i)^2 \ \sigma_{R_i}^2 + \sum_{i=1}^{k-1} \frac{(M_{i+1} - M_i)^2}{d_i^2} \ \sigma_{d_i}^2 \right. \\ & \left\{ \sigma_{P_k}^2 = \sum_{i=1}^{k-1} (M_k - M_i)^2 \ \sigma_{R_i}^2 + \sum_{i=1}^{k-1} \frac{(P_{i+1} - P_i)^2}{d_i^2} \ \sigma_{d_i}^2 \right. \\ & \left. \sigma_{M_k P_k} = - \sum_{i=1}^{k-1} (M_k - M_i) (P_k - P_i) \ \sigma_{R_i}^2 + \sum_{i=1}^{k-1} \frac{(M_{i+1} - M_i) (P_{i+1} - P_i)}{d_i^2} \ \sigma_{d_i}^2 \right. \end{split}$$