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 Contributed Papers

 A Fuzzy Logic Model to Predict Coral Reef Development
 under Nutrient and Sediment Stress

 ERIK H. MEESTERS,* ROLF P. M. BAK,t SUSIE WESTMACOTT,* MARK RIDGLEY,t
 AND STEVE DOLLAR?

 *Resource Analysis, Zuiderstraat 110, 2611 SJ Delft, The Netherlands
 t Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands, and Institute of
 Systematics and Population Biology, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands
 tDepartment of Geography, University of Hawaii, Honolulu, HI 96822, U.S.A.
 ? Department of Oceanography, University of Hawaii, Honolulu, HI 96822, U.S.A.

 Abstract: Coral reefs are highly complex systems characterized by mostly nonlinear relationships between bi-
 otic and abiotic components. Traditional models of reef dynamics often require unavailable data and preci-
 sion, which limits their success and usefulness. We tested a new approach in coral reef modeling with fuzzy
 logic. Fuzzy logic has been applied successfully in modeling highly nonlinear systems in engineering, decision
 support systems, and ecology. As part of an integrated coastal zone management model, we constructed a
 coral reef model that predicts changes in coral cover and diversity under anthropogenic stress, namely nutri-
 ent enrichment and increased sedimentation. The model reflects our current knowledge of the fringing reefs
 of Curacao, Netherlands Antilles. The seven input variables used were dissolved inorganic nitrogen and phos-
 phate, suspended particulate matter, maximum colony size, substratum available for colonization, coral
 cover, and coral diversity. Each variable was divided into three triangular fuzzy sets reflecting low, medium,
 and high values. For each of the 2187 possible input combinations we estimated cover and diversity after 10
 years. We consulted experts with a thorough knowledge of the local reef system and have automatically ac-
 countedfor interactions between the variables described above. The model clearly shows how increases in nu-
 trient and sediment inputs affect coral cover and diversity. Although the model can be refined continuously, it
 appears to reflect accurately the current knowledge of reef dynamics, making a beneficial contribution to ed-
 ucation, management, and science.

 Modelo L6gico Indistinto para Predecir el Desarrollo de Arrecifes de Coral Bajo Estreees de Nutrientes y Sedimentos

 Resumen: Los arrecifes de coral son sistemas altamente complejos caracterizados por relaciones mayor-
 mente no lineales entre sus componentes bi6ticos y abi6ticos. Tradicionalmente los modelos de arrecifes de
 coral requieren de datos que no estdn a la mano, asi como de precisi6n, limitando su exito y su utilidad.
 Probamos una aproximaci6n nueva en modelado de arrecifes conocida como modelo logico indistinto (fuzzy
 logic model). Este sistema ha sido aplicado satisfactoriamente en modelado de sistemas no lineales en ingeni-
 eria, en sistemas de soporte de decisiones y en ecologia. Construimos un modelo de arrecife coralino como
 parte de un modelo de manejo integral de zonas costeras que predice cambios en la cobertura coralina y la
 diversidad bajo estres antropogenico (enriquecimiento de nutrientes e incremento en sedimentaci6n). El
 modelo refleja nuestro actual conocimiento de lafranja de arrecifes de Curazao, Antillas de los Paises Bajos.
 Las variables utilizadas fueron nitr6geno y fosfato inorgdnico disuelto, particulas en suspensi6n, tamano
 mdximo de la colonia, disponibilidad de substrato para colonizaci6n, cobertura coralina y diversidad cor-
 alina. Cada variable fue dividida en tresjuegos triagulares indistintos reflejando valores bajos, medios y al-
 tos. Estimamos la cobertura y diversidad despues de 10 anfios para cada una de las 2187 combinaciones posi-

 *Address correspondence to S. Westmacott; email susie@bonairenet.com
 Paper submitted November 19, 1996; revised manuscript accepted October 1, 1997.
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 958 Coral ReefModeling Using Fuzzy Logic Meesters et al.

 bles de datos. Las interacciones entre las variables descritas anteriormentefueron autonadticamente tomadas
 en consideracion utilizando expertos con un conocimiento meticuloso del sistema coralino local. El modelo
 muestra claramente como los incrementos en la entrada de nutrientes y sedimentos al sistema afectan la
 coberturay diversidad coralina. Aunque el modelo puede ser refinado continuamente, aparentenmente refleja
 con precision el conocimiento actual de las dindmicas de arrecifes aportando una contribucion benefica
 para la educacion, el manejo y la ciencia.

 Introduction

 Coral Reefs

 Coral reefs are among the most diverse ecosystems on
 Earth. Relationships between the living and nonliving
 components are complex and often poorly understood.
 Coral colonies play a primary role in the construction
 and maintenance of reefs and provide support and shel-
 ter for the many other organisms that inhabit coral reefs.
 Because numerous reefs are experiencing unprece-
 dented anthropogenic impacts including sedimentation
 (Bak 1978; Cortes & Risk 1985; Rogers 1990), eutrophi-
 cation (Fishelson 1973; Tomascik & Sander 1985), and
 resource exploitation such as fishing (Munro 1983; Mc-
 Clanahan 1987; Hughes 1994), there exists an urgent
 need to understand the complex relationships between
 variables and processes that affect the long-term survival
 chances of coral reefs. Simulation of reef dynamics may
 provide a better understanding in the functioning of
 coral reefs.

 Attempts to model the dynamic processes that take
 place on coral reefs have been conducted at various lev-
 els, ranging from modeling the effects on size distribu-
 tions of single populations (Hughes 1984; Done 1987;
 Andres & Rodenhouse 1993) to modeling the productiv-
 ity of whole reefs (Polovina 1984). According to systems
 theory, the precision with which a set of variables is
 measured decreases as the size of the system increases
 (Bosserman & Ragade 1982). Consequenctly, because
 coral reef ecosystems are large and complexly organized
 systems, many concepts and definitions are bound to be
 imprecise and exact data are often not available. There-
 fore the use of a modeling approach, such as fuzzy logic,
 that is by definition able to cope with this imprecision,
 seems attractive.

 Using the case study of Curacao fringing reefs, we con-
 structed a model based on fuzzy logic which predicts
 reef development in response to anthropogenic pertur-
 bations.

 Fuzzy Logic

 In 1965 Lotfi A. Zadeh introduced fuzzy set theory,
 drawing on earlier work by Max Black and Jan Luck-

 asiewicz (Zadeh 1965). Based on his experiences as an
 engineer and systems scientist, he concluded that tradi-
 tional methods of systems analysis were unsuited to deal
 with systems in which relations between variables do
 not lend themselves to representation in terms of differ-
 ential or difference equations or for which limitations of

 knowledge and/or data prevent precise definition of pa-
 rameters. Such systems are the norm in biology, sociol-
 ogy, and economics.

 Fuzziness, described by fuzzy mathematics or fuzzy
 logic, represents a type of deterministic uncertainty. Al-
 though it has some similarities to randomness, fuzziness
 is conceptually and theoretically distinct from random-
 ness (Kosko 1990). Fuzziness results from the absence
 of precisely defined class membership and not from un-
 certainty concerning membership of an object in a set. A
 fuzzy set is a class with inexact boundaries. The transi-
 tion from membership to nonmembership is gradual
 rather than abrupt. In this sense, the class of high moun-
 tains is a fuzzy set, as is the class of healthy reefs. The lin-
 guistic variable plays a key role in the application of
 fuzzy logic. Through its use the focus of attention is not
 on difference and differential equations but on fuzzy if-
 then rules in the following form: if x is a then y is b,
 where x and y are linguistic variables and a and b are
 their qualitative values (e.g., if pressure is high then vol-
 ume is low). Such rules serve to characterize complex
 dependencies, enabling only imprecise descriptions,
 particularly abundant in biological systems.

 The qualitative value of a linguistic variable is approxi-
 mated by fuzzy sets. In a fuzzy set an exact value belongs
 by a certain degree to the given fuzzy set. This is mea-
 sured by the membership function that maps exact val-
 ues onto the interval [0,1] (Fig. 1). These membership
 functions have a predefined geometric shape. For exam-
 ple, the variable "coral cover" can be divided into three
 fuzzy triangular sets representing low, medium, and
 high cover (Fig. 1). Coral cover of 15% is a member of
 the fuzzy set medium (membership value 1). A value is
 often part of more than one set at a time; 7% cover is in
 both the fuzzy sets low and medium (membership val-
 ues both 0.38).

 Fuzzy rules are evaluated for their degree of truth;
 those that have some truth contribute to the final output
 state of the solution variable set (method of implica-
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 Figure 1. The variable coral cover divided into three
 overlapping fuzzy sets described as low, medium, and
 high and defined by the triangular membership func-
 tion rangingfrom 0-1 as in Table 1.

 tion). This set is then converted into an exact value. This
 is an important characteristic: the model uses fuzzy sets,
 but actual input and output values are exact. Methods of
 implication and "defuzzification" vary (for examples see
 Cox 1994).

 An implicit assumption in fuzzy set theory is that the
 members of a fuzzy set are context dependent. For ex-
 ample, high nutrient concentrations for coral reefs are
 not equal to what specialists perceive as high concentra-
 tions in the North Sea. For practical reasons, most of the
 applications and successes of using fuzzy logic have
 been in the area of process and control engineering.
 Through fuzzy logic, manufacturers have reduced devel-
 opment time, modeled highly complex nonlinear sys-
 tems, deployed advanced systems using control engi-
 neers rather than control scientists, and implemented
 controls using less expensive computer chips and sen-
 sors. But, fuzzy logic has also been introduced to envi-
 ronmental planning (Baas & Kwakernaak 1977; Yager
 1977; Buckley 1985; Smith 1994) and the analysis of eco-
 logical data (Equihua 1990). We report the first results of
 an attempt to model reef dynamics through the use of
 fuzzy logic and fuzzy set theory. The study was under-
 taken in the framework of a larger project aimed at de-
 veloping a methodology and model to carry out cost-
 effectiveness analyses for coral reef systems with case
 study sites in Jamaica (Montego Bay), the Netherlands
 Antilles (Curasao), and the Republic of the Maldives.

 Methods

 Definition of Variables and Fuzzy Sets

 Living cover of hard corals and species number were se-
 lected as the output variables because of their general

 ability to describe the condition of any particular reef as
 well as the availability of data. Increasing the number of
 variables increases at an exponential rate the number of
 rules to be defined. As a result, we restricted the num-

 ber of input variables as much as possible while main-
 taining a reasonably accurate description of reef devel-
 opment over 10 years. This meant that other factors also
 of influence to the development of the reef (e.g., recruit-
 ment, fish stocks, grazing intensity) were not included
 in this version. It may become apparent through testing
 that these need to be included in more refined versions

 of the model. The final model structure was based on

 seven input and two output variables. The input vari-
 ables can be separated into the impact variables of sus-
 pended particulate matter (SPM), dissolved inorganic ni-
 trogen (DIN), and soluble reactive phosphorous (P) and
 the regulatory variables of diversity of hard corals (DIV),
 coral cover (COV), available substratum (SUBS), and
 maximum colony size (SIZE). For each output, we de-
 fined 2187 rules based on our knowledge of the fringing
 reefs of Curacao, creating a fully saturated rule base.
 Through the definition of the rule base the interactions
 between the variables are implicitly taken into account.
 This means that the complex relationships between the
 variables do not have to be explicitly defined.

 Although the model has been set up for the Curacao
 application, the variables used are also applicable to
 other parts of the world. Consequently, the model may
 serve as a basis for describing other reefs as well.

 Suspended Particulate Matter

 Sedimentation is one of the most important factors
 threatening reefs globally (Ginsburg 1993). Tradition-
 ally, sediment traps have been used to quantify sedimen-
 tation, but high spatial and temporal variation of trap
 data (Pastorok & Bilyard 1985), as well as additional vari-
 ation introduced through the use of different trap de-
 signs (Bloesch & Burns 1980), makes this variable unreli-
 able. Trap height above the bottom is also critical
 because bottom sediment is resuspended in different
 concentrations to different heights at a fixed wave re-
 gime (Meesters 1995). This necessitated the use of a dif-
 ferent variable to describe the sediment regime. Based
 on data from Curacao (Meesters 1995) and Barbados
 (Tomascik & Sander 1985; Wittenberg & Hunte 1992),
 we decided to use suspended particulate matter (SPM).
 The SPM concentrations represent an instantaneous mea-
 sure of the concentration of particles suspended in the wa-
 ter column, whereas sediment trap data measure the total
 downward flux of suspended particles. Because short-
 term increases, having a greater influence on trap data,
 are less deleterious to corals than chronic increases

 (Dodge & Vaisnys 1977; Bak 1978; Tomascik & Sander
 1985), SPM is probably a better descriptor of long-term
 sediment effects on coral reefs.
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 960 CoralReefModeling Using Fuzzy Logic Meesters et al.

 Nitrogen and Phosphorus

 In many coastal regions (e.g., parts of the North Sea,
 northern Adriatic Sea, Baltic Sea, Great Barrier Reef La-
 goon, wider Caribbean, coastal areas of the U.S.) there is
 large-scale and in some cases chronic nutrient enrich-
 ment by nitrogen and phosphorus. In some regions the
 link between eutrophication and the destruction of an
 ecosystem is obvious, with excessive algae growth and
 water-column anoxia. In other cases, particularly in
 more fragile ecosystems, such as coral-reef and seagrass
 areas, the links are less obvious, yet the long-term effects
 of eutrophication in such regions can be devastating
 (Gabric & Bell 1993). The majority of the world's coral
 reefs thrive in relatively nutrient-poor waters, although
 corals in aquaria can survive under high nutrient con-
 centrations (Atkinson et al. 1995). Many studies have
 demonstrated the detrimental effects of anthropogenic
 input of excess nutrients (Smith et al. 1981; Tomascik &
 Sander 1985; Cuet et al. 1988; Bell & Tomascik 1993),
 and alterations in reefs from coral dominance to algae
 dominance have been attributed to eutrophication (Lit-
 tler & Littler 1984).

 Maximum Colony Size and Available Substratum

 Maximum colony size, measured as living surface area, is
 used here as an integrated measurement for disturbance
 intensity and frequency (Connell 1978; Done 1992). Small
 sizes reflect high-energy regimes in which colonies are
 frequently disturbed and do not attain large sizes (Done
 & Potts 1992). Large maximum sizes are interpreted as
 characteristic of more stable environments.

 The amount of substratum available for settlement of

 coral larvae is defined as that part of the bottom not cov-
 ered by sand, macro-algae, or dense stands of algae turfs.
 Space for recruitment and growth is generally limited in
 coral reef communities (Connell & Keough 1985). New
 settlement of recruits and growth of established colo-
 nies are necessary to offset natural losses in coral cover
 and diversity.

 Coral Cover and Species Number

 Coral cover is given as the percentage of the bottom
 covered by living scleractinian corals, including Mille-
 pora spp. because Millepora spp. constitute an impor-
 tant part of the reef fauna and contribute to reef forma-
 tion through calcification. Boundary values of the fuzzy
 sets were set after we analyzed chain transect data col-
 lected for this purpose and compared it with published
 data (Tomascik & Sander 1987).

 The number of species that will be encountered in
 line transects is an underestimate of total species rich-

 ness. Species that are largely restricted to cryptic habi-
 tats and those characterized by small adult sizes will
 have less chance of detection. There are also large differ-
 ences in coral diversity between Atlantic and Indo-pacific
 regions. For these reasons, we decided to use the variable
 species number (DIV) as a percentage of the maximum
 number that can be found in the geographical region un-
 der consideration (i.e., the maximum number at a num-
 ber of pristine sites measured with the same technique).

 Fuzzy Sets and Data Collection

 Each variable was divided into three triangular fuzzy sets
 reflecting low, medium, and high values (Fig. 1). Bound-
 aries for the fuzzy sets were determined by analyzing
 data collected specifically for this purpose and compar-
 ing it with data in the literature (Meesters 1995).

 During a field survey of Cura(ao reefs in August 1995
 we sampled three control and two nutrient-enriched
 sites. The controls were situated in the area between

 Cornelis Bay and Lijhoek, the impact sites approximately
 at Hala Canoa and adjacent to the Avila Beach Hotel. At
 each site, 18 samples (chain transects) of the benthic
 community were recorded. A site consisted of a stretch
 of shore 150-200 m long. Perpendicular from the shore
 we laid out three long lines (50-70 m, depending on ter-
 race width) at evenly spaced distances from 1 m depth
 to the drop-off. On each line, six perpendicular 10-m
 line transects were stretched out at randomly chosen
 points. Under each line transect a chain was rolled out;
 bottom characteristics and species under the chain were
 noted in terms of the number of links. From these we es-

 timated species cover, number of species, available sub-
 stratum, and maximum colony size.

 Construction of the Rulebase

 The rules that determine the behavior of the model are

 stored in a so-called rule base. With seven variables,
 each divided into three fuzzy sets, there are 2187 possi-
 ble combinations for each output variable. Each combi-
 nation forms, together with the expected output, one
 rule. We assessed every combination and estimated the
 development of the two output variables (coral cover
 and diversity) after 10 years. A period of 10 years was
 chosen as a compromise between the need for answers
 to pressing management problems and the normal time
 frame of coral reef processes, which can be substantially
 longer (Stoddart 1963; Pearson 1981; Rogers 1990). One
 such rule might be as follows: if SPM P, N, SIZE, SUBS,
 COV and DIV are low, then COV (in 10 years) will be
 low. We used the software program Fuzzy Systems Engi-
 neering (1994).

 Conservation Biology
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 Meesters et al. Coral ReefModeling Using Fuzzy Logic 961

 Table 1. The variables and boundary values of the membership function values of 1 and 0 used in the development of the fuzzy logic model of
 coral reef development in Curasao.

 Low Medium High

 Variable* 1 0 0 1 0 0 1 1

 SPM (mg/L) 0 1.0 2.5 1.5 4.0 6.5 4.0 7.0 7.0
 P (pmol/L) 0 0.04 0.07 0.05 0.09 0.12 0.09 0.15 0.20
 DIN (pLmol/L) 0 0.3 1.0 0.6 1.3 2.0 1.5 3.0 3.0
 SIZE (m2) 0 0.1 0.5 0.3 0.5 0.7 0.5 0.9 1.0
 SUBS (%) 0 0 25 10 30 50 40 50 70
 COV (%) 0 2 10 2 15 22 17 30 35

 DIV (%) 0 25 50 25 50 75 50 75 100

 *SPM, suspended particulate matter; P, soluble reactive phosphorous; DIN, dissolved inorganic nitrogen; SIZE, maximum colony size; SUBS,
 available substratum; COV, coral cover; DIV, diversity of hard corals.

 Results and Discussion

 Fuzzy Set Boundaries and Rules

 The boundary values of each fuzzy set (Table 1) were
 based on the collected data and literature. Variable

 ranges can easily be extended to incorporate the whole
 range found in the field, but this would greatly decrease
 the relative area in which most of the effects would be

 taking place. For example, nitrogen values above 3
 pLmol/L can be found in the field, but any concentration
 above this value is definitely high; in fuzzy terminology,
 the value would have the maximum membership value

 of 1 in the fuzzy set high. Consequently, the effects
 would not become stronger beyond 3 ,Lmol/L, at least in
 the output of the model. The same reasoning applied to
 phosphorus and suspended particulate matter.

 After surveying data of nutrient concentrations on the
 reefs (Gast et al. 1998) and in the literature (Tomascik &
 Sander 1985; Wittenberg & Hunte 1992), we set the
 boundaries of the fuzzy sets according to observed con-
 centrations in the field. But the reported degrees of
 change in coral communities as a result of nutrient en-
 richment vary enormously, indicating that local commu-
 nity composition and abiotic factors are possibly of con-
 siderable influence. Also, data are lacking that would

 35,%

 7mgL-1 "*"*^.^^ll^^^^gjI^^^Bf ^/ SPM, suspended particulate matter to7mgL71

 DIN, dissolved inorganic nirogen 0 to 3 gmol L'1

 ,".

 ;'''' ...SUB. available substratum 30 %
 COV coral cover 30 %

 35 -A DIV, diversity of hard corals 75%
 '7 .SIZE, maximum colony size 0.9 M2
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 allow a clear differentiation of the effects of combined

 changes in nitrogen and phosphorus. Clearly, more re-
 search is necessary in this area.

 Model Scenarios

 After we defined the rules, we investigated the predic-
 tions of the model. This is an iterative process in which
 the model's predictions are evaluated by experts and
 compared with available case histories, after which the
 necessary adjustments are made. We present the first re-

 suits, showing the combined effects of the impact vari-
 ables (sedimentation and nutrients) and of one regula-
 tory variable (colony size) on coral diversity and cover
 (Figs. 2, 3 & 4). The model essentially gives a single ex-
 act value for each combination of (exact values of) in-
 put variables. To show the model's general behavior, we
 have presented three-dimensional pictures.

 The combined effects of increasing DIN and SPM act
 on coral cover at substantially lower levels than either
 one would alone (Fig. 2). The response surface is also
 determined by the other variables. For ease of interpre-

 100%

 .""""".." /

 ' IDI

 . ' : M2

 3 .molLo l- Inputvalues
 4 *mol "-, . ,_,.,.., , ,"' SPM, suspended particulate matter Img L-

 '-%.. _ . ..; DIN, dissolved inorganic nitrogen 0 to 3 pmol L-1
 . 1-. -. /.'" P, soluble reactive phosphorous 0.04 pmol L-1 colony size and dissolved inorganic

 C-OV SUB, available substratum 30 % nitrogen on the living cover of bard COV, coral cover 30 %
 DIV, diversity of hard corals 75 % corals. The input values used to gener-

 SIZE maximum colony size 0 to I ate the fuzzy surface are listed to the
 DIV, diversity of hard corals 0 to 100 % right of te figure.

 +~~~~~~~~~~~~~~~~ih ftefgr.
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 tation, values of the other input variables were chosen at
 their maximum membership value. In this case, phos-
 phate concentration was set to the value with the maxi-
 mum membership in the fuzzy set low (0.04 JM), sub-
 strate availability to medium (30%), and initial coral
 cover, diversity, and maximum colony size set to high
 (30%, 75%, and 0.9 m2, respectively). The effect of in-
 creasing either SPM or DIN only becomes apparent
 when the impact level reaches one of the high fuzzy
 sets. After this threshold, coral cover starts to decrease
 to medium values. The combined effect of SPM and DIN

 occurs at lower impact levels, about half of the thresh-
 old level stated above.

 If we decrease colony size from 0.9 m2 to 0.1 m2, leav-
 ing the other variables the same, coral cover is affected
 sooner (Fig. 2). This reflects the assumption that smaller
 colonies are more susceptible than larger colonies to
 overgrowth by algae and smothering by sediment.

 Lower levels of SPM affect diversity sooner than the
 same levels of DIN (Fig. 3). As with cover, decreasing
 the maximum colony size to 0.1 m2 (Fig. 3) shows the
 diversity to be more vulnerable to lower impact levels.

 Next to the impacts of DIN and SPM, any other combi-
 nation of variables can be chosen. The model was used

 to show the effects of DIN on coral cover for reefs with

 different maximum-size colonies (Fig. 4). Larger colonies
 will be less affected after 10 years than populations char-
 acterized by smaller colonies, except at very low con-
 centrations of DIN, where there is no effect on coral
 cover regardless of the maximum colony size.

 These results show that fuzzy logic is a useful ap-
 proach to describing coral reef processes. The model vi-
 sualizes and describes complex interactions between

 seven input variables and brings together expert knowl-
 edge from many sources. The accuracy of the model de-
 pends largely on the accuracy of the available data, but
 even in situations where data are scarce, this type of
 modeling could provide useful approximations. Once
 the rules are set, the boundaries of the various fuzzy sets
 can be changed and the performance of the model re-
 viewed. Fuzzy sets can have more or less overlap, in-
 creasing or decreasing the smoothness of the response
 surface. Interactions between different variables can be

 visualized easily, resulting in a better understanding of
 the system. This may also lead to the definition of gaps
 in current knowledge and the formulation of new hy-
 potheses. Such a model makes this type of knowledge
 readily available to nonbiologists, potentially allowing
 more informed decisions to be made in the management
 of coral reefs.

 Limitations and Assumptions

 The model has a number of limitations. Verification of

 the predicted changes in cover and diversity for the time
 period over which the model has been defined (10

 years), as well as for any other time interval, is problem-
 atic because of a lack of data. Most studies are ad hoc,
 and information about the duration of increased nutrient

 or sediment values is almost always absent from reports
 on community change.

 Information about interactions between variables is

 even less available. Available data strongly suggest that
 eutrophication has a negative effect on reefs, but in most
 cases reported, many confounding factors prevent identi-
 fication of a clear cause-and-effect relationship. The ef-
 fects of phosphorus and nitrogen, separately and com-
 bined, need to be studied in more detail with respect to

 their effects on whole reefs. Also, the effects on popula-
 tions with different colony size-frequency distributions
 should be investigated.

 Although the outcomes of the model are exact, the ac-
 curacy of these predictions need to be tested. The re-
 sults of the model are, however, close enough to reality
 to indicate to managers and decision makers in what di-
 rection coral cover and diversity will change under cer-
 tain development scenarios and, with a lesser degree of
 confidence, the size of this change. The model should
 find a place in coral reef management (after careful eval-
 uation of local situations). Another important aspect is
 the educational value of the model. Processes can be vi-

 sualized easily, variables changed, and their effects
 watched instantaneously.

 The model was developed with the case study of
 Curacao in mind. Curacao reefs are under pressure from
 coastal development and overfishing, but, relative to
 other islands in the Caribbean such as Barbados (Tomas-
 cik 1991) and Jamaica (Hughes 1994; Andres & Witman
 1995), the reefs are still in relatively good condition. Nu-
 trient and sediment concentrations are not very high,
 and the island lies outside the hurricane belt. Also, over-

 fishing of important grazers (Scaridae, Acanthuridae) is
 not yet a major problem, and the Diadema antillarum
 die-off (Lessios et al. 1983), which also decimated urchin
 populations in Curacao (Bak et al. 1984), has not re-
 sulted in excessive coral death (Bak & Nieuwland 1995).

 Refinement

 The model can be improved on a number of points.
 More than three fuzzy sets can be used to define the vari-
 ables. This would give more flexibility and detail in the
 output. Small changes in the input variables could then
 be addressed more precisely in the rules, the resulting
 output would be more accurate, and changes would oc-
 cur gradually.

 The amount of overlap between fuzzy sets can be in-
 creased. It depends on the underlying concept of the
 fuzzy set and the intrinsic degree of imprecision in the
 data associated with two neighboring states of the vari-
 able. More overlap in general results in smoother re-
 sponse surfaces. Fuzzy sets can also be represented by
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 different shapes, such as a bell curve. This may give bet-
 ter results, especially because the object of the model is
 a living system, but in practice fuzzy models are not sen-
 sitive to these changes. Another possibility is the use of
 hedges. A hedge modifies the surface of a fuzzy set,
 causing a change in the membership function. A hedge
 thus transforms one fuzzy set into another. In linguistic
 terms, hedges are adverbs (with the fuzzy sets them-
 selves being the adjectives) such as very, extremely,
 about, near.

 More variables can be included, for example, time
 could also be a variable, as could grazing pressure or re-
 cruitment. A disadvantage is the exponential increase in
 the number of rules that need to be defined, but the
 model can be made "self-learning." Through the comple-
 mentary use of neural network or cellular automata tech-
 niques, for example, it is sometimes possible to infer
 from empirical data rules not specified by the expert.
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