

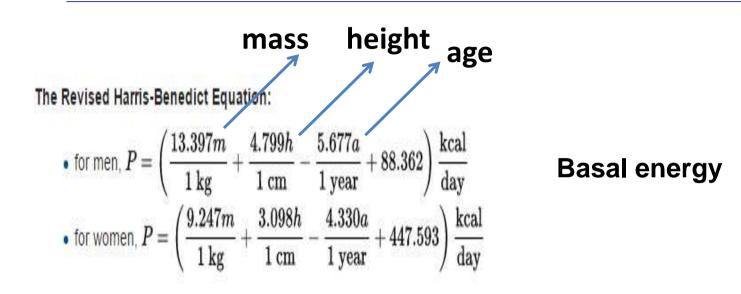
Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

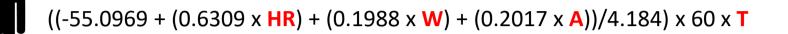
DISCIPLINA MIEA 2017

Sustainable Mobility

Sustainable mobility



Commuting by motorized or soft modes



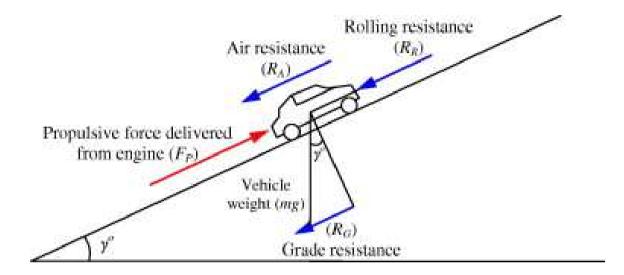
Harris JA, Benedict FG (1918). "A Biometric Study of Human Basal Metabolism". Proceedings of the National Academy of Sciences of the United States of America. 4 (12): 370–3.

A Biometric Study of Basal Metabolism in Man. J. Arthur Harris and Francis G. Benedict. Washington, DC: Carnegie Institution, 1919.

Carla Silva camsilva@fc.ul.pt

Activity energy kcal

((-20.4022 + (0.4472 x HR) - (0.1263 x ₩) + (0.074 x A))/4.184) x 60 x T

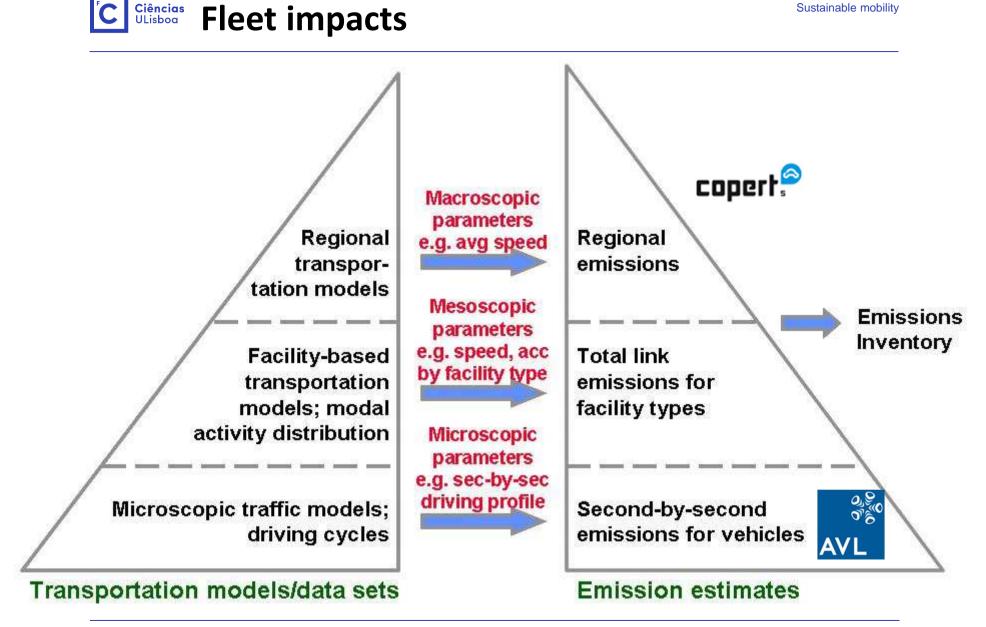

HR = Heart rate (in beats/minute)

W = Weight (in kilograms)

A = Age (in years)

T = Exercise duration time (in hours)

C Ciências Motor vehicle dynamics



Roling Road gradient Aerodynamics Propultion

$$\begin{aligned} Rr &= k_r (m + m_p) g \bullet \cos \gamma \\ Fw &= (m + m_p) g \bullet \sin \gamma \\ Ra &= 1/2 \bullet \rho C_d A_f v^2 \\ Fp &= (k_m \bullet m + m_p) \bullet dv/dt \end{aligned}$$

Carla Silva camsilva@fc.ul.pt

Sustainable mobility

ALTERNATIVE MOBILE-SOURCE EMISSIONS MODELING TECHNIQUES 175

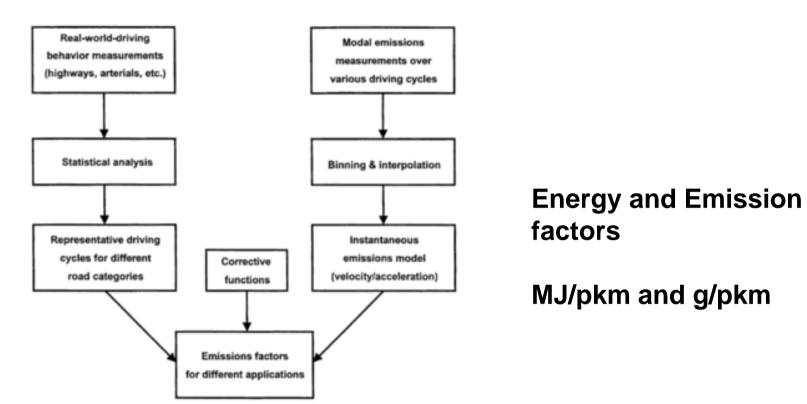
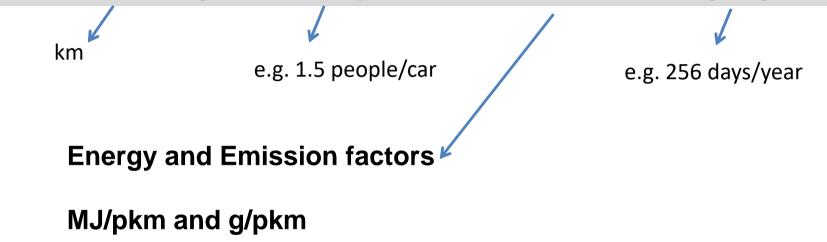
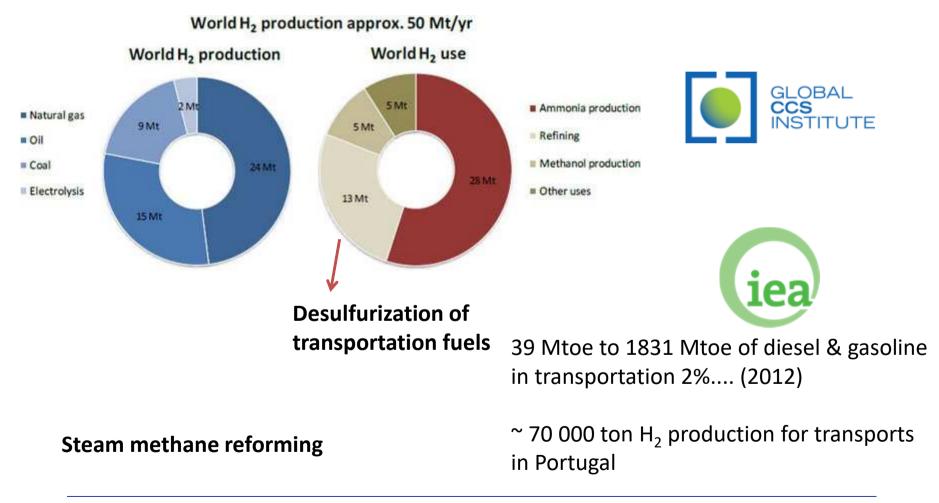



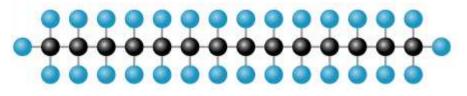
FIGURE 5-2 Database development for the Handbook of Emissions Factors. Source FRG-FEPA 1993.

Vehicle activity x Occupation x Factor x days/year

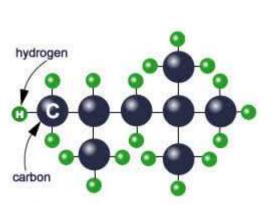
Sustainable mobility


EXAMPLE:

HOW TO EVALUATE HYDROGEN IMPACT ON ROAD TRANSPORTATION????



Sustainable mobility



Commuting in Portugal

Diesel Molecular Structure C₁₄ H₃₀

C:H ~ 1:2 40 MJ/kg

typical gasoline - C8H18

90% motorized road (50% of trips by car/motorcycle 40% by bus)

65%

35%

What is sustainable mobility?

World Business Council for Sustainable Development

Accessibility for mobility impaired groups	Accessibility for impaired	S	•
Air polluting emissions	Air pollution	0	
Noise hindrance	Noise hindrance	0	
Fatalities	Fatalities	0	
Access to mobility services	Access	0	0
Quality of public area	Public area	Q	
Urban Functional diversity	Functional diversity	۲	E
Commuting travel time	Travel time	0	E
Economic Opportunity	Economic Opportunity	Q	E
Net public finance	Public Finance	E	
Mobility space usage	Space Usage	G	E
Emissions of greenhouse gases (GHG)	GHG	G	
Congestion and delays	Congestion	G	S
Energy efficiency	Energy efficiency	G	S
Opportunity for active mobility	Active mobility	G	S
Intermodal integration	Intermodal integration	S	
Comfort and pleasure	Comfort and pleasure	S	0
Security	Security	S	0

Table.1: Overview of the 19 Sustainable Urban Mobility Indicators indicating the dimensions of the sustainability of the mobility system. Source: Oran Consulting for WBCSD SMP2.0, 2014

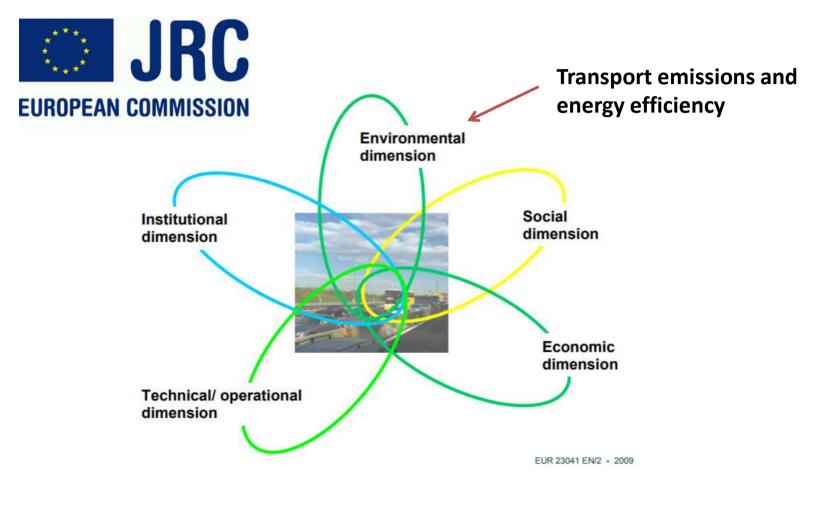
Three dimensions refer to the sustainability of the resource use and/or the impacts of mobility in the city:

Е

s

Quality of life

4 dimensions- 19 Indicators

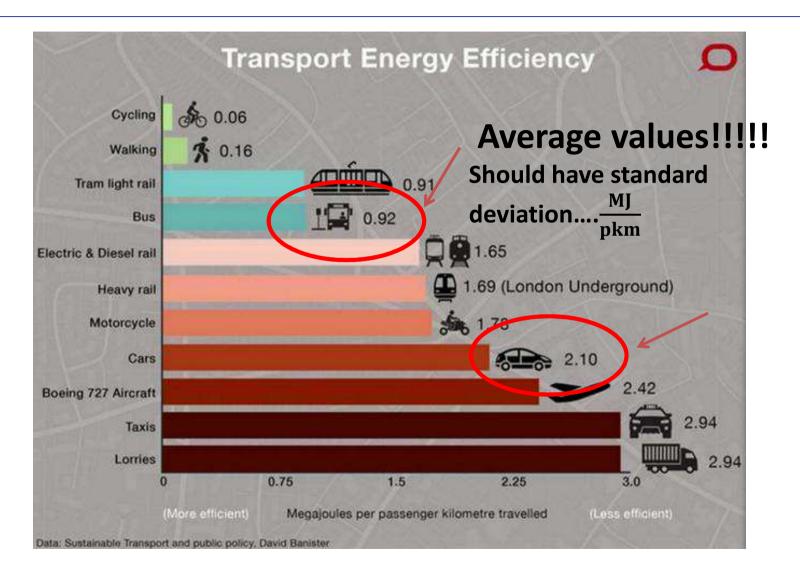

Economic success

Mobility system performance

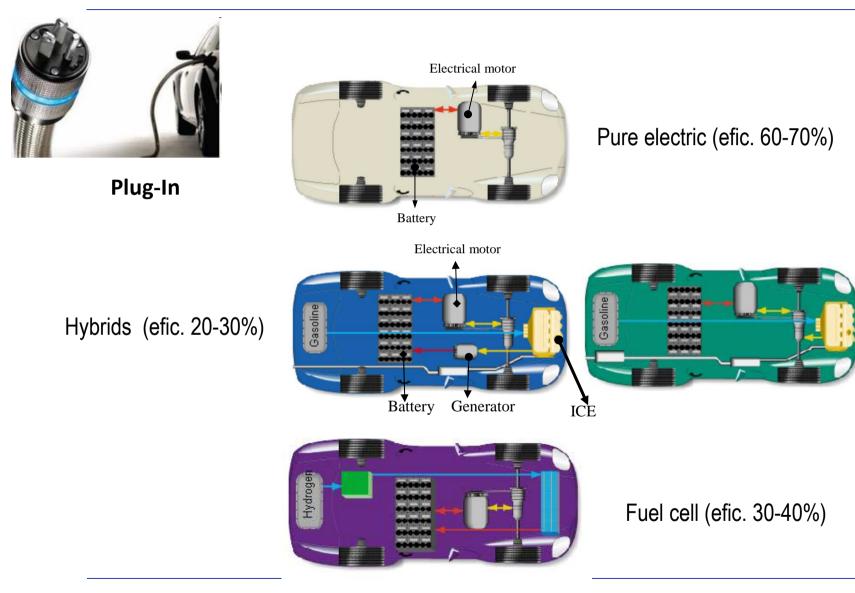
Carla Silva camsilva@fc.ul.pt

What is sustainable mobility?

5 dimensions- 55 Indicators

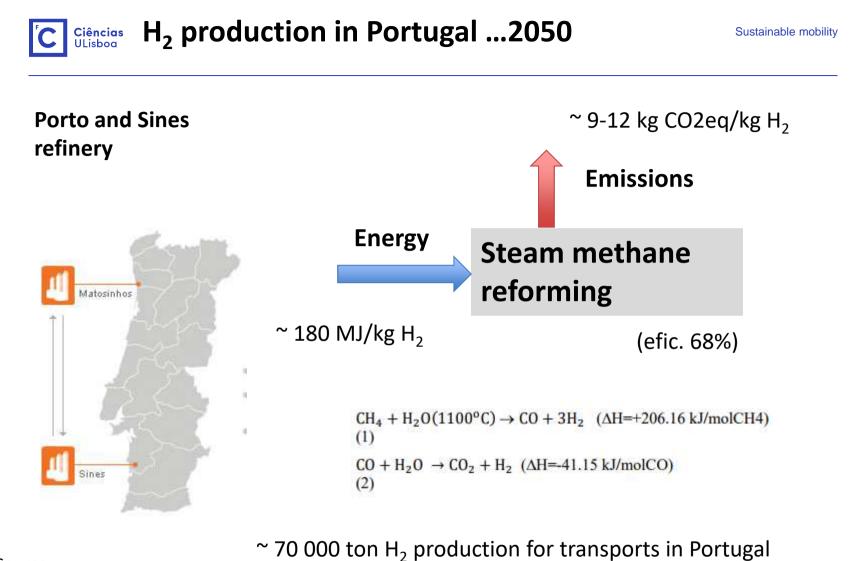

• Sources of carbon in transportation

Sustainable mobility

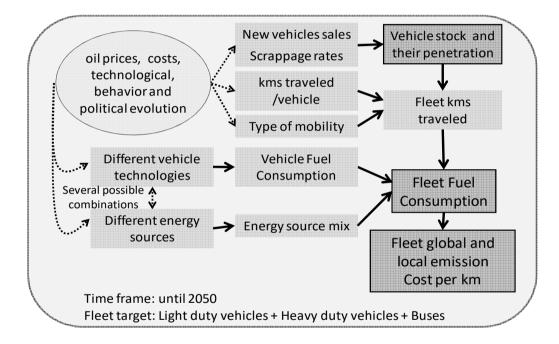


TTW energy efficiency




Vehicle technology

Energy conversion.....



Source:

- Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock;
- Hydrogen Production via Natural Gas Reforming Process A Life Cycle Assessment Approach

Excel spreadsheet model based on forecast scenarios that estimates the total fleet life cycle energy consumption, CO₂ emissions and air quality related impact

Baptista, Patrícia C., Patricia, Silva, Carla M., Farias, Tiago L., Heywood, John B. (2012), Energy and environmental impacts of alternative pathways for the Portuguese road transportation sector, Energy Policy, 5(12):802–815.

Ciências Scenarious for Portugal

INSTITUTO NACIONAL DE ESTATÍSTICA STATISTICS PORTUGAL

Evolution of the total number of vehicles per 1000 inhabitants along time.

Number of vehicles per 1000 inhabitants	LDV	HDV	Buses	
2010	553.3	15.4	1.5	
2020	573.9	15.5	1.6	
2030	612.3	15.8	1.7	
2050	615.1	15.8	2.2	

2050

Visions	Scenarios	I	BUS	Total shift	
VISIONS	Scenarios	NG	FC HEV		
	1. Low	2%	1%	3%	
Liquid fuels	2. Medium	9%	4%	13%	
	3. High	20%	10%	30%	
	1. Low	2%	1%	3%	
Diversified	2. Medium	9%	4%	13%	
	3. High	20%	10%	30%	
	1. Low	2%	1%	3%	
Electricity	2. Medium	9%	4%	13%	
	3. High	20%	10%	30%	
	1. Low	1%	2%	3%	
Hydrogen	2. Medium	4%	9%	13%	
ALC: 1	3. High	10%	2.0%	30%	

~ 5 000 Bus

~ 50 000 km/bus.year

M4 Hydrogen powered 1 435 000 (22%)HyWays for Europe; modest policy & learning
Mckinsey for Europe;

Number o	of vehicles co	onsidered in	n each scen	ario							
Year	LDV gasoline	LDV Diesel	HEV diesel	HEV gasoline	FCV PHEV	FCV HEV	PHEV gasoline	PHEV diesel	EV	NG	
	M2										
2010	3817	2046	0	33	0	0	0	0	0	0	
2020	2463	3294	26	430	0	0	0	0	0	0	
2030	1833	3631	304	622	0	0	107	23	135	16	
2050	1442	2662	623	404	64	48	317	445	510	59	
	M4										
2010	3821	2057	0	18	0	0	0	0	0	0	
2020	2547	3467	10	188	0	0	0	0	0	0	
2030	2106	4152	122	275	0	0	0	0	0	16	
2050	1631	3012	249	187	638	797	0	0	0	59	
	BAU										
2010	3804	2084	0	8	0	0	0	0	0	0	
2020	2226	3857	2	128	0	0	0	0	0	0	
2030	1359	4910	127	265	0	0	8	1	0	0	
2050	1187	4651	386	177	0	0	52	119	0	0	

R. Wurster, et al, "The European Hydrogen Roadmap," European Commission, Hyways-

Hydrogen Energy in Europe, Luxembourg, 2008.

~ 12 000 km/car.year

Mckinsey & Company, "A portfolio of power-trains for Europe: a fact based analysis; The roel of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles," 2011.

Year

2020

0.90

0.90

0.91

0.97

0.95

0.97

0.93

0.93

0.93

0.92

0.94

0.94

2050

0.63

0.64

0.65

0.90

0.80

0.90

0.75

0.74

0.74

0.72

0.77

0.77

2010

1

1

1

1

1

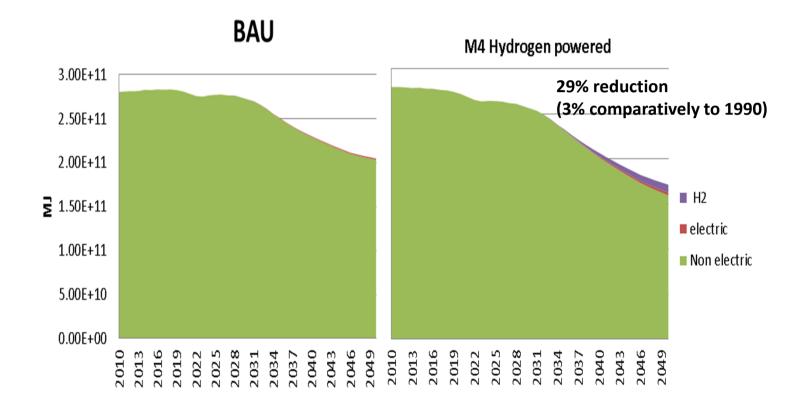
1

1

1

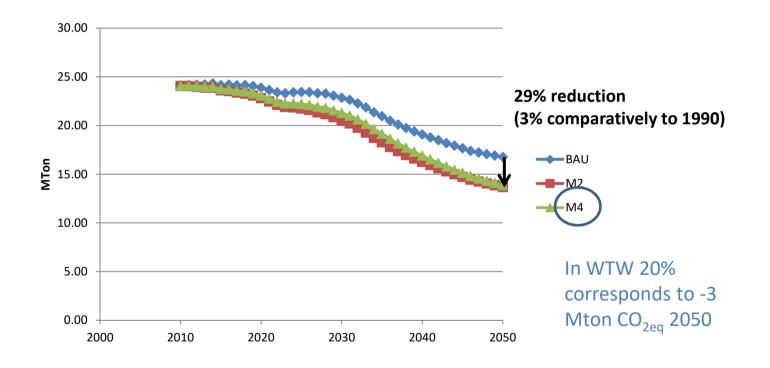
1

1


Scenarious for Portugal

Energy consumption and TTW emission factors

	Vehicle technology	Energy	TTW						
		source - 6 /100k	Energy (MJ/km) M	CO ₂ (g/km)	HC (g/km)	CO (g/km)	PM (g/km)	NO _x (g/km)	- 2 l/100km
	ICEV gasoline	Gasoline	2.12	154	0.10	1.12	0.005	0.05	Vehicle technology
	ICEV diesel	Diesel	1.96	146	0.05	0.50	0.02	0.21	2
	ICEV E100	Ethanol	2.12	0 (a)	(b)				ICEV diesel
	ICEV B100	Biodiesel	1.86		(c)				ICEV gasoline
	HEV gasoline	Gasoline	1.67	59	=ICEV	gasoline	e		HEV gasoline
	HEV diesel	Diesel	1.54	76	=ICEV	diesel			NG
	PHEV gasoline	Gasoline	1.80	122	=ICEV	gasoline	e		HDY
		Electricity	1.12	0	0	0	0	0	BUS
	PHEV diesel	Diesel	1.66	116	=ICEV	diesel			
		Electricity	1.04	0	0	0	0	0	EV
	EV	Electricity	0.60	0	0	0	0	0	PHEV gasoline
	FC-HEV	Hydrogen	1.08	0	0	0	0	0.01 /4.001	PHEV diesel
	FC-PHEV	Hydrogen	0.67	0	0	0	0~	0.6 kg/100km	HEV diesel
⁻ 0.8	$kg H_2/100kr$	Electricity	0.42	0	0	0	0	0	FCV HEV
	NG 2	natural gas	2.04	116	0.24	0.40		0.08	FCV PHEV
	HDV	Diesel	8.89	662	1.12	10.76	0.10	6.18	6.000 6.0000 E
	Bus	Diesel	10.72	798	=HDV				
	Bus NG	Natural gas	12.72	1022	=HDV				
		Hydrogen	14.47	0	0	0	0	0	

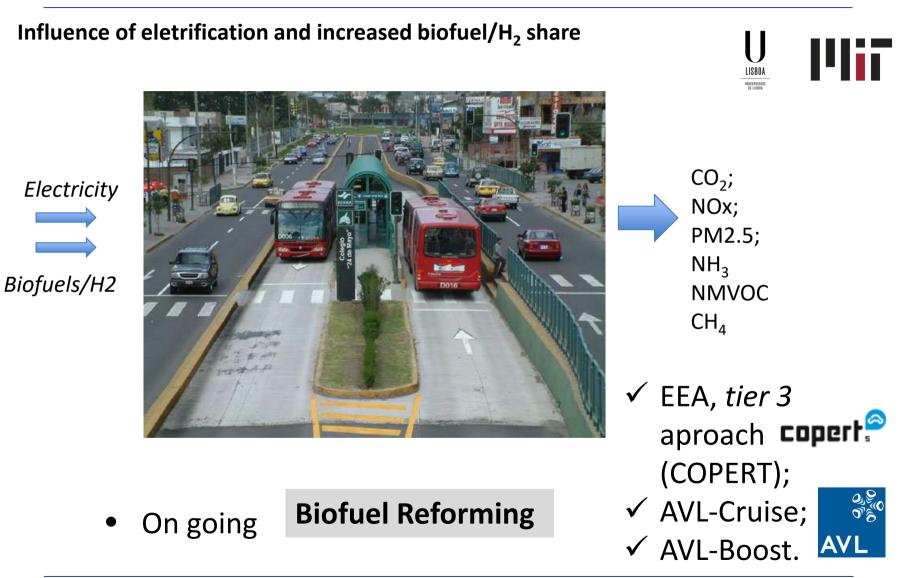


Final energy consumption

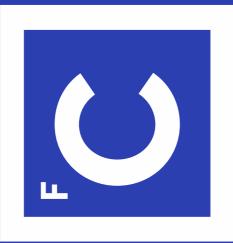
CO_{2eq} TTW

 \sim 100 000 ton H₂ production for transports in Portugal

HYDROGEN in Portugal sustainable????



INDICATORS


Transport emissions and energy efficiency

Sustainable mobility

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa