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a b s t r a c t

Fuzzy logic has become an interesting technique in modelling ecosystem processes and eco-

logical assessment. Aside its capacity to take the inherent uncertainty of ecological variables

into account during inference processing, it can express non-linear relations between eco-
Keywords:

River ecology

Macroinvertebrates

Predictive models

Fuzzy logic

Expert knowledge

logical variables in a transparent way. In the present study, fuzzy knowledge-based models

are constructed for the prediction of abundance levels of the macroinvertebrate taxa Asellus

and Gammarus in river basins in Flanders (Belgium) and the results are validated by means of

empirical data from the Zwalm river basin. Although the fuzzy models are based on a small

set of input variables and the inference system is relatively simple, their performance was

comparable to that of other modelling techniques, such as classification trees. This research

therefore illustrates the strength of simple and robust predictive fuzzy models, and can be a

valuable contribution to the practical application of predictive models for river management

purposes.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

The use of models for the prediction of the distribu-
tion of organisms from environmental data is widespread
in ecology and conservation biology (Manel et al., 2001;
Guisan and Zimmerman, 2000; Guisan et al., 2002; Jørgensen,
2005). In bio-assessment, the main objectives of predic-
tive models are the identification of major influences on
species distribution, as such revealing indicator values, and
the discrimination between effects of the physical habi-
tat and pollution on species distribution (Utzinger et al.,
1998). Another application is to predict the effect of man-
agement actions on the composition of biological commu-
nities (Goethals and De Pauw, 2001; Olden et al., 2002).
To fulfil these objectives, abiotic and biotic variables are
used to predict the abundance and presence/absence of
the target organism(s) (Jongman et al., 1995; Manel et al.,
2001).

∗ Corresponding author. Tel.: +32 9 2643776; fax: +32 9 2644199.
E-mail address: Peter.Goethals@UGent.be (P.L.M. Goethals).

The science of ecological modelling to support river qual-
ity assessment has evolved substantially during recent years
(Recknagel, 2002; Guisan and Zimmerman, 2000). In the devel-
opment of decision support systems for river quality manage-
ment, there is today a grown interest in modelling techniques
such as artificial neural networks (Lek and Guégan, 1999), deci-
sion trees (Dzeroski, 2001), evolutionary algorithms (Caldarelli
et al., 1998) and fuzzy logic (Silvert, 2000).

To construct models for use in river management, mainly
ecological monitoring data are used. However, such data
often bear a large uncertainty, which is mostly not only epis-
temic uncertainty (e.g. measurement error, natural variation,
. . .), but also includes linguistic uncertainty (e.g. vagueness)
(Regan, 2002). Sometimes the relations between the ecosys-
tem components are not exactly known and analytical models
for establishing these relationships are not available or the
data are insufficient for statistical analysis. In such a case, a
model can be build based on expert knowledge and a fuzzy

0304-3800/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2005.11.043

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight

fc46125
Highlight



4 e c o l o g i c a l m o d e l l i n g 1 9 5 ( 2 0 0 6 ) 3–10

logic approach used for solving uncertainty problems (Salski,
1992; Yen, 1999).

Fuzzy set theory (Zadeh, 1965) is an artificial intelligence
technique that makes use of fuzzy sets and fuzzy ‘linguistic’
rules to incorporate this uncertainty into the model. Clas-
sical set theory can be extended to handle partial member-
ships, enabling to express vague human concepts using fuzzy
sets and also describe the corresponding inference systems
based on fuzzy rules (Berthold, 1999). ‘Fuzzy set theory’ is
often replaced by the term ‘fuzzy logic’. The central concept
of fuzzy set theory is a membership function, which repre-
sents numerically to what degree an element belongs to a
set. In fuzzy set theory, an element can be a member of a
particular set to a certain degree and at the same time be a
member of a different set to a certain degree. To what degree
an element belongs to a certain set is called the member-
ship degree. In fuzzy rule-based systems, knowledge is rep-
resented by if–then rules. Fuzzy rules consist of two parts: an
antecedent part stating conditions on the input variable(s) and
a consequent part describing the corresponding values of the
output variable(s). Usually, the case of a single output vari-
able is considered. In Mamdani–Assilian type models, both
antecedent and consequent parts consist of fuzzy statements
concerning the value of the variables involved (Mamdani,
1977), whereas in Takagi–Sugeno type models (Takagi and
Sugeno, 1985) the consequent part expresses a (non-)linear
relationship between the input variables and the output

2. Materials and methods

For implementation of fuzzy set theory into the models, the
fuzzy logic toolbox from MATLAB 5.3 for MS WindowsTM was
used.

For validation of the models, monitoring data from the
Zwalm river basin were used. The Zwalm river basin is a part
of the Upper-Scheldt basin and mainly consists of numerous
small brooks. It has a total surface of 11.650 ha and the Zwalm
river itself has a length of 22 km. The basin is mainly polluted
by untreated urban wastewater and diffuse pollution origi-
nating from agricultural activities. Habitat degradation of the
watercourses is caused mainly by erosion effects. Because of
its specific geomorphology, the springs are located in small
but valuable forests, it has a unique fauna in the headwaters
(Goethals and De Pauw, 2001). During September and October
of both 2000 and 2001, 60 sites of the Zwalm river basin in
Flanders (Belgium) (Fig. 1) were monitored.

The macroinvertebrates were collected with a standard
handnet consisting of a metal frame holding a conical net
(mesh-size 350 �m) (IBN, 1984). The handnet is held in a verti-
cal position on the river bottom. The bottom material located
immediately upstream is turned over by foot. In this way, the
dislodged animals are carried into the net by the current. The
objective of the sampling consists in collecting the most repre-
sentative diversity of macroinvertebrates at the station exam-

the U
variable.
The aim of this study was the construction of fuzzy

knowledge-based models for the prediction of the macroin-
vertebrate taxa Gammarus and Asellus in rivers based on
the Mamdani–Assilian approach (reviewed by Adriaenssens
et al., 2004). These fuzzy predictive models were based on
an expert knowledge database and an ecological validation
set with physical–chemical variables and macroinvertebrate
monitoring data. Macroinvertebrate communities are impor-
tant elements in river quality management and environ-
mental impact assessment, as emphasized in the European
Water Framework Directive (EU, 2000). Sampling data from
the Zwalm river basin in Flanders were used to validate
the fuzzy models. The Zwalm river basin is a typical Flem-
ish river basin and it has a very wide range of different
habitat features and states of degradation. Gammarus and
Asellus were chosen as representative taxa because of their
highly variable presence in these headwaters and their use
as bio-indicators in river quality assessment (MacNeil et al.,
2002).

Fig. 1 – The Zwalm river basin, located in
ined (De Pauw and Vanhooren, 1983). The sampling method
is based on a multi-habitat design, where major habitats are
sampled according to their proportional distribution within a
sampling reach and consisted of 10 min sampling in a 10 m
reach of the watercourse. At non-wadeable places (at six sites
within the Zwalm river basin), artificial substrates (De Pauw
and Vanhooren, 1983) were used (three replicates).

Validation of the model’s predictive results was based on
the number of correctly classified instances (CCIs) (=matching
coefficient, cf. Buckland and Elston, 1993; Fielding, 1999) and
Cohen’s Kappa (Cohen, 1960). In this study, an instance was
considered as correctly classified when the predicted output
had a degree of membership of more than 0.5 in a range [0 1]
to the measured output class. Cohen’s Kappa (Cohen, 1960)
measures the proportion of all possible cases of presence or
absence that are predicted correctly by a model after account-
ing for chance (Manel et al., 2001). CCI and Cohen’s Kappa are
expressed on a scale between 0 and 1.

Cohen’s Kappa (K) and the number of correctly classified
instances (CCI) are measured as follows:

pper-Scheldt basin in Flanders (Belgium).
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Measured Model

Absent Present Total

Absent A B A + B

Present C D C + D

Total A + C B + D A + B + C + D

For Cohen’s Kappa in medical applications (Landis and
Koch, 1977), values of K < 0.40 are considered to indicate slight
to fair model performance, values of 0.40 < K < 0.60 moderate,
and values of 0.60 < K < 0.80 and K > 0.80 substantial and excel-
lent, though this is quite arbitrary and depends on the appli-
cation (Manel et al., 2001).

3. Results

3.1. Selection of input variables, construction of the
membership functions and the fuzzy rule base

Literature research allowed the formation of an ecolog-
ical knowledge database that was used to select the
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ences, although A. aquaticus appears to be somewhat more
resistant to pollution than A. meridianus (Gledhill et al., 1976;
Chambers, 1977; Cuppen, 1980; Gongrijp, 1981; Verdonschot,
1990). A. aquaticus is very resistant to low oxygen conditions
(Hawkes, 1979; Verdonschot, 1990) and is tolerant against
organic loads. It often replaces Gammarus species at high lev-
els of organic pollution (Hawkes, 1979; Verdonschot, 1990).
A. aquaticus lives preferentially in waters where a varied
detritus layer is present. Asellidae are mentioned to behave
as indifferent to water velocity (Bayerisches Landesamt für
Wasserwirtschaft, 1996), though other sources report they
have a preference for waters with a low flow velocity and also
prefer a higher width within the headwaters (Macrofauna-
Atlas of North Holland, 1990). Because of their close ecological
preferences in rivers, a common predictive Asellus model was
constructed for both A. aquaticus and A. meridianus.

MacNeil et al. (2002) revealed by means of both univari-
ate and multivariate analysis that the Gammarus:Asellus ratio
was sometimes responsive to changes in parameters linked
to organic pollution, but also appeared correlated with vari-
ables such as conductivity and distance from source. Holland
(1976) found that, although the severity of pollution tolerated
by G. pulex and A. aquaticus was only little different, the levels
at which these species were highly abundant differed radi-
cally (MacNeil et al., 2002). G. pulex tolerates dissolved oxygen
down to 2.7 mg/L and is highly abundant at 7.4 mg/L or above
(Macan, 1961). A. aquaticus on the other hand, tolerates levels
physical–chemical) input variables and to construct the fuzzy
ets and rules of the model. For Gammaridae, only Gammarus
ulex was present in the watercourses of the Zwalm river
asin. This species prefers streams with high flow velocity

Bayerisches Landesamt für Wasserwirtschaft, 1996). Com-
ared to Asellidae, Gammaridae generally colonize streams
ith a higher stream velocity because of their superior swim-
ing abilities (Brehm and Meijering, 1990). In accordance,

. pulex is almost non-tolerant for low oxygen conditions
Wesenberg-Lund, 1982), but can tolerate low oxygen concen-
rations when water temperatures are low. It generally prefers
ell oxygenated localities and temperatures well below 20 ◦C,
hich could also be derived from the induced ANN mod-

ls (Dedecker et al., 2005) on the same data set. G. pulex
s suppressed by high organic conditions (Hawkes, 1979),
hough can stand moderate organic pollution (Gledhill et al.,
976, 1993). It prefers substrate-heterogeneity (Tolkamp, 1980),
specially detritus substrates or detritus mixed with sand
r gravel or leaf material (Tolkamp, 1982). Gammaridae are
ore sensitive to high conductivity values than Asellidae,

ut at conductivity values above 1000 �S/cm, both macroin-
ertebrate taxa experience adverse influences (Macrofauna-
tlas of North Holland, 1990). G. pulex appears in all kinds of
ater lakes, headwaters, river tributaries, canals, . . . (Holthuis,

956; Karaman and Pinkster, 1977; Hawkes, 1979; Verdonschot,
990). G. pulex is less tolerant than A. aquaticus to inor-
anic pollutants (Martin and Holdich, 1986) and organic
ewage (Whitehurst, 1991a,b). The developed model will be
amed as the Gammarus model, but refers to the G. pulex
pecies.

Two Asellus species (A. aquaticus and A. meridianus) were
resent in the samples of the Zwalm river basin. These species
ave almost no apparent differences in ecological prefer-
as low as 1.5 mg/L and is highly abundant at 5.8 mg/L (Holland,
1976).

Using this knowledge base, an ecological data survey and
information from experts, relevant and available input vari-
ables were fuzzificated into fuzzy sets. Conductivity (�S/cm),
dissolved oxygen concentration (mg/L), width (m) and stream
velocity (m/s) were selected as relevant input variables. Each
input variable was divided into two fuzzy sets reflecting low
and high values. The output variable reflects the abundance
classes for each species, and is divided into three sets reflect-
ing low, medium and high abundance of the modelled species.
Boundaries for the fuzzy sets were determined by the knowl-
edge database. The width of the overlap between the fuzzy
sets of input and output variables was defined by means of the
level of uncertainty of the classification process. Construction
of the membership functions of input and output variables

Table 1 – Trapezoidal membership functions of the input
and output variable(s)

Shape of membership function

Trapmf The trapezoidal curve is a function of a vector, x,
and depends on four scalar parameters, a, b, c, d,
as given by

f (x; a, b, c, d) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ a
x − a

b − a′ , a ≤ x ≤ b

d − x

d − c′ , c ≤ x ≤ d

0, d ≤ x

⎫⎪⎪⎬
⎪⎪⎭

The

parameters a and d locate the “feet” of the
trapezoid and the parameters b and c locate the
“shoulders”
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Table 2 – Membership functions used in the fuzzy models, defined by means of the trapmf (trapezoidal) function, are
explained by means of the characterizing nodes (a, b, c, d)

Input variables (trapezoidal function) Low [a b c d] High [a b c d]

Conductivity (�S/cm) trapmf[0 0 1200 1200] trapmf[400 1400 2500 2500]
Dissolved oxygen concentration (mg/L) trapmf[0 0 10 10] trapmf[4 12 15 15]
Water velocity (m/s) trapmf[0 0 2 2] trapmf[0.4 1.2 2.5 2.5]
Width (cm) trapmf[0 0 100 100] trapmf[0 100 1000 1000]

Output variable (trapezoidal function) Low [a b c d] Intermediate [a b c d] High [a b c d]

Abundance (number of individuals) trapmf[0 0 65 65] trapmf[25 40 60 85] trapmf[65 100 5000 5000]

Table 3 – Rule base system for Gammarus species

Conductivity D.O. Water velocity Width Gammarus

Low Low Low Low Low
Low Low Low High Low
Low Low High Low Intermediate
Low Low High High Low
Low High Low Low Intermediate
Low High Low High Intermediate
Low High High Low High
Low High High High Intermediate
High Low Low Low Low
High Low Low High Low
High Low High Low Low
High Low High High Low
High High Low Low Intermediate
High High Low High Low
High High High Low Intermediate
High High High High Intermediate

was the same for the Gammarus model as for the Asellus model.
Membership functions for the input and output variables were
based on trapezoidal (Table 1) functions and are described in
Table 2.

Fig. 2 gives a schematic overview of the trapezoidal-based
fuzzy sets for an input variable (conductivity) and output vari-
able (abundance of a species) as applied for the prediction of
Asellus and Gammarus in rivers.

A fuzzy rule base system (Tables 3 and 4) was constructed
for each model that connects the input variables to the output
by means of if–then rules. These rules were implemented in a
fuzzy inference system of the Mamdani–Assilian type, which
produces a crisp output. ‘And’ has been used as a conjunction
operator in the fuzzy rule base.

Table 4 – Rule base system for Asellus species

Conductivity D.O. Water velocity Width Asellus

Low Low Low Low Low
Low Low Low High Intermediate
Low Low High Low Low
Low Low High High Low
Low High Low Low Intermediate
Low High Low High High
Low High High Low Intermediate
Low High High High Intermediate
High Low Low Low Low
High Low Low High Low
High Low High Low Low
High Low High High Low
High High Low Low Low
High High Low High Intermediate
High High High Low Low
High High High High Low

Table 5 – Results of the fuzzy predictive models correctly
classified instances (CCI) and Cohen’s Kappa (K) on a
scale of [0 1]

CCIrare Krare CCIlow Klow CCIhigh Khigh

Gammarus 0.69 0.500 0.85 0.394 0.52 0.519
Asellus 0.83 0.359 0.93 0.400 0.84 0.157

3.2. Validation and optimization of the fuzzy models

CCI and Cohen’s Kappa (K) were used to evaluate the model
based on the Zwalm river basin data set. K and CCI values for
the Gammarus and Asellus models are given in Table 5.

By comparing the predicted with the measured results for
the Zwalm river basin, matrices of confusion (Fielding and Bell,

Fig. 2 – Fuzzy model for the prediction of Asellus and Gammarus in rivers with trapezoidal-based fuzzy sets of the input
nce), connected to each other via an if–then rule base.
variables (e.g. conductivity) and the output variable (abunda
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Table 6 – Confusion matrices for the Gammarus model

Gammarus low, predicted as low true positive 54/120 = 0.45 Gammarus not low, predicted as not low true negative 29/120 = 0.24
Gammarus low, predicted as not low false negative 23/120 = 0.19 Gammarus not low, predicted as low false positive 14/120 = 0.12
Gammarus intermediate, predicted as intermediate true positive

8/120 = 0.07
Gammarus not intermediate, predicted as not intermediate true
negative 94/120 = 0.78

Gammarus intermediate, predicted as not intermediate false negative
2/120 = 0.02

Gammarus not intermediate, predicted as intermediate false
positive 16/120 = 0.13

Gammarus high, predicted as high true positive 15/120 = 0.13 Gammarus not high, predicted as not high true negative
62/120 = 0.52

Gammarus high, predicted as not high false negative 18/120 = 0.15 Gammarus not high, predicted as high false positive 25/120 = 0.21

Table 7 – Confusion matrices for the Asellus model

Asellus low, predicted as low true positive 85/120 = 0.71 Asellus not low, predicted as not low true negative 15/120 = 0.125
Asellus low, predicted as not low false negative 15/120 = 0.13 Asellus not low, predicted as low false positive 5/120 = 0.04
Asellus intermediate, predicted as intermediate true positive

3/120 = 0.03
Asellus intermediate, predicted as not intermediate true negative
109/120 = 0.91

Asellus intermediate, predicted as not intermediate false negative
3/120 = 0.025

Asellus not intermediate, predicted as intermediate false positive
5/120 = 0.04

Asellus high, predicted as high true positive 15/120 = 0.125 Asellus not high, predicted as not high true negative 86/120 = 0.072
Asellus high, predicted as not high false negative 4/120 = 0.03 Asellus not high, predicted as high false positive 15/120 = 0.13

1997) were constructed, identifying true positive, false posi-
tive, false negative and true negative cased for each model
(Tables 6 and 7).

4. Discussion

Predictive models could be of practical use for decision
support in river management. These techniques combine
physical–chemical and biological data, and can assist in devel-
oping our understanding of the processes that influence
aquatic organisms in running waters (Parasiewicz and Dunbar,
2001). For river managers, knowledge of the environmen-
tal factors that favour key biota can guide their planning of
restoration actions and conservation management (Goethals
and De Pauw, 2001; Manel et al., 2001).

At present, few applications in ecological modelling inte-
grate knowledge-based prediction and simulation of ecologi-
cal interactions in the aquatic ecosystems through fuzzy logic
(Daunicht et al., 1996; Bock and Salski, 1998; Jorde et al., 2000;
Kampichler et al., 2000; Mackinson, 2000). Rather, most of
the predictive models used today, rely on preference function
based approaches and only include hydraulic measurements
(e.g. Giesecke et al., 1999; Mallet et al., 2000; Baptist et al.,
2002; Parasiewicz and Dunbar, 2001; Lamouroux and Capra,
2002). These preference function models consider parame-
ters separated from each other or in combination only with
o
t
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m
2
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r
t
m
G
t

degree of random error in the predictions, the Gammarus
models have the best performance. This is a consequence of
the prevalence of the taxa in the river basin, an important
aspect to consider within the evaluation of model results and
also mentioned by Fielding and Bell (1997) and Manel et al.
(2001). The abundance of Asellus organisms is less evenly dis-
tributed over the three constructed output classes than the
one of Gammarus, and as such this influences the prediction
results, incorporating a greater effect of chance (dominant
portion of true negative predictions, see confusion matrices
Tables 6 and 7).

The developed model, used in this context for the predic-
tion of Gammarus pulex abundances, is not specific for any
particular Gammarus species because there is a range of toler-
ances to organic pollution within this genus (Meijering, 1991;
Cao et al., 1996; Walley and Hawkes, 1996). Likewise, ecologi-
cal preferences for the Gammarus genus cannot be generalized
when looking at specific geographical constraints, because dif-
ferent Gammarus species inhabit the range between upstream
regions and more downstream regions with a different pref-
erence for stream velocity, water level, oxygen concentration
and habitat diversity (Holthuis, 1956; Pinkster and Platvoet,
1986). Environmental preferences for both Asellus aquaticus
and Asellus meridianus were generalized because of the little
difference in ecological niche, except for a small difference in
organic pollution tolerance (Gledhill et al., 1976; Chambers,
1977; Cuppen, 1980; Gongrijp, 1981; Verdonschot, 1990). For
ne or two other parameters. In contrast, fuzzy rules allow
he inclusion of large numbers of combinations of parameters
nto habitat simulation tools and therefore it is easy to include

ore parameters, if these turn out to be relevant (Jorde et al.,
000).

Here, fuzzy models have been used for prediction of the
ccurrence of Crustacean species (Asellus and Gammarus) in
ivers in Flanders. Prediction results evaluated by CCI and
he Kappa’s coefficient K reflect a moderate to good perfor-

ance. The Asellus models seem to perform better than the
ammarus models based on the CCI, but when considering

he Kappa’s coefficient K, which allows a correction for the
bio-assessment, this generalization could be of an important
practical use, reducing the number of models for prediction of
macroinvertebrate taxa in rivers.

Selection of the input variables comprised a combination of
cost-efficiency of monitoring and relevancy of the input vari-
ables as reported in literature. This resulted in the selection of
‘conductivity’, ‘dissolved oxygen concentration’, ‘width’ and
‘stream velocity’. The latter input variables are correlated with
one another, although this was not significant in case of the
Zwalm basin river data. A major part of the abundance of
macroinvertebrate taxa in rivers can be explained by the input
variable ‘conductivity’. Due to the high values of this variable,
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most of the variance of this input variable has to be explained
by pollution, most likely caused by agricultural activities
and (treated and untreated) wastewater effluents. The same
results were obvious when an ecological database for benthic
macroinvertebrates, monitored in Flanders rivers, was used
to validate a model based on decision trees and when input
variables were selected by means of genetic algorithms. Con-
ductivity was also one of the most relevant variables, besides
dissolved oxygen, which indicates that the macroinvertebrate
presence is mainly characterized by pollution-caused influ-
ences rather than natural and structural variability (D’heygere
et al., 2003). The implementation of dissolved oxygen into the
fuzzy models expresses an important notion of organic pollu-
tion present in the rivers. It is in that context that the Gam-
maridae:Asellidae ratio is used in running waters in the U.K.
(Hawkes and Davies, 1971; Whitehurst, 1988). This ratio can
detect subtle changes in organic pollution levels, because the
change in organic load alters the relative abundance of Asell-
idae and Gammaridae species rather than total species com-
position (MacNeil et al., 2002). The overlap of the fuzzy sets
of the output variable, demonstrated by the non-crisp (fuzzy)
boundaries between abundance classes, reflected the uncer-
tainty of the sampling method, which is semi-quantitative.

Although it is clear that fuzzy model techniques can be
very useful in ecosystem management, still there is certainly
a need for a more rigid basis for model construction and opti-
mization. Applying genetic algorithms to adjust the shape

rithm (Witten and Frank, 2000) was used for inducing classi-
fication trees for macroinvertebrate taxa in the Zwalm river
basin. Although, the application of classification trees was
very useful to extract rules from a data set without prior
knowledge, these rules are only based on correlations and
do not reflect any kind of causality. Through this data-driven
approach, only a certain preference of Asellidae for rivers char-
acterized by a great width could be detected (Goethals et al.,
2001), limiting the applications for simulating management
scenarios.

In the fuzzy models, some limitations appear regarding
to the scale of sampling. The spatial scale of the monitored
validation data set is at the watercourse level, and encom-
passes a multi-habitat sampling. The models produced in this
study were as such probably too robust, because collections
from more than one habitat type may introduce variation
that can potentially mask water quality differences among
sites (Parsons and Norris, 1996). As such, the mesohabitat
characteristics could be of great importance. In the future,
a habitat-specific-sampling could possibly reveal this gap in
knowledge.

5. Conclusion

In comparison to other predictive modelling techniques (ANN,
multivariate analysis), fuzzy models have the advantage to be

r

of membership functions seems promising in this respect
(Arslan and Kaya, 2001; Adriaenssens et al., 2004).

Performance of these fuzzy models is assessed by their
predictive success and a whole set of validation measures
is available each revealing different properties of the evalu-
ated models (Guisan and Zimmerman, 2000; Olden et al., 2002;
Guisan et al., 2002). Still, few studies perform such validation
measures, as could be done by statistical validation exercises
(Fielding and Bell, 1997; Manel et al., 2001; Manly, 1997), and
even fewer perform field validation (Rykiel, 1996; Manel et al.,
2001). In this study, CCI and Cohen’s Kappa were used as per-
formance measures of the models. The use of Cohen’s Kappa
(Cohen, 1960; Fielding, 1999) in combination with the CCI mea-
sure is important because it is possible to obtain high overall
accuracy using trivial rules, when, for example prevalence is
low (Fielding and Bell, 1997), and this can be reflected within
the Cohen’s Kappa statistic, although some criticism concern-
ing overestimation exists (Foody, 1992). Matrices of confusion
provided a general evaluation of the performance of the mod-
els (Manel et al., 2001), indicating if ‘true positive’ or ‘true
negative’ hits seem to be the most important in the success of
the predictions (Foody, 2002).

The validation set of the developed fuzzy models com-
prised monitoring data from the Zwalm river basin, but
this data set can serve as a prototype for headwater river
basins throughout whole Flanders, because a range of pollu-
tion sources (households, agriculture and small industry) and
river types (large brooks, small brooks and source brooks) are
included (Goethals and De Pauw, 2001).

Similar predictive results for macroinvertebrates were
obtained when classification trees were used to predict the
presence of Asellidae and Gammaridae validated by the
Zwalm river basin data set (Goethals et al., 2001). A J48 algo-
simple (relations between input and output variables can be
explained in a linguistic-based rule base) and robust (perfor-
mance is not depending on training and new input variables
and rules can be easily added). The developed fuzzy mod-
els for the prediction of Gammarus and Asellus in rivers, as
evaluated by CCI and Cohen’s Kappa K, seem to perform well
and can have practical application in the decision support
related to water management. They can be improved, mainly
through the implementation of habitat characteristics and by
the hybridization of fuzzy logic with data-based modelling
techniques, which ease the optimization of the models.
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