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Problems of the hot Big Bang theory revisited
Friedmann-Lemaitre-Robertson-Walker (FLRW) models are able to describe the 
Universe expansion but they imply a decelerated expansion for any fluid  component 
with an equation state parameter ! = #/%&' > −*/+. 

Since common matter and radiation have equations of state parameters with , >
− 1/3 this leads to the fatal conclusion that the Universe’s fate is to expand in a 
decelerated way. 

This leads to a number of difficulties known as the hot Big Bang problems (see next 
slides). A way to solve these problems is to develop a dynamical framework where 
the FLRW Universes may be allowed to expand in a accelerated way, at least during 
some periods of the Universe’s history.  These periods are called inflationary and 
allows one to define inflation as any phase of the universe’s expansion when:

/ > −
1
3
012 ⇒ 5̈ < 0

Inflation ⇔ 5̈ > 0
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Inflation ⇔ 9̈ > 0
Standard Cosmology

(note that 9 = 5 in this slide)
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Problems of the hot Big Bang theory revisited
FLRW models with decelerated expansions are inconsistent with some important 
observational evidences facts and pose a number of puzzling questions:
The horizon problem: The FRLW models allow one to compute the particle horizon 
of observer at any given time/redshift. The sky angular size of the particle horizon of 
an observer, :; , at high redshift can be approximated by:

so an observer at < = 1100 (living at epoch of CMB decoupling) has a particle horizon 
with an angular size on our observed sky of about , :; ≃ 0.95 deg.
This means that there are about 
54000 casual disconnect regions 
in the sky at CMB decoupling.

So, why is CMB 
intensity spectrum so 
uniform temperature 
(2.725 ºK) in all sky 
directions?
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Problems of the hot Big Bang theory revisited
The flatness problem: At early times the Friedmann equation can be written as 
(Ω = ΩB + ΩD):

So the left hand side term should approach rapidly to zero as F → 0 (actually 
5̇ F → 0 → ∞ ). For F ≃ 1×10KLM (∼Planck time) Ω should deviate no more than ∼
1×10KOP from the unity.
So, why is the Universe “starting” with a energy density parameter 
so extremely close to 1? 

Since 5̇ F decreases with 
time (because 5̈ < 0) this 
denominator increases 
as F → 0
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Problems of the hot Big Bang theory revisited

The monopole and other exotic particles problem: 
Quantum field theories (e.g. GUT, superstring) predict that a variety of “exotic” stable 
particles, such as magnetic monopoles, should be produced in the early Universe and 
remain in measurable amounts until the present.

No such particles have yet been observed. Why?

This either implies that the predictions from particle physics are wrong, or their 
densities are very small and therefore there's something missing from this  
evolutionary picture of the Big Bang. 



Problems of the hot Big Bang theory revisited
The origin of density fluctuations problem: 
On large scales our present universe is fairly isotropic and homogeneous.

Why is that so?

At early times, that homogeneity and isotropy was even more “perfect” (due to the 
flattening effect effect at early times).  Moreover, the FLRW universes form a very 
special subset of  solutions of the GR equations. 

So,  why nature “prefers” homogeneity and isotropy from the beginning as opposed 
to having evolved into that stage?

Inflation
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CMB T=2.725 
K

Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem: 
Locally the universe is not homogeneous. It displays a complex hierarchical pattern of 
galaxies, clusters and super clusters. 

What’s the origin of cosmological structure?
Does it grew from gravitational instability?
What is the origin of the initial perturbations?

Without a mechanism to explain the
existence of fluctuations one has to 
assume that they ``were born'' with the 
universe  already showing the correct 
amplitudes on all scales, so that gravity can 
correctly reproduce the present-day 
structures?

Inflation
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Conditions for Inflation
If the Universe experience periods of accelerated expansion

This requires  that during these periods the Universe has to be dominated by a fluid 
component with an equation of state parameter ! < −*/+ :

Let’s us first look at the acceleration condition

The quantity QR = &RK* is the Hubble radius (S; = 1 = T9;). 

So inflation can also be defined as any period of the universe history  when the 
commoving Hubble radius QR is decreasing (shrinking).

/ < −
1
3
012 ⇒ 5̈ > 0

Inflation ⇔ 5̈ > 0

<latexit sha1_base64="41363VLv1WAbVMVpIvQt9z33ano=">AAADrHicjVFdT9swFL0hbLDuq4NHXiKqSeyBLkGT2ANCCF76wCQmUUBqOuQ4brFI48hxNqGQ34n4BcC/4PrO3WDVBK7annvuOce+dlJksjRheO3N+fMvXi4svmq9fvP23fv2h6WjUlWaiz5XmdInCStFJnPRN9Jk4qTQgk2STBwn53u2f/xT6FKq/NBcFGI4YeNcjiRnBqnT9k2cpsrUrNkOg3hfjIyW4zPDtFa/gvW6nnabWGEKllT92GiarVl9XadOl5qmCeIM22t/PPV6hDEk//Sk2XlZb+og+1bYepaN90j+mf3d77TdCbshrWAWRA50wK0D1b6CGFJQwKGCCQjIwSDOgEGJnwFEEEKB3BBq5DQiSX0BDbTQW6FKoIIhe46/Y6wGjs2xtpkluTnukuFXozOAj+hRqNOI7W4B9StKtuz/smvKtGe7wP/EZU2QNXCG7FO+qfK5PjuLgRF8pRkkzlQQY6fjLqWiW7EnDx5MZTChQM7iFPsaMSfn9J4D8pQ0u71bRv1bUlrW1txpK7izp8QHjv59zllwtNGNEH//0tnZdU+9CCuwCmv4npuwAz04gD5w75tXepde43f9Q3/gD39L5zznWYZHyx/dA3cW6Ko=</latexit>

Inflation

12

Cosmological scales and horizons
During inflation 

• any comoving cosmological scale, UP, is fixed in time as: UP = U/5 F

• but the comoving (particle) horizon ∼ 9; = 5T KV decreases with time 

So during inflation scales inside the horizon at a given time grow faster and may 
become larger than (go beyond) the horizon.

UP
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Conditions for Inflation
The inflation conditions can be expressed in terms of other conditions. Let us first note 
that:  

From

So we conclude that inflation happens whenever

W is known as the slowly-varying Hubble parameter. As long as it is smaller than 1 
inflation happens. The case W = X is known as perfect inflation:  

• The commoving Hubble radius is constant: Ṫ = 0 ⇔ T = 1YZ[F5ZF

• de Sitter Universe expansion: \̇
\
= T ⇔ 5 F = 5] exp(T(F − F]) )

5̈ > 0 ⇔
b
bF
(5T)KV < 0 ⇔ −

1
5
1 − c < 0
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Conditions for Inflation
The inflation condition can also be written as:  

Where bd = b ln(5) is known as the e-fold number:

d = g
\h

\
b ln(5) = ln

5
5]

The e-fold number is used to quantify how long the inflationary period must be in 
order to solve the Hot Big-Bang problems (usually d ∼ 40 − 70). 

During the inflationary period, c, needs to remain small (below 1). It is then useful 
introduce a new parameter that measures how c changes during inflation:

Since c needs to remain small this means that k needs to remain small, as well.
In general one should have: k < 1 and  c < 1

c = − ;̇
;l
= − ;̇/;

\̇/\
= − m no ;

p no \
= −p no ;

pq
< 0
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Conditions for Inflation
The Friedmann and the continuity equations 

T2 = 0/3rst
2

0̇ = −3T(0 + u)

Can be combined to relate, c, with the equation of state parameter. 
One has:

Combining this equation with the continuity equation It is also possible to conclude 
that:

Which shows that for small c the energy density of the universe remains 
approximately constant during inflation. Conventional matter sources would dilute 
with the (exponential expansion). The energy density of whatever causes inflation 
needs to be  an unconventional/unusual form of matter/energy.   

Inflation

16

Conditions for Inflation (summary table):
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Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the Hot Big-Bang problems  
Flatness problem: 
If the expansion is accelerating, 5̈ > 0 , the derivative of the scale factor 5̇ is an 
increasing function of time. So it decreases as we go back in time 

the flatness problem is therefore solved because…

The Universe can in principle “start” with a energy density 
parameter far from 1.

inwlation ⇔ 5̈ > 0 ⇔ p
p{
(1TKV/5)<0 

Is an increasing 
function of time, 
so: 5̇ F → 0 → 0

Inflation

18

Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the Hot Big-Bang problems  
Flatness problem: 
How much inflation do we need? 
Note that during inflation , c = −Ṫ/T2 < 1,  is small) so Ṫ ∼ 0 and T ∼ constant 
during the period of inflation t ∈ [F], F�]. This means that:

Since, by the end of inflation one needs to have Ω − 1 �~10KOP and one wants not to 
have Ω arbitrarily different from 1, let’s say Ω − 1 ]~1, one concludes that:

inwlation ⇔ 5̈ > 0 ⇔ p
p{
(1TKV/5)<0 

T ∼ 1YZ[F5ZF
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Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the SMC problems  
The horizon problem: If the accelerated expansion happens in a early phase of the 
Universe, during a long enough period, in principle, all causally disconnected sky 
patches of the CMB can be put in causal contact.

inwlation ⇔ 5̈ > 0 ⇔ p
p{
(1TKV/5)<0 

Distances and Horizons
Let us consider the travel of light along radial (b: = bÇ = 0) geodesics in a FLRW 
metric

written in a conformal way with the introduction of the conformal time ÉÑ = ÉÖ/Ü

(with bá = bà for flat geometries), So light rays (b[2 = 0) travel along geodesics with

From integrating this we can define the notions of: 

• Particle horizon:                                                            with F] = 0

• Event horizon:                                                               with Fâ = ∞

Inflation
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Distances and Horizons

áäã =

áåã =

Inflation
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Distances and Horizons
The particle horizon, áåã, the maximal commoving distance travelled by light until a 
time t, can be computed as follows:

with F] = 0; 5] = 0. 

Let us evaluate this integral for a perfect (single component), with EoS w, where the 
scale factor evolves as 5 = 5]F2/M(Véè) . The commoving Hubble radius inside the last 
integral is (Exercise):

For any fluid component with an equation state parameter ,. All familiar matter 
sources have 1 + 3, > 0 (this is an implication of the so called strong energy 
condition (SEC)). So in the Hot Big-Bang theory model the commoving Hubble radius is 
always increasing.
Using the above expressions in the integral one finds (with F] = 0), see next page:
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Distances and Horizons
The particle horizon, áåã, will then give:

Note that for standard Friedmann evolution, where SEC grants 1 + 3, > 0 , the 
second term goes to zero: Ñê(Üê → X) → X. 
So in that case

And one concludes that:

• the comoving particle horizon is proportional (and of the same order) to the 
comoving Hubble radius

• The comoving Hubble radius is always increasing.

But since during inflation, SEC is violated, * + +! < X , the second term in the first 
equation of this slide goes to minus infinity: Ñê Üê → X → −∞ . The first term, ë, also 
is negative, but less negative than ë] and therefore and áåã > 0 ,  á 5] → 0 = ∞.

Inflation

24

Distances and Horizons

Hot Big-Bang evolution

Hot Big-Bang + inflation evolution

ë] → 0

ë] → −∞
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inwlation ⇔ 5̈ > 0 ⇔ p
p{
(1TKV/5)<0 

Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the SMC problems  
The monopole problem: If the universe expands sufficiently after monopoles are 
produced their abundance can be too low to be observed.
The homogeneity problem: our visible universe comes from a causally connected 
region that expanded a lot so it looks fairly isotropic and homogeneous 
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The Theory of Inflation
Inflation also provides a mechanism
for the origin of fluctuations…

The inflation (inflaton) field has energy density 
fluctuations allowed by the Heisenberg 
uncertainty principle:

ΔEî > ℎ/(4ñΔF)

During inflation fluctuations are “inflated” to 
macroscopic scales > physically connected 
scales become larger than the horizon scale 
and “freeze”.  

… fluctuations (density and grav. 
waves) are due to quantum 

fluctuations about the vacuum state 
of the inflationary potential.

From:



Standard Model of Cosmology (SMC)

SMC = Hot Big Bang + Inflation

FLRW models 
provide a 
description for 
the evolution of 
the “background” 
Universe 

provides a 
mechanism for 
the origin of 
perturbations 
to the 
“background 
Universe”

fluctuations (density and grav. waves) 
are due to quantum fluctuations about 

the vacuum state of the inflationary 
potential.

From:

Standard Model of Cosmology (SMC)

After the end of inflation the 
universe resumes the usual 
Friedmann evolutionary periods 

• Background evolution is 
progressively dominated by: 

•Radiation 
•Matter
•Dark Energy

SMC = Hot Big Bang + Inflation

From:
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Scalar field Dynamics
Inflation is usually modelled by a scalar field Ç = Ç ó], F , called the inflaton field, 
that can generally be a function of position and time. 

Associated with each field value 
there’s a potential energy, ò(Ç), 
and If the field depends on time, 
the field also  carries kinetic energy.

Using the Noether’s theorem one can 
Prove that the energy-stress tensor of 
any scalar Field can be computed as:

For a homogeneous and isotropic FLRW universe, without perturbations (ie
inhomogeneities) the field is only a function of time, Ç = Ç F . Computing, ôPP = 0ö , 
and ôõ

] = −uö úõ
] one obtains:
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Scalar field Dynamics: Klein-Gordan equation
Using 0ö in the Friedmann equation gives:

Taking the time derivative one finds:

where òù ≡ bò/bÇ. 
Using 0ö and uö in the acceleration equation and combining it with the Friedmann 
equation, one obtains:

This shows that the acceleration of the universe is sourced by the kinetic energy of 
the inflaton field. Combining these two last expressions one obtains the Klein-Gordan
equation that describes the evolution of the inflationary field:
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Slow roll inflation
Combining the expressions:                            and                               gives:

This means that inflation c < 1 only  
occurs if the contribution of the kinetic 
energy of the field to the total energy 
is small. When this happens the field 
is said to be slow rolling

The time derivative of c gives:

Which allows us to compute the k parameter as:

where ú ≡ −Ç̈/TÇ̇.

Inflation
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Slow roll inflation
The conditions  c < 1 and  |k| < 1 are a guaranty that inflation happens and persists. 
Since this implies that the kinetic energy 
of the field is small one can assume the
slow roll inflation conditions: 

c, k ≪ 1

and approximate the Friedmann and 
Klien Gordon equations as:

• Friedmann (Ç̇2~0): 

• Klein Gordan ( Ç̈~0): 

Combining these equations (plus taking the time derivative of the Klein Gordon 
equation) allows one to write the c, k parameters as function of the potential and 
its derivatives:
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Slow roll inflation
The total amount of e-folds (which gives by how 
much the universe expands during the inflationary 
period) can be derived from our knowledge of 
the inflationary potential.

Here, F° and  F¢ are the times when inflation begins 
and ends, which happens when: 

The integrand function above, can be approximated by (note that                    ):

Which leads to:
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Slow roll inflation
Using the the slow-roll expression c£ ,

in the number of e-folding  integral one gets

Since the number of e-foldings is counted from the moment inflation begins, it is usual 
to refer to F° as the instant “N e-foldings before inflation ends”, and Ç° is often 
expressed as Çq , the inflaton field value N-efoldings before the end of inflation (In 
fact, this instant scale is the latest to re-enter the “sound” horizon).
So one can also write: 
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Working example: ò(Ç) = §2Ç2/2
This case belongs to an important class of 
potentials (ò(Ç) ∝ Çs ) known as Large field 
inflation models (the potential evolves over 
super-Planckian values).

This potential allows slow-rolling. The number of
e-foldings under these conditions gives:

So the value of the field at a moment N e-foldings before Ç� should be: 

Now, we know that when inflation ends, c£ = 1, so using this in c£ one has:

Solving for Ç¢ (see next slide).
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Working example: ò(Ç) = §2Ç2/2
This case belongs to an important class of 
potentials (ò(Ç) ∝ Çs ) known as Large field 
inflation models (the potential evolves over 
super-Planckian values).

Solving for Ç¢ (continuation from previous slide),
one obtains:

For d ≃ 70 these give: 
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Re-heating

Inflation
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Re-heating
During the inflationary period most of 
the energy density of the Universe is 
given by the inflationary potential. 

As inflation ends, the kinetic energy 
associated with the inflaton field is no 
longer negligible and the energy in the 
field is transferred to the matter/energy 
species of the fluid.

Where Γ is the so called energy width 
of the inflaton decay (0® is the energy 
density of relativistic fields).

This process is know as reheating and 
It is followed by  the hot big bang 
evolutionary phase of the universe.
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Re-heating
The basic idea behind reheating is that 
this period starts when Ç begins to 
oscillate with a friction term about the 
minimum of the inflationary potential.

For example, taking a quadratic potential
ò = §2Ç2/2 , the Klein-Gordon 

and the continuity equations give:

Oscillations decrease in 
amplitude due to the friction term. 
By the end of the process all energy 
of the field is transferred, leading to 
the beginning of the hot Big-Bang 
evolution.

Standard Model of Cosmology (SMC)

After the end of inflation the 
universe resumes the usual 
Friedmann evolutionary periods 

• Background evolution is 
progressively dominated by: 

•Radiation 
•Matter
•Dark Energy

SMC = Hot Big Bang + Inflation

From:


