BJT Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor. It uses circuit elements that approximate the behavior of the transistor.

There are 2 models commonly used in small signal AC analysis of a transistor:

* hybrid equivalent model
Important Parameters

Z_i, Z_o, A_v, A_i are important parameters for the analysis of the AC characteristics of a transistor circuit.

![Two-port System Diagram](image)

Input Impedance, Z_i

To determine I_i: insert a “sensing resistor”

$$Z_i = \frac{V_i}{I_i}$$

![Sensing Resistor Diagram](image)

then calculate I_i:

$$I_i = \frac{V_z - V_i}{R_{\text{sense}}}$$
Output Impedance, \(Z_o \)

To determine \(I_o \): insert a “sensing resistor”

\[
Z_o = \frac{V_o}{I_o}
\]

then calculate \(I_o \):

\[
I_o = \frac{V - V_o}{R_{sense}}
\]

Voltage Gain, \(A_v \)

\[
A_v = \frac{V_o}{V_i}
\]

For an amplifier with no load:

\[
A_{VNL} = \frac{V_o}{V_i |R_{source} = \infty|}
\]

Note: the no-load voltage gain \((A_{VNL})\) is always greater than the loaded voltage gain \((A_v)\).
Current Gain, A_i

$$A_i = \frac{I_o}{I_i}$$

The current gain (A_i) can also be calculated using the voltage gain (A_v):

$$A_i = -A_v \frac{Z_i}{R_L}$$

Phase Relationship

The phase relationship between input and output depends on the amplifier configuration circuit.

- Common – Emitter: 180 degrees
- Common - Base: 0 degrees
- Common – Collector: 0 degrees
Hybrid Equivalent Model

The hybrid parameters: \(h_{ie}, h_{re}, h_{fe}, h_{oe} \) are developed and used to model the transistor. These parameters can be found in a specification sheet for a transistor.

- \(h_i \) = input resistance
- \(h_r \) = reverse transfer voltage ratio \((V_i/V_o) \)
- \(h_f \) = forward transfer current ratio \((I_o/I_i) \)
- \(h_o \) = output conductance

General h-Parameters for any Transistor Configuration

\[h_i = \text{input resistance} \]
\[h_r = \text{reverse transfer voltage ratio} \ (V_i/V_o) \]
\[h_f = \text{forward transfer current ratio} \ (I_o/I_i) \]
\[h_o = \text{output conductance} \]
Simplified General h-Parameter Model

The above model can be simplified based on these approximations:

\[h_r \approx 0 \text{ therefore } h_r V_o = 0 \text{ and } h_o \approx \infty \]

![Diagram of Simplified General h-Parameter Model]

Common-Emitter h-Parameters

\[h_{\text{ae}} = \frac{25 \text{mV}}{I_{\text{bq}}} \approx \frac{h_\beta 25 \text{mV}}{I_{\text{bq}}} \]

\[h_{\text{ie}} = \beta_{\text{ae}} \]

![Diagram of Common-Emitter h-Parameters]
Common-Base h-Parameters

$$h_{ib} = \frac{25 \text{mV}}{I_{EQ}}$$

$$h_{fb} = -\alpha_{ac} \approx -1$$

BJT Small-Signal Analysis
Common-Emitter (CE) Fixed-Bias Configuration

The input (V_i) is applied to the base and the output (V_o) is from the collector.

The Common-Emitter is characterized as having high input impedance and low output impedance with a high voltage and current gain.

Removing DC effects of V_{CC} and Capacitors

Hybrid Equivalent Circuit
Hybrid Equivalent Circuit

Determine \(h_{fe}, h_{ie}, \) and \(h_{oe} \):

- \(h_{fe} \) and \(h_{oe} \): look in the specification sheet for the transistor or test the transistor using a curve tracer.
- \(h_{ie} \): calculate \(h_{ie} \) using DC analysis:
 \[h_{ie} = \frac{25 \text{mV}}{I_{BQ}} \approx h_{ie} \frac{25 \text{mV}}{I_{EQ}} \]

Impedance Calculations

Input Impedance:
\[Z_i = R_B \parallel h_{ie} \]
\[Z_i \approx h_{ie} \left|_{R_B \geq 10h_{ie}} \right. \]

Output Impedance:
\[Z_o = R_C \parallel \frac{1}{h_{oe}} \]
\[Z_o \approx R_C \left|_{1/h_{oe} \geq 10R_c} \right. \]
Gain Calculations

Voltage Gain \(A_v \): \[
A_v = \frac{v_o}{v_i} = -\frac{h_{fe}(R_c || 1/h_{ce})}{h_{ie}}
\]

Current Gain \(A_i \): \[
A_i = \frac{i_o}{i_i} = \frac{h_{fe}R_b(1/h_{ce})}{(1/h_{ce} + R_C)(R_b + h_{ie})}
\]

Current Gain from Voltage Gain: \[
A_i = -A_v \frac{Z_i}{R_C}
\]

Phase Relationship

The phase relationship between input and output is 180 degrees. The negative sign used in the voltage gain formulas indicates the inversion.
CE – Voltage-Divider Bias Configuration

You still need to determine h_{ie}, h_{oe}, and h_{re}.

Impedance Calculations

Input Impedance: \[Z_i = R' || h_{ie} \]

\[R' = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2} \]

Output Impedance: \[Z_o = R_c || \frac{1}{h_{oe}} \]

\[Z_o \approx R_c \left(\frac{1}{h_{oe}} \right) \leq 10 R_c \]
Gain Calculations

Voltage Gain (A_v):

\[
A_v = \frac{v_o}{v_i} = -\frac{h_{re}}{h_{ie}} \frac{R_c || 1/h_{re}}{1/h_{ie}}
\]

Current Gain (A_i):

\[
A_i = \frac{i_o}{i_i} = \frac{h_{re}R'(1/h_{re})}{(1/h_{re} + R_c)(R' + h_{ie})}
\]

Current Gain from Voltage Gain:

\[
A_i = -A_v \frac{Z_i}{R_c}
\]

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.
CE Emitter-Bias Configuration

Unbypassed R_E

Again you need to determine h_{fe}, h_{ie}.

Impedance Calculations

Input Impedance: $Z_i = R_B \parallel Z_b$

$Z_b = h_{ie} + (h_{fe} + 1)R_E$

$Z_b \approx h_{fe}R_E\left|\frac{1}{(h_{be} + 1)R_E}\right| >> b_u, h_{ie} >> 1$

Output Impedance: $Z_o = R_C$
Voltage Gain (A_v): $A_v = \frac{v_o}{v_i} = -\frac{h_{fe}R_C}{Z_b}$

Current Gain (A_i): $A_i = \frac{i_o}{i_i} = \frac{-h_{fe}R_B}{R_B + Z_b}$

Current Gain from Voltage Gain: $A_i = -A_v \frac{Z_i}{R_C}$

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.
Emitter-Follower Configuration

You may recognize this as the Common-Collector configuration. Indeed they are the same circuit.

Note the input is on the base and the output is from the emitter.

Hybrid Equivalent Model

You still need to determine h_e and h_{ic}.
Impedance Calculations

Input Impedance:

\[Z_i = R_B \parallel Z_b \]

\[Z_b = h_{ie} + (h_{fe} + 1)R_E \]

\[Z_b \approx h_{fe}R_E \quad (h_{ie} + 1)R_E \gg h_{ie}, h_{fe} \gg 1 \]

Impedance Calculations (cont’d)

Output Impedance:

\[Z_o = R_E \parallel \frac{h_{ie}}{h_{fe} + 1} \]

\[Z_o \approx \frac{h_{ie}}{h_{fe}} \quad (h_{ie} + 1)R_E \gg h_{ie}, h_{fe} \gg 1 \]
Gain Calculations

Voltage Gain (A_v): \(A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + h_{ie}/(h_{fe} + 1)} \)

\(A_v \approx \frac{1}{(h_{be} + 1)R_E} \gg h_{we} \)

Current Gain (A_i): \(A_i \approx i_o/i_i - \frac{h_{fe}R_B}{R_B + Z_b} \)

Current Gain from Voltage Gain: \(A_i = -A_v \frac{Z_i}{R_E} \)

Phase Relationship

A CC amplifier or Emitter Follower configuration has no phase shift between input and output.
The input (V_i) is applied to the emitter and the output (V_o) is from the collector.

The Common-Base is characterized as having low input impedance and high output impedance with a current gain less than 1 and a very high voltage gain.

You will need to determine h_{fb} and h_{ib}.

$$h_{ib} = \frac{h_{fe}}{h_{fe} + 1} = \frac{25 \text{mV}}{I_{EQ}}$$

$$h_{fb} = -\alpha_{ac} \approx -1$$
Impedance Calculations

Input Impedance: \(Z_i = R_E \parallel h_{ib} \)

Output Impedance: \(Z_o = R_C \)

Gain Calculations

Voltage Gain (\(A_v \)): \(A_v = \frac{v_o}{v_i} = \frac{h_{fb}R_C}{h_{ib}} \approx \frac{R_C}{h_{ib}} \)

Current Gain (\(A_i \)): \(A_i = \frac{i_o}{i_i} = h_{fb} \approx -1 \)
Phase Relationship

A CB amplifier configuration has no phase shift between input and output.

CE Collector Feedback Configuration

This is a variation of the CE Fixed-Bias configuration.
Hybrid Equivalent Model

You will need to determine h_{fe} and h_{ie}.

Impedance Calculations

Input Impedance: $Z_i = \frac{h_{ie}}{1 + h_{ie} \frac{R_C}{R_F}}$

Output Impedance: $Z_o \approx R_C \parallel R_F$
Gain Calculations

Voltage Gain (A_v):
\[
A_v = \frac{V_o}{V_i} = -\frac{h_{fe}R_C}{h_{fe}}
\]

Current Gain (A_i):
\[
A_i = \frac{I_o}{I_i} = \frac{h_{fe}R_F}{R_F + h_{fe}R_C}
\]

\[
A_i = \frac{I_o}{I_i} \approx \frac{R_F}{R_C}
\]

Example

According to the figure above
- Perform DC analysis and find the Q-point.
- Evaluate the voltage gain A_v and the current gain A_i.
- Sketch v_o on the AC+DC load line graph when
 - $v_s = 100 \text{ sin}(\omega t) \text{ mV}$.
 - $v_s = 900 \text{ sin}(\omega t) \text{ mV}$.

- $h_{fe} = h_{FE} = 200$
- $I_{CO} = 0 \text{ A}$
- $V_{BE} = 0.7 \text{ V}$
- $V_{CEsat} = 0 \text{ V}$

\[
I_{CQ} = 0.39 \text{ mA}
\]
\[
V_{CBQ} = 6.8 \text{ V}
\]

\[
V_{CCQ} = 10 \text{ V}
\]

\[
I_{COL} = 0.39 \text{ mA}
\]
\[
V_{CEQ} = 6.8 \text{ V}
\]