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Summary

1.

 

Hypericum perforatum

 

, St John’s wort, is an invasive weed of  natural and agro-
ecosystems in south-eastern Australia. In previous work we used a long-term data set to
determine which plant traits and environmental factors influence population growth
and persistence in this species. These results were then used to parameterize an individual-
based model of the population dynamics of 

 

H. perforatum

 

, and this model was used to
make predictions about what control strategies will be most effective for populations
in open and shaded sites.

 

2.

 

The model was constructed using multi-level, mixed-effects statistical models of
growth, survival, fecundity and damage, incorporating intrinsic plant variables, environ-
mental variables, herbivory and spatial and temporal stochasticity.

 

3.

 

We found that populations in shaded and open sites had different dynamics and
responses to control strategies. Shaded populations took longer to reach infestation
densities and were less affected by herbivory and reductions in survival than open popu-
lations. Open populations increased faster in response to increases in rainfall, but this
was not so for shaded populations.

 

4.

 

We used sensitivity testing and management simulations to predict that the most suc-
cessful control strategies will involve a reduction in vegetative size in both open and
shaded sites. Reductions in flowering stem size and survival in shaded and open sites,
respectively, are predicted to be the next most successful strategies. Dry conditions
in the austral autumn/winter adversely affect populations in both open and shaded
sites.

 

5.

 

Synthesis and applications

 

. These models have enabled us to rank management strat-
egies based on quantitative analysis of their potential effects on population size. This is
an important tool not only for ecologists concerned with control of invasive species but
for conservation biologists trying to understand the factors limiting a rare or endan-
gered species.
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Introduction

 

Control strategies for invasive weeds can be expensive
(Williamson 1998;  Centre for International Economics

2001), environmentally risky (Simberloff  & Stiling
1996) and have high failure rates (Crawley 1989b). This
necessitates the development of methods for assessing
the efficacy and cost-effectiveness of potential control
strategies before implementation. Researchers have
long called for a more thorough understanding of
target weed population dynamics and the impacts of
suitable control strategies (Crawley 1989a; Hoffman &
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Moran 1998) but this is still not commonly carried out,
especially before control is implemented. Modelling
provides an important, although underused, tool for
exploring the consequences of different management
strategies.

Modellers have taken two main strategies when
using population models to evaluate control strategies.
The first is to use sensitivity and/or elasticity analysis
to identify the life-history stages having the greatest
impact on population growth rates and which are
therefore the most appropriate stages to target for con-
trol. Population models based on difference equations
(Freckleton & Watkinson 1998) and matrix models
(Neeser, Aguero & Swanton 1998; Shea & Kelly 1998)
have been used for this purpose. This is an approach
shared with those in conservation circles, where popu-
lation viability analysis, mostly using matrix models, is
commonly employed to predict future risk of extinc-
tion of threatened populations (Coulson 

 

et al

 

. 2001).
The second strategy used (sometimes in conjunction
with sensitivity and elasticity analysis) is to develop
models that enable the direct evaluation of manage-
ment impacts on target population dynamics (Firbank
& Watkinson 1986; Godfray & Waage 1991; Shea &
Kelly 1998; Higgins, Richardson & Cowling 2000;
Buckley 

 

et al

 

. 2001). We have used a combination of
these approaches. Sensitivity analysis is used to identify
parameters with the most potential for influencing the
invasion process, and the effects of parameters are
quantified using simulations.

Cousens (1995) has stressed the need for plant
population models to reflect the biology of the species
in question, as well as the environmental perturbations
that cause much of the variability observed in nature.
By incorporating more complexity into our models,
what we may lose in the ability to make generalizations
we gain in being able to make predictions about the
behaviour of populations, under both our original
model assumptions and perturbations imposed on the
system. Plant populations in the real world are com-
posed of individuals differing from each other in size,
fecundity and responses to perturbations. Model
predictions are sensitive to the inclusion of individual
variation, and this variation can affect population
growth, equilibrium density and stability (Bjornstad &
Hansen 1994; Uchmanski 2000). Model predictions
are also sensitive to the inclusion of spatial and temporal
stochasticity (Renshaw 1991), especially at low popu-
lation sizes, such as those that occur when an invasive
plant is establishing in a new area or recovering from a
population crash.

Previous models of plant populations have included
simple sets of difference equations (Watkinson 1980)
that assume that dynamics can be captured by a simple
average, matrix model (Caswell 1989) where indi-
viduals are grouped into stage or age classes, and
individual-based models (IBM), where individuals
are followed and population behaviour occurs as the
aggregate behaviour of individuals (Dieckmann, Herben

& Law 1997). In the absence of a general theory of the
ecology of interacting individuals, simulation studies
are the main tools for analysing the behaviour of com-
plex IBM (Lomnicki 1999). The use of these models in
ecology has expanded with the availability of useful
computer software and increased speed of calculation,
enabling large numbers of  individual plants to be
configured and to interact in computer programs
(DeAngelis & Gross 1992; Judson 1994). In this study,
we used IBM as a method of incorporating the full range
of structuring variables (e.g. size) and stochasticity
found in our previous study (Buckley, Briese & Rees 2003,
pp. 481–493 in this issue) to affect the vital rates of the
invasive species 

 

Hypericum perforatum

 

 L., a noxious weed
of pastures and natural habitats in southern Australia.

A quantitative understanding of what factors affect
growth, survival and fecundity is an essential first step
in the understanding of  population dynamics. We
outlined in our previous study (Buckley 

 

et al

 

. 2003)
statistical methods for constructing predictive models
of the vital rates of 

 

H. perforatum

 

. The functions and
parameter values identified were then used in an IBM
to characterize population-level processes and provide
virtual populations on which to test control strategies.
The IBM provides a realistic model of the population
dynamics on which to perform experiments by altering
the parameter values and functional forms of  the vital
rates. In this way, the model can be used to predict
how management strategies would affect population
dynamics in the field. Using this approach, we can
narrow down a multitude of possible management
options to those predicted to lead to sustained
reductions in both population size and impact on
the surrounding ecosystem. The resulting best-bet
management strategies can then be thoroughly
field-tested.

 

Methods

 

   

 

The statistical analysis described in Buckley 

 

et al

 

. (2003)
provided functions and parameter estimates for each of
the plant processes of growth, survival, probability of
flowering, production of  fruit and production of
suckers (clonal daughter plants). We also modelled
damage and herbivory by assigning a damage and
herbivory score to each individual. Damage is prima-
rily due to herbivory by the biocontrol agent 

 

Chrys-
olina quadrigemina

 

 (Suffr.) (a chrysomelid beetle); the
herbivory function is derived from occasional counts
of 

 

C. quadrigemina

 

 on plants throughout the study
period. The submodels of individual plant processes
were used in an IBM to create virtual plant populations
where each plant was configured separately and fol-
lowed growth, reproduction and survival trajectories
according to the flow diagram (Fig. 1). Each plant was
also assigned a quadrat as it was recruited into the
population, with 60% of suckers inheriting their parent’s
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quadrat. The model has two seasons, the first season
(April–September, austral autumn/winter) is when
most vegetative growth occurs and the second season
(October–March, austral spring/summer) is when flow-
ering and fruiting occur. The code for the simulation
was written in object Pascal using the program Delphi
6·0 (copyright 2001, Borland Software Corporation,
Twyford, Berks, UK); the source code is available on
request. General parameters used in the baseline run
of  the model are given in Table 1, and parameter val-
ues for the growth, survival, probability of flowering,
fruit production, sucker production and damage func-
tions are given in tables 2–8 in Buckley 

 

et al

 

. (2003).
Demographic stochasticity is included in each of  the
submodels through the addition of  a normally dis-
tributed error term in the vegetative and flowering

stem growth, fruit production and damage functions.
The result of the probability of flowering function is
compared with a random number and if  the random
number < 

 

Pfl

 

 then the plant flowers. The negative
binomial distribution is used to calculate the number
of suckers produced from the suckering function (see
below).

 

Spatial and temporal variation

 

During initialization of  the model, quadrat errors
were assigned (values given in Buckley 

 

et al

 

. 2003,
Tables 2–5). These were the estimates of the standard
deviation of the random effect of quadrat in each sta-
tistical model in which it was significant. This means
that plants in the same quadrat receive the same quadrat

 

Table 1.

 

Parameters used in the model; parameters for the component submodels are given in Buckley 

 

et al

 

. 2003, tables 2–8

 

 

 

 

Parameter Description Source Value

 

Prec

 

open

 

 Probability of recruitment in open (Briese 1997a) and data therein 0·3

 

Prec

 

shade

 

Probability of recruitment in shade (Briese 1997a) and data therein 0·1

 

No. quad

 

number of quadrats in data set (Buckley 

 

et al

 

. 2003) 44

 

No. years

 

Number of years for which estimates of parameters available (Buckley 

 

et al

 

. 2003) 5

 

Lt

 

Local threshold, maximum number of plants observed in any quadrat From data 100

 

s

 

initial

 

Initial recruit size, ln(size in cm) Smallest plant observed in data set 2

 

sds

 

initial

 

Standard deviation of initial recruit size From data 0·5

 

Prec

 

local

 

Proportion of suckers that grow into parental quadrat Established from sucker data 0·6

 

‰

 

1

 

Mean summed rainfall (season 1) Long-term meteorological data 439·08

 

sdR

 

1

 

Standard deviation of rainfall (season 1) Long-term meteorological data 221·69

 

‰

 

2

 

Mean summed rainfall (season 2) Long-term meteorological data 369·51

 

sdR

 

2

 

Standard deviation of rainfall (season 2) Long-term meteorological data 148·14

Fig. 1. Structure of the individual-based model. This diagram represents one replicate population followed until the population
reached the upper population threshold (100 plants 0·5 m−2 quadrat). Veg., vegetative; Fl., flowering; P, probability.
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error value and they are more similar to each other
than plants in different quadrats. This similarity arises
from spatial heterogeneity at the quadrat scale or the
fact that plants within a quadrat are related to each
other as vegetative suckers. Each quadrat was assigned
an error for the probability of  flowering, flowering
stem growth and fruit production functions, which it
retained for the duration of that replicate population.
The quadrat-level effects of percentage grass and per-
centage bare ground cover, significant in the statistical
models, were input as pairs taken at random from the
full complement of data gathered over the observation
period (410 quadrat years). At least 5 years of data were
used to build the statistical functions of the vital rates
and these year effects were included in the models,
where significant. At the beginning of each ‘generation’
or year of the model, a random year (between 1 and 5,
referred to as 

 

i

 

 in the following models) was chosen and
all year effects in the models were for that year. Rainfall
values for seasons 1 and 2 were set at the beginning of
each year and were drawn from a normal distribution
with mean and standard deviation calculated from 51
site years of meteorological data.

 

Seed bank and recruitment

 

As very little data were available on recruitment from
the seed bank, this process was not analysed statisti-
cally. We assumed that recruitment was limited by the
number of available microsites, as opposed to limited
by the number of available seed. This seems reasonable
due to the large persistent seed bank present under
stands of 

 

H. perforatum

 

, the relative rarity of recruit-
ment events (Briese 1997b) and the presence of a long
dormancy period (Campbell 1985). From the popula-
tion data collected between 1980 and 1987 we identified
nine ‘mass germination events’, defined in Briese
(1997b) as > 20 seedlings m

 

−

 

2

 

 in any single quadrat.
This gave us an average number of recruits and a prob-
ability of a recruitment event in open and shaded quad-
rats. Recruits were assigned a size corresponding to the
smallest observed among the plants included in the
statistical models. Sucker recruits were assigned their
parent’s shade or open status, 60% remained in the par-
ent’s quadrat and the rest were given a random quadrat
within the shaded or open area. The 60% estimate for
local recruitment was calculated from the sucker data,
using the maximum distance a sucker was found from
its parent.

 

Component submodels

 

For all of the following models, 

 

a

 

 and 

 

b

 

 refer to inter-
cepts and all other lower case letters, except for 

 

e

 

 and 

 

k

 

,
are regression coefficients (slopes). The subscript 

 

i

 

refers to a year-specific effect, subscript 

 

shade

 

 refers to
shade-specific effect, subscript 

 

q

 

 refers to a quadrat-
specific effect, numeric subscripts 1 and 2 refer to
seasons 1 and 2, respectively, and upper case subscripts

refer to the submodel, e.g. 

 

a

 

i

 

,

 

S

 

 is the year-specific
intercept in the vegetative growth (

 

S

 

) model. The
parameter 

 

E

 

 refers to a quadrat-specific error term and

 

e

 

 refers to an individual error term.

 

Vegetative growth

 

eqn 1

 

S

 

y+

 

1

 

 is ln(stem length in year 

 

y

 

 + 1) and is predicted by
a year-specific intercept, 

 

a

 

i

 

,

 

S

 

, a shade-specific intercept,

 

b

 

shade

 

,

 

S

 

, vegetative size in the previous year, 

 

S

 

y

 

, herbivory,

 

H

 

, summed rainfall in season 1 (April–September), 

 

R

 

1

 

and , quadrat-specific percentage bare ground cover
in season 2 (October–March), 

 

B

 

2,

 

q

 

, individual plant
damage (arc sine transform of percentage damage) in
season 1, 

 

D

 

1

 

, interactions between the linear and quad-
ratic rainfall terms and damage, 

 

D

 

1

 

R

 

1

 

 and 

 

D

 

1

 

, and
an individual plant error, 

 

e

 

S

 

, generated from a normal
distribution with mean = 0 and standard deviation
from Buckley 

 

et al

 

. (2003, Table 2).

 

Probability of flowering

 

eqn 2

 

Pfl

 

 is the probability of producing a flowering stem in
year 

 

y

 

 + 1 and is predicted by a logistic function of a
year-specific intercept, 

 

a

 

i

 

,

 

Pfl

 

, vegetative stem size in the
year of flowering, 

 

S

 

y+

 

1

 

, and a quadrat-specific error
term, 

 

E

 

q

 

,

 

Pfl

 

. A plant flowers if  a uniformly distributed
random number between 0 and 1 < 

 

Pfl

 

.

 

Flowering stem growth

Fl

 

y+

 

1

 

 = 

 

a

 

i

 

,

 

F

 

 + 

 

c

 

i

 

,

 

F

 

Sl

 

y+

 

1

 

 + 

 

d

 

F

 

G

 

2,

 

q

 

 + 

 

f

 

F

 

B

 

2,

 

q

 

 + 

 

E

 

q

 

,

 

F

 

 + 

 

e

 

F

 

eqn 3

 

Fl

 

y

 

+1

 

 is the ln(length of flowering stems in year 

 

y

 

 + 1)
and is predicted by a year-specific intercept, 

 

a

 

i

 

,

 

F

 

, veget-
ative size in the year of  flowering, 

 

Sy+1, percentage
cover grass in season 2 and quadrat q, G2,q, percentage
cover bare ground in season 2, quadrat q, B2,q, and an
individual error term, eF.

Fruit production

Fry+1 = ai,Fr + bshade,Fr + dFrFly+1 + fFrR2 + Eq,Fr + eFr

eqn 4

Fry+1 is ln(fruit production in year y + 1) and is
predicted by a year-specific intercept, ai,Fr, a shade-
specific intercept, bshade,Fr, flowering stem size in the year
of fruiting, Fly+1, summed rainfall in season 2, R2, a
quadrat-specific error term, Eq,Fr, and an individual
error term, eFr.

S a b c S d H f R g R

h B j D l D R m D R e
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+ = + + + + + +
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1 1 1
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Survival

eqn 5

Psy+1 is the probability of  survival of  a plant from
year y to year y + 1 and is predicted by a logistic func-
tion of a year-specific intercept, ai,Ps, a shade-specific
intercept, bshade,Ps, an age-specific intercept, cage, and an
age–vegetative size interaction (slope dage,Ps). A plant
survived if  a uniformly distributed random number
between 0 and 1 < Ps,y+1.

Sucker production

Suy+1 = exp(aSu + cSuSy+1 + dSuFly+1) eqn 6

Suy+1 is the exponential of the linear predictor of the
number of suckers produced, an intercept, aSu, veget-
ative size, Sy+1, and flowering stem size, Fly+1. The
actual number of  suckers produced per plant (x) is
calculated by using the negative binomial function:

eqn 7

k is calculated as:

eqn 8

where β is the dispersion parameter estimated from
the quasi-Poisson statistical model (Buckley et al. 2003,
Table 7). In the IBM, the negative binomial function is
implemented by finding the zero term and obtaining
subsequent terms from the recursion relationship
(Crawley 1993):

eqn 9

Damage

Dy+1 = ai,D + bshade,i,D + dDSy+1 + fDG1,q + gDB1,q + 
hshade,DG1,q + jshade,DB1,q + kDG1,qB1,q + eD eqn 10

Dy+1 is the arcsine transform of  percentage damage
and is predicted by a year-specific intercept, ai,D, a
shade–year interaction, bshade,i,D, vegetative size, Sy+1,
percentage cover grass in season 1, quadrat q, G1,q,
percentage cover bare ground in season 1, quadrat
q, B1,q, a shade–grass interaction, hshade,DG1,q, a shade–bare
ground interaction, jshade,DB1,q, a grass–bare ground
interaction, G1,qB1,q, and an individual error term, eD.

Herbivory

During the statistical modelling process no correlates

of herbivory, as measured by the number of beetles per
unit vegetative size, could be found. Plants in the model
were therefore assigned a herbivory score that matched
the distribution of scores observed; the overwhelming
majority of plants (90%) received a score of 0 and the
rest received a score between 0 and 1 according to a uni-
form probability distribution function. The herbivory
score for each plant was recalculated each year.

  

The IBM was initialized and run until the population
of plants in one of the quadrats reached the maximum
observed value (LT ), whereupon the run was termin-
ated. This comprised one repetition but if  LT was not
reached within 300 years the run was also terminated.
When the model was run longer, populations in the
quadrats rose to unrealistic densities because negative
density dependence could not be detected in the observed
data and was not therefore included in the model. For
this reason, we only looked at populations in the early
stages of establishment and growth and the summary
statistic used was time taken to reach the infestation
density of 100 plants per quadrat (T ). Data from 500
replicate populations in total were gained in this way
and used to characterize the baseline behaviour of the
model. A snapshot sample of the individual plants alive
in a population was taken at year 5 of each repetition,
giving up to 500 sample generations for validation pur-
poses. At the end of each year summary statistics for
the population were calculated and output to file, giving
sets of population level values within each repetition
that could be compared with the validation data.

Validation of the IBM

The original data set used to construct the statistical
functions was used to validate the results of the IBM
(for details of the nature and extent of the data see
Buckley et al.  2003). Validation was therefore not an
independent test of  the model predictions; the aim
was to show how well the parameterized model repro-
duced the patterns of  variation in the data. Size dis-
tributions, the number of fruit produced, longevity,
proportion of the population originating from seed vs.
suckers and proportion of  the population flowering
were compared between the model outputs and the
validation data.

Sensitivity testing

In order to determine which input parameters had
most effect on determining time to infestation (T) we
ran a sensitivity analysis. The input parameters (Buckley
et al. 2003, Tables 2–8; Table 1) were sampled between
±10% either side of the estimated value using Latin
hypercube sampling (McKay, Conover & Beckman
1979). Latin hypercube sampling ensures that all of  the
specified parameter space is sampled by dividing
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each parameter range (in this case the estimated
parameter ±10%) into intervals (1000 intervals were
used) that are chosen with equal probability and not
replaced and a particular value from within each inter-
val is chosen at random; see Rushton et al. (2000) for
more detail on a similar analysis. In this way 1000 sets
of test parameters were generated. We then ran the
IBM with each of the parameter sets for open and
shaded sites separately, recording the average time to
infestation (T ) from each run. We used linear regres-
sion to determine which parameters had a significant
effect on T, and as approximately 100 F-tests were per-
formed on each data set we used the Bonferroni cor-
rection to avoid making a type I error (Crawley 2002).
In total we tested 101 parameters in the shade model
and 94 parameters in the open model.

 

Details of  the known ecology of  the invasive species
H. perforatum are given in Buckley et al. (2003).
Management of H. perforatum has not been successful
on wooded sites in south-eastern Australia. The
management strategies currently employed include
introduction of  biocontrol insects (Briese 1997a),
controlled grazing (Campbell 1997), over-sowing
of competitive pasture plants (Moore & Cashmore
1942), controlled burning (Briese 1996) and the use
of herbicides (Campbell & Nicol 1997), all of which
have drawbacks in shaded sites or natural woodland,
where up to 85% of H. perforatum infestations occur
(Shepherd 1983). It was therefore of some importance
that we modelled populations in open and shaded sites
separately. The biocontrol insect C. quadrigemina
defoliates plants and does control infestations in some
areas. However, due to its slow rate of increase, inability
to colonize shaded sites and the ability of H. perforatum
to regenerate during its summer aestivation, C. quad-
rigemina alone cannot control infestations (Briese
1984, 1997a). The main impact of the recently intro-
duced mite Aculus hyperici (Liro) is to stunt the growth
of plants (Wapshere 1984; Willis, Ash & Groves 1995;
Jupp & Cullen 1996). Aculus hyperici is proving to be a
promising control agent, as introduced populations of
the biocontrol agent have reduced H. perforatum bio-
mass at both open and shaded sites in south-eastern
Australia (Mahr et al. 1997). We focused mostly on
testing management strategies suitable for use in
natural ecosystems, as this is where control is least
successful at the moment.

In addition to sensitivity testing of the IBM we
sought expert opinion as to which viable and poten-
tially effective management strategies should be tested
using the IBM. A blank matrix listing potential man-
agement strategies (e.g. fire, biocontrol, herbicides)
along the top and effects on individual- and quadrat-
level processes along the side was circulated to a
number of land managers and weed scientists familiar
with the H. perforatum system. In this way we identified

those management strategies currently in use, or which
showed potential, and whose effects on H. perforatum
were known to some extent. This allowed us to marry
the theoretical process of manipulating functions and
parameter values with what the results mean in terms
of practical manipulations that can be undertaken in
the field, making our study more relevant to potential
end-users. Huffaker (1966) suggested that increased
summer rainfall led to population growth in H. perfo-
ratum. We therefore also examined how rainfall affects
the time to infestation (T ) by simulating dry and wet
conditions.

The baseline population model was used as a start-
ing point for implementation of manipulations; those
examined (based on those identified through the con-
sultation process) were: (i) 10%, 20% and 50% reduc-
tions in vegetative size; (ii) 10%, 20% and 50%
reductions in flowering stem size; (iii) 10%, 20%, 50%
and 90% reductions in survival; (iv) setting the damage
score to 0 and ±50% of its value; (v) damage was also set
to its maximum value for all plants occurring in one
year out of  every three in order to simulate cycles of
C. quadrigemina damage described in Briese (1997b);
(vi) setting the herbivory score to 0; (vii) changing the
proportion of plants getting a 0 herbivory score in the
baseline model from 90% to 45%, thereby making her-
bivory more widespread among plants in the popula-
tion; (viii) dry conditions (called drought hereafter)
in each season, defined as the level of rainfall under
which fall 10% of observations in the data set, this was
implemented by changing the parameters R and sdR
(Table 1) to 128 mm and 27 mm, respectively, in season
1, and 181 mm and 24 mm in season 2; (ix) wet condi-
tions in each season, defined as the level of rainfall
above which fall 10% of observations in the data set,
this was implemented by changing the parameters R
and sdR (Table 1) to 880 mm and 105 mm in season 1,
and 690 mm and 102 mm in season 2.

Results

  

In all analyses results from shaded and open quadrats
are presented separately unless the results were identical
for both.

Time to infestation

Figure 2 shows the time to infestation (T, in years) for
approximately 500 simulated populations. The smooth
lines are generated from kernel density estimates, using
a Gaussian kernel (implemented as ‘density’ in R
version 1·3·1). The algorithm used in density disperses
the mass of the empirical distribution function over a
regular grid of at least 512 points, and then uses the fast
Fourier transform to convolve this approximation with
a discretized version of the kernel (The R Development
Core Team 2002). The algorithm then uses linear
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approximation to evaluate the density at the specified
points. The time to infestation (T ) was compared
between open and shaded sites using the non-parametric
Kolmogorov–Smirnov test. Open and shaded distribu-
tions differed significantly, Dmax = 0·37, n1 = 500, n2 = 500,
P < 0·00001, with shaded quadrats (T = 24·2, SD = 15·0)
taking longer to reach infestation densities on average
than open quadrats (T = 13·9, SD = 7·5).

Validation

Output from the ‘snapshot’ sample generations was
compared with the individual plant data used to build
the model; these comparisons are presented in Figs 3–5.
Population level variables were also compared  (Figs 6–8);
these were calculated for the validation data using
one population per site per year (n ≤ 20) and are there-
fore not as well characterized as for the individual plant
data, for which all plants in all sites were used (n ≤ 350).

A description of the data used for validation is given in
Buckley et al. (2003).

The model output and validation data agreed well
for size distributions (Figs 3 and 4), fruit production
(Fig. 5) and proportion of the population flowering
(Fig. 6). However, the distributions of the proportion
of the population derived from suckers differed quite
substantially between the model output and validation
data (Fig. 7). It was clear that either the data used to
estimate suckering rates for individual plants were not
of good-enough quality to predict rates in the field, or
the model used did not reflect the underlying process.
The validation data presented in Fig. 7 were not the
data used to build the suckering submodel, coming
rather from destructive harvests of the quadrats where
all plants harvested were assessed for either seed or
sucker origin. The data used to build the suckering sub-
model were collected during one season only from
excavation of plant root systems in the field. For the

Fig. 2. Time to infestation (T, in years) for open (solid line) and shaded (dashed line) quadrats; open and shaded distributions
differ significantly according to the non-parametric Kolmogorov–Smirnov test, Dmax = 0·37, n1 = 500, n2 = 500, P < 0·00001, with
shaded quadrats (T = 24·2, SD = 15·0) taking longer to reach infestation densities on average than open quadrats (T = 13·9,
SD = 7·5).

Fig. 3. Vegetative size validation data are compared with model output for (a) open quadrats, (b) shaded quadrats; (c) model
output from open (solid line) and shaded (dashed line) quadrats are compared.
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longevity model (Fig. 8), output from the shaded
quadrats matched the validation data quite well,
whereas in the open quadrats the model appeared to be
predicting shorter life times (by around 1 year) than
those observed in the field.

Sensitivity testing

The significant parameters alone accounted for 63·7%
of the deviance in time to infestation (T ) in the shade
model and 89·7% of the deviance in the open model;
significance levels and the deviance explained by each

parameter are given in Table 2. The parameters each
accounting for > 1% of the deviance can be grouped as
parameters affecting vegetative recruitment (dSu, aSu),
seed recruitment (Prec), stem size ( fs, gs, ci,F) and rainfall
in season 1 (‰sdR1). For shaded sites seed recruitment
accounts for more of the deviance than vegetative
recruitment but the opposite is the case for open sites.

 

Time taken to reach to infestation density (T ) was
the variable used to compare the control models with

Fig. 4. Flowering stem size validation data are compared with the model output for (a) open quadrats, (b) shaded quadrats; (c)
model output from shaded (dashed line) and open quadrats (solid line) are plotted for comparison.

Fig. 5. Number of fruit from the model output compared with the validation data for (a) open quadrats, (b) shaded quadrats; (c)
both open and shaded model outputs are compared.
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Fig. 6. Proportion of the population flowering each year for (a) open and (b) shaded quadrats; validation data are shown by the
bars and model output by the lines (solid for open quadrats and dashed for shaded quadrats).

Fig. 7. Proportion of the population derived from suckers in (a) open and (b) shaded quadrats; validation data are shown by the
bars and the model output by the solid (open) and dashed (shade) lines.

Fig. 8. Mean longevity of plants in the population expressed as the mean age at death of plants for the validation data (bars) and
model output (lines) for (a) open (solid line) and (b) shaded (dashed line) quadrats.
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the baseline model behaviour. Table 3 shows T for the
baseline model (shade and open) and the control
models. As T was normally distributed, a two-sample
t-test was used to determine whether the differences
between the baseline and control models were signific-
ant. To correct for the use of  multiple t-tests we used
the Bonferroni correction to determine significance.

Manipulation of intrinsic plant variables

Reducing vegetative stem size was the most effective
control strategy, with reductions of just 10% resulting
in a highly significant (P < 0·00001) increase of over
50% in T for populations in both the open and shade;
reductions in size cause populations to take longer to
get to infestation densities. When vegetative size was
halved, T increased up to the maximum allowed in the
model (300 years) in both open and shaded popula-
tions. For shaded populations, a reduction in flowering
stem size was the next most effective strategy, whereas
for open populations reductions in survival had a
greater effect on T than reductions in flowering stem
size. Only a reduction of 50% or more in survival led to
a significant (but small) increase in T for shade popu-
lations. Substantial increases in T were achieved in

both open and shaded populations when survival was
reduced by 90%.

Manipulation of extrinsic, environmental variables

Setting the damage score to zero only led to a signific-
ant decrease in T for shaded populations; no damage
leading to faster population growth. Open populations
were unaffected by any manipulation of the damage
score. Increasing or decreasing the damage score by
50% had no effect on either the open or shade popula-
tions. In order to simulate cycles of C. quadrigemina
damage, we set damage to 100% once in every 3 years
(with normal levels of damage in the intervening
years), this being only relevant for open populations as
C. quadrigemina is not active in shaded populations.
Such periodic damage led to a significant increase in T,
more than doubling the time to infestation. Setting her-
bivory to zero led to a significant, but small, decrease in
T (from 13·9 to 12·6) in the open populations only, with
a lack of herbivory leading to faster population
growth. Increasing herbivory by 50% led to a signific-
ant increase in T (slower population growth), also in
the open populations, whereas in the shade popula-
tions a similar increase in herbivory led to a marginally

Table 2. Sensitivity testing identified the following parameters as having a significant impact on time to infestation (T );
significance was determined by comparing the P-value with the critical P as calculated using the sequential Bonferroni correction
(Rice 1989). Parameters are ranked in order of the amount of deviance they explain
 

 

Parameter
Open (O) 
or shade (S)

Deviance 
explained (%) P-value

Critical P 
(sequential Bonferroni)

dSu equation 6 O 27·2 < 2·2e-16 0·0006
S 10·6 < 2·2e-16 0·0005

Prec O 9·6 < 2·2e-16 0·0005
S 24·9 < 2·2e-16 0·0005

aSu equation 6 O 14·3 < 2·2e-16 0·0006
S 7·8 < 2·2e-16 0·0005

fS equation 1 O 12·8 < 2·2e-16 0·0006
S 5·8 < 2·2e-16 0·0005
O 4·7 < 2·2e-16 0·0006
S 2·6 < 2·2e-16 0·0005

gS equation 1 O 2·1 < 2·2e-16 0·0006
S 1·5  2·1e-11 0·0005

ci,F equation 3 O 1·8 < 2·2e-16 0·0005
S 0·6  3·2e-5 0·0005

sdR1 O 1·0 < 2·2e-16 0·0006
S 1·4  8·2e-11 0·0005

lS equation 1 S 0·6  4·4e-5 0·0006
cSu equation 6 O 0·6 < 2·2e-16 0·0006
a3,F equation 3 O 0·6 < 2·2e-16 0·0008
a4,F equation 3 O 0·1  0·0001 0·0008

S 0·6  2·5e-5 0·0006
sinitial O 0·4  7·8e-12 0·0005
Number of seed recruits O 0·3  1·5e-10 0·0005
Preclocal O 0·3  3·3e-10 0·0005
c1,Ps equation 5 O 0·2  7·8e-7 0·0007
eS equation 1 O 0·2  1·0e-5 0·0006
ci,Pfl equation 2 O 0·2  2·8e-5 0·0007
a2,Pfl equation 2 O 0·2  1·3e-5 0·0007
eF equation 3 O 0·1  5·1e-5 0·0006
a2,Ps equation 5 O 0·1  9·6e-5 0·0007
d0,Ps equation 5 O 0·1  0·0002 0·0008
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significant (P = 0·04) and small (2 years) decrease in T
(faster population growth).

Drought in season 1 had a profound impact on T,
resulting in highly significant (P < 0·00001) and sub-
stantial increases in T (225 years and 123 years for
open and shaded populations, respectively) which
means slower population growth. Neither drought nor
high rainfall had any effect in season 2. High rainfall in
season 1 led to different results in shade vs. open popu-
lations. It led to a significant (P < 0·00001) increase in
T (slower population growth) in shade populations and
a significant (P < 0·0001) decrease (faster population
growth) in open populations.

Discussion

We have confirmed that the IBM presented here is a
good representation of the data used in its construc-
tion, producing populations similar in size distribu-
tions and flowering probability to the populations
observed in initial studies (Briese 1997b; Buckley et al.
2003). The model does to some extent reflect the
idiosyncrasies of the data set used to build it. The most
serious of these is the dearth of data available on the
behaviour of seedlings and small plants (< 6 cm stem
length). The model and data diverge when comparison
of  the proportion of  the population derived from

Table 3. Time taken (T, in years) to reach infestation densities (LT = 100) was used to compare control strategy models with the
baseline model. T-tests were used to assess significance between the baseline and control models for both open and shade
quadrats; actual P-values are reported, variables significant at the *** or ** level are significant even under Bonferroni correction
(Bonferroni P = 0·0025) for multiple tests
 

Model

Time to infestation

(T ) Mean SD t d.f. P

Baseline Shade 24·2 15·0
Open 13·9 7·5

−10% vegetation size Shade 37·6 26·9 9·7 782 < 0·00001***
Open 22·2 12·8 12·5 800 < 0·00001***

−20% vegetation size Shade 82·7 52·5 24·0 579 < 0·00001***
Open 49·6 24·6 31·0 588 < 0·00001***

−50% vegetation size Shade > 290 Not established
Open > 290 Not established

−10% flowering size Shade 28·0 18·3 3·61 959  0·0003**
Open 15·9 8·0 3·98 991 < 0·00001***

−20% flowering size Shade 31·7 20·1 6·64 921 < 0·00001***
Open 18·7 10·1 8·41 915 < 0·00001***

−50% flowering size Shade 101·9 47·8 34·64 596 < 0·00001***
Open 49·0 18·9 38·59 649 < 0·00001***

−10% survival Shade 25·4 16·7 1·20 985  0·23
Open 16·4 8·7 4·76 973 < 0·00001***

−20% survival Shade 25·3 16·6 1·11 986  0·27
Open 20·3 11·6 10·25 849 < 0·00001***

−50% survival Shade 27·3 18·1 2·98 962  0·003*
Open 63·7 28·9 37·23 564 < 0·00001***

−90% survival Shade 213·0 74·0 55·9 566 < 0·00001***
Open 254·3 28·5 182·2 539 < 0·00001***

0% damage Shade 19·5 11·4 −5·58 930 < 0·00001***
Open 13·5 6·6 −0·97 980  0·34

−50% damage Shade 22·6 14·6 −1·71 995  0·09
Open 13·8 6·9 −0·32 989  0·75

+50% damage Shade 24·8 15·9 0·66 993  0·51
Open 13·6 6·5 −0·71 977  0·47

100% damage 1 in 3 years Shade 96·4 62·9 25·0 555 < 0·00001***
Open 31·1 18·1 19·6 662 < 0·00001***

0% herbivory Shade 22·8 14·2 −1·49 993  0·14
Open 12·6 6·4 −2·96 973  0·003*

+50% herbivory Shade 22·2 14·4 −2·08 994  0·04*
Open 20·9 11·2 11·59 867 < 0·00001***

Drought (season 1) Shade 250·7 62·7 78·52 555 < 0·00001***
Open 136·8 35·3 75·98 542 < 0·00001***

Drought (season 2) Shade 24·7 16·3 0·54 989  0·59
Open 13·6 6·5 −0·69 979  0·49

Flood (season 1) Shade 32·6 23·2 6·77 854 < 0·00001***
Open 11·1 4·7 −7·24 834 < 0·00001***

Flood (season 2) Shade 24·3 15·9 0·11 993  0·92
Open 13·8 6·8 −0·36 987  0·72

***P < 0·00001, **P < 0·001, *P < 0·05.
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suckers is made. We have reservations about the model
of  sucker production for which we used parameter
estimates from a quasi-Poisson model; the quasi-
likelihood approach makes an assumption that may not
accurately reflect the underlying biological processes.
More data are clearly needed in order to formulate
better models of daughter clone production, especially
as sensitivity analysis highlighted the importance of
vegetative reproduction parameters. The simulation
model can, however, be easily modified to incorporate
better models of individual plant processes as they become
available. By working closely with weed managers, we
have developed a model that, although complex, has
components that are easily interpreted in terms of the
biology of the species. Moreover, the model can be used
to test practical management strategies prior to expen-
sive and time-consuming field tests.

Our results indicate that populations in open and
shaded sites have different dynamics and respond dif-
ferently to some management and disturbance regimes.
This has implications for the management of popula-
tions in natural (mostly wooded) ecosystems in south-
eastern Australia. Shaded populations take longer to
reach high densities (24·2 years for shade populations
vs. 13·9 years for open populations), high levels of rain-
fall cause shaded populations to have slower growth,
herbivory does not affect shaded populations as much
as open populations, and reductions in individual sur-
vival in shaded populations have very little effect unless
survival is consistently reduced by as much as 90%.
Currently herbivory of H. perforatum is mostly by the
biocontrol agent C. quadrigemina and it has been noted
previously that C. quadrigemina is ineffective in shaded
areas (Briese 1984). This matches our predictions from
the model constructed here using long-term individual
plant data. The poor response of shaded populations
to increases in rainfall is possibly due to sunlight being
the limiting factor in these sites, leaving plants unable
to exploit all of the water resources available. Open
populations are not limited by sunlight and show a
faster population growth rate in response to wetter
conditions. Due to the high rate of sucker production,
the death of individual plants has little impact on the
invasion dynamics, especially in shaded popula-
tions, where recruitment from seed is lower than in open
populations.

This IBM reflects the complexity inherent in field
populations of H. perforatum, such as plants of varying
age and size with differing fates, environmental hetero-
geneity at a small spatial scale and also heterogeneity
at a temporal scale. Some of the environmental influ-
ences can be assigned to the influence of rainfall or sur-
rounding vegetation, but the rest is expressed as ‘noise’
at either the individual level or at the quadrat level.
With both deterministic and stochastic models we can
predict how an average population will respond, but if
stochasticity is incorporated into a model we can quan-
tify the uncertainty of  model predictions. Our pre-
dictions of how control strategies retard population

growth are therefore presented with standard devi-
ations of the distribution of values obtained from 500
simulated populations (Table 3). The standard errors
of the means are very small (due in part to the large
number of simulations used) and we are therefore con-
fident in our estimate of the mean values of T, although
any particular simulation can fall anywhere within the
wide distribution of values defined by the mean and
standard deviation. Being quite open about the levels
of  uncertainty in our predictions, due to levels of
stochasticity we know occur in the field, gives weed
managers important information enabling them to
assess how likely management is to succeed on any par-
ticular population, and to design better experiments for
testing management strategies.

Density dependence has not been explicitly included
in this model due to the lack of data available to model
these effects satisfactorily. This is a feature shared with
Shea & Kelly’s (1998) model of biocontrol agent impact
on the invasive plant Carduus nutans. A small positive
effect of density dependence was detected during statis-
tical analysis of  the data on which our IBM is based.
However, when the density-dependent effect was incor-
porated in the IBM no qualitative differences in the
results were obtained (Y.M. Buckley, unpublished
data). We excluded the positive density dependence
from the model due to its lack of explanatory value,
poor characterization and lack of impact on the results.
As we also confine our analysis of  the dynamics to
populations in an initial increase phase, and hence
at low density, we can assume that density-dependent
effects will be minimal.

   
   H. P E R F O R A T U M

We predict that the most effective management strat-
egies for both open and shaded sites will concentrate on
reducing the size of vegetative parts of H. perforatum.
Chrysolina quadrigemina defoliates plants but is not
effective alone, especially in shaded sites (Briese 1984).
This is backed up by the lack of impact of increasing
herbivory or damage functions (primarily based on
data collected to assess C. quadrigemina impact) in the
shaded populations in the IBM. Intense periodic dam-
age, characteristic of C. quadrigemina infestation, does
slow down population growth in open sites, however, as
shown by the increase in T predicted from the model
incorporating maximal damage every 3 years. The mite
A. hyperici is establishing well in south-eastern Aus-
tralia and stunts plant growth (Willis, Ash & Groves
1995) and our results predict that, through its effects on
individual plants, it will be able to retard growth rates
of H. perforatum populations. Fire as a control strategy
(Briese 1996) was not tested using this model as the
impacts of fire on individual plants is not well known.

Herbicide treatment can cause reductions in survival
as high as 90%, the only level at which substantial
increases in T were achieved through manipulating
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survival in shaded sites. Kill rates of up to 100% have been
achieved using split applications of fluoroxypyr and
triclopyr + picloram (Campbell & Nicol 1997, 2000),
fluoroxypyr having the additional advantage that it is
selective and does not harm grasses or clover in pasture
situations. From our model, we predict that herbicide
control, causing a sustained reduction in survival of at
least 90%, will be an effective control strategy in both
open and shaded sites. Other considerations, such as
cost and potential damage to native plants, will have to
be taken into account, especially in natural areas.

Drought adversely affects population growth in both
open and shaded sites in season 1 (austral autumn/
winter), possibly through negative effects on rosette
growth at this time. It is important, however, to note
that populations reduced by drought have the potential
to re-establish quickly if  further control measures are
not undertaken. All of the control strategies tested here
are assumed to be effective over time. It is important
that control measures are sustained as populations of
H. perforatum can build up to infestation densities
from just a few seeds in a very short period of time
(approximately 10–20 years).

In order to increase the predictive power of this
model more research is needed to determine which
factors affect the early stages of  plant growth and
recruitment, both from seed and suckers, under differ-
ent conditions, including fire treatment. The results of
these studies can easily be incorporated into the
IBM constructed here in order to make more accurate
predictions about invasion dynamics and control
strategies.
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