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Grau, teurer Freund, ist alle Theorie,
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Preface

Any new approach to science has to go through its infancy: like a child
learning to walk, the first steps of a new approach are exploratory, inse-
cure, and not directed by a clear idea of where the steps might lead— yet
these steps are watched with great interest and excitement. Individual-based
ecological modeling has been in its infancy for the past two decades. The
rapidly growing interest in individual-based models (IBMs) certainly is en-
couraged by the enormous increases in computing power which now make
it practical to simulate large numbers of individuals in virtual populations.
However, individual-based modeling has also been fueled by another kind
of power that has grown rapidly in recent years: the desire of ecologists to
understand natural complexity and how it emerges from the variability and
adaptability of individual organisms.
Early advocates of IBMs claimed that a shift in focus from populations to

individuals would lead to new fundamental insights and have the potential
to unify ecological theory. Indeed, numerous IBMs have demonstrated the
potential significance of individual characteristics to population dynamics
and ecosystem processes. Even in its infancy, individual-based modeling has
changed our understanding of ecological systems. However, we have also
learned that a shift in focus from populations to individuals does not au-
tomatically lead to better and more general ecological theory or to more
effective strategies for solving applied problems. Freedom from the con-
straints of analytical modeling has come at a price: IBMs are more complex
than the analytical models of classical ecology and this makes them harder
to develop, understand, and communicate. Moreover, IBMs have made little
use of reusable building blocks. Instead, many have been built anew from
scratch and are often based on ad hoc assumptions not clearly linked to any
theoretical framework. Many modeling projects have not addressed general
theoretical questions at all. And many IBM-based projects have been beset
with methodological and computational problems.
Scientists sometimes tend to rush to a new approach that promises to solve

previously intractable problems, and then revert to familiar techniques as the
unanticipated difficulties of the new approach are uncovered. Individual-
based modeling may be ripe for a backlash because of the problems encoun-
tered to date. However, we believe very strongly that these problems can be
overcome, often by adapting existing techniques from other fields of science.
Instead of abandoning individual-based modeling because it has been less
productive than expected, our goal is to show how this approach can be
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used productively.
Our primary objective in this book is to provide guidelines for making

individual-based modeling more coherent and effective. We provide strate-
gies and methods for optimizing model complexity (‘pattern-oriented model-
ing’) and coping with the problems that arise from the complexity of IBMs,
and we propose a general, theory-based, research program for individual-
based modeling. The basic notion underlying this research program is that
IBMs allow us to pursue a genuinely new and different way of doing ecol-
ogy. We call this new approach ‘individual-based ecology’. Individual-based
ecology aims at developing theories of the adaptive behavior of individu-
als, but within the context of their population and environment. Moreover,
individual-based ecology aims at understanding the mutual relationship be-
tween the adaptive behavior of individuals and system-level properties of
populations, communities and ecosystems. We view individual-based ecol-
ogy as an approach for understanding, not simplifying, the complexity of
nature.
Another of our objectives is to further integrate ecology with the general

approach to science known as ‘complex adaptive systems’ (CAS). Individual-
based ecology can be viewed as a subset of CAS, which attempts to develop
general understanding of systems driven by interacting, adaptive agents.
Much of the important work on CAS has been conducted (also in the last
decade or so) using completely artificial systems, with a focus on identify-
ing general principles instead of on mimicking nature. There is much that
ecologists can learn from CAS, yet individual-based ecology is likely to make
great contributions to CAS by forcing its theory to confront nature’s reality.
This book was written for people interested in individual-based model-

ing and ecology from many perspectives: students (both undergraduate and
graduate) and instructors; researchers using or considering individual-based
approaches; empirical ecologists who want to understand how their work
could support individual-based analysis; natural resource managers inter-
ested in using IBMs to address management problems; and reviewers of
research proposals and scientific articles that include IBMs.
Users of agent-based models in other sciences should also find this book

valuable. While we focus on ecology, many of our concepts and techniques
are readily applied to the general problem of understanding and modeling
how a system’s dynamics emerge from the characteristics of its individuals.
This book is a combination of monograph and textbook. We designed

it primarily as a reference work. To us, it does not yet seem possible to
write a pure textbook on individual-based modeling. In contrast to classical
theoretical ecology, which is based on calculus and other established mathe-
matical techniques, the procedures and tools for individual-based modeling
are still too experimental to be presented in textbook fashion. The lack
of established procedures and tools is also the reason for the heterogeneous
character of the book. Textbooks on classical theoretical ecology can stay
at the level of theory and strategy, but to get individual-based ecology off
the ground we must cover the whole range of scientific activity: from a new
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approach to theory and a new conceptual framework down to the ‘engine
room’ where the real work is done. Even though we cannot yet provide step-
by-step guidance for building and using IBMs, in this book we gladly get
our hands dirty with all aspects of applying IBMs to real-world problems.
Part 1 addresses the modeling process and pattern-oriented modeling.

These chapters should be useful to all modelers because the modeling strate-
gies they describe are not restricted to IBMs. The modeling approaches in-
troduced in Part 1 are used throughout the rest of the book, but also can
stand alone as a guide to starting an ecological modeling project. In Part
2 we start focusing on IBMs and individual-based ecology. We address fun-
damental issues such as “what is theory in individual-based ecology?” and
“how do we think about and describe IBMs?”. Then, in Chapter 6 we delve
into over 30 example IBMs to illustrate what has already been learned from
individual-based approaches. Part 3 is the ‘engine room’, where we provide
guidance on the day-to-day work of building and using IBMs: formulating
the details, developing software, doing the analysis, and even publishing re-
sults. All of these tasks are different when we use IBMs, and individual-based
ecology cannot mature until we learn to do them well. In Part 4 we return
to the more strategic level. Chapter 11 discusses the relation of IBMs and
classical analytical models and how the strengths of the two approaches can
be combined. Finally, in Chapter 12 we provide our outlook on the poten-
tial, and limitations, of individual-based modeling and ecology and where
we hope this approach will lead us.
Finally, a few words on what this book is not about and what it does not

include are necessary. First, we do not pose individual-based ecology as a
replacement for traditional approaches to ecology and ecological modeling.
Instead, we present individual-based approaches as a new tool that ecologists
can use to tackle new kinds of problems, a supplement to how we currently
do ecology. Ecologists whose interests are only in addressing population-
level questions with analytical models may find chapters 2, 3, and 11 useful
but should otherwise not expect to find much of interest in this book.
Second, we originally hoped that this book would also collect and re-

view specific methods for modeling many individual-level processes: feeding,
mortality, competition, etc. While such methods are described in examples
throughout the book, we quickly realized that a comprehensive collection
and review would be a very large project and would rapidly be out of date.
Instead, we will look for other ways that the community of individual-based
ecologists can collaboratively collect and share theory and techniques.
Last, we chose not to address IBMs and research on evolutionary ecol-

ogy: we do not consider any models of how traits or populations evolve.
One reason for this choice is that there already is considerable literature on
this topic and incorporating it would make the book much larger and less
focused. But a more important reason is our personal interest in solving ev-
eryday problems of real systems, using models that are readily testable. The
problems of evolutionary ecology are fascinating and need to be addressed
with individual-based methods, but to us seem less urgent than learning to
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understand the ecosystems we can observe and protect right now.
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Chapter One

Introduction

The essence of the individual-based approach is the derivation
of the properties of ecological systems from the properties of the
individuals constituting these systems.

Adam �Lomnicki, 1992

1.1 WHY INDIVIDUAL-BASEDMODELING AND ECOLOGY?

Modeling attempts to capture the essence of a system well enough to address
specific questions about the system. If the systems we deal with in ecology
are populations, communities, and ecosystems, then why should ecological
models be based on individuals? One obvious reason is that individuals are
the building blocks of ecological systems. The properties and behavior of
individuals determine the properties of the systems they compose. But this
reason is not sufficient by itself. In physics, the properties of atoms and
the way they interact with each other determine the properties of matter,
yet most physics questions can be addressed without referring explicitly to
atoms.
What is different in ecology? The answer is that in ecology, the individuals

are not atoms but living organisms. Individual organisms have properties an
atom does not have. Individuals grow and develop, changing in many ways
over their life cycle. Individuals reproduce and die, typically persisting for
much less time than the systems they belong to. Individuals need resources,
so they modify their environment. Individuals differ from each other, even
within the same species and age, so each interacts with its environment in
unique ways. Most importantly, individuals are adaptive: all that an individ-
ual does—grow, develop, acquire resources, reproduce, interact—depends on
its internal and external environment. Individual organisms are adaptive be-
cause, in contrast to atoms, organisms have an objective, which is the great
master plan of life: they must seek fitness, i.e., attempt to pass their genes
on to future generations. As products of evolution, individuals have traits
allowing them to adapt to changes in themselves and their environment in
ways that increase fitness.
Fitness-seeking adaptation occurs at the individual level, not (as far as we

know) at higher levels. For example, individuals do not adapt their behavior
with the objective of maximizing the persistence of their population. But,
as ecologists, we are interested in such population-level properties as persis-
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tence, resilience, and patterns of abundance over space and time. None of
these properties are just the sum of the properties of individuals. Instead,
they emerge from the interactions of adaptive individuals with each other
and with their environment. Each individual not only adapts to its physical
and biotic environment, but also makes up part of the biotic environment of
other individuals. It is this circular causality created by adaptive behavior
which gives rise to emergent properties.
If individuals were not adaptive, or were all the same, or always did the

same thing, ecological systems would be much simpler and easier to model.
However, such systems would probably never persist for much longer than the
lifetime of individuals, much less be resilient or develop distinctive patterns
in space and time. Consider, for example, a population in which individuals
are all the same, have the same rate of resource intake, and all reproduce
at the same time. The logical consequence of this scenario (Uchmański and
Grimm 1996) is that, of course, the population will grow exponentially until
all resources are consumed, and then cease to exist. Or consider a fish school
as an example system with emergent properties (Huth and Wissel 1992,
1994; Camazine et al. 2001; Section 6.2). The school’s properties emerge
from how individual fish move with respect to neighboring individuals. If
the fish suddenly stopped adjusting to the movement of their neighbors, the
school would immediately lose its coherence and cease to exist as a system.
Now, if ecologists are interested in system properties, and these prop-

erties emerge from adaptive behavior of individuals, then it becomes clear
that understanding the relationship between emergent system properties and
adaptive traits of individuals is fundamental to ecology (Levin 1999). Un-
derstanding this relationship is the very theme underlying our entire book:
how we can use individual-based models (IBMs) to determine the interrela-
tionships between individual traits and system dynamics?
But can we really understand the emergence of system-level properties?

Ecological systems are, after all, complex. Even a population of conspecifics
is complex because it consists of a multitude of autonomous, adaptive indi-
viduals. Communities and ecosystems are even more complex. If an IBM
is complex enough to capture the essence of a natural system, is the IBM
not as hard to understand as the real system? The answer is: No—if we
have an appropriate research program. But before we outline this program,
which we refer to as ‘individual-based ecology’, let us first look at three suc-
cessful uses of individual-based models. Although these examples (which are
described in more detail in Chapter 6) address completely different systems
and questions, they have common elements which play an important role in
individual-based ecology.
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1.2 LINKING INDIVIDUAL TRAITS AND SYSTEMCOMPLEX-

ITY: THREE EXAMPLES

Example 1.—The green woodhoopoe (Phoeniculus purpureus) is a socially
breeding bird of Africa (du Plessis 1992). The social groups live in territo-
ries where only the alpha couple reproduces. The subdominant birds, the
‘helpers’, have two ways to achieve alpha status. Either they wait until they
move up to the top of the group’s social hierarchy, which may take years, or
they undertake scouting forays beyond the borders of their territories to find
free territories. Scouting forays are risky because predation, mainly due to
raptors, is considerably higher while on a foray. Now the question is: how
does a helper decide whether to undertake a scouting foray? We cannot of
course ask the birds how they decide and we do not have enough data on
individual birds and their decisions to answer these questions empirically.
What we have, however, is a field study which compiled a group size

distribution over more than ten years (du Plessis 1992). We can thus develop
an IBM and test alternative theories of helper decisions by how well the
theories reproduce the observed group size distribution (Neuert et al. 1995).
These theories represent the internal model used by the birds themselves
for seeking fitness. It turned out that a heuristic theory of the helpers’
decisions, which takes into account age and social rank, caused the IBM
to reproduce the group size distribution at the population level quite well
(Figure 1.1), whereas alternative theories assuming non-adaptive decisions,
e.g. random decisions, did not. Then, after a sufficiently realistic theory of
individual behavior was identified, questions addressing the population level
could be asked, for example regarding the significance of scouting distance
to the spatial coherence of the population. It turned out that even very
small basic propensities to undertake long-ranging scouting forays allow a
continuous spatial distribution to emerge, whereas if the helpers only search
for free alpha positions in neighboring territories the population falls apart
(Section 6.3.1; Figure 6.5).

Example 2.—Without humans, large areas of Middle Europe would be cov-
ered by forests dominated by beech (Fagus silvatica). Foresters and conser-
vation biologists are therefore keen to establish forests reserves which restore
the spatio-temporal dynamics of natural beech forests and to modify silvi-
culture to at least partly restore natural structures. But how large should
such protected forests be? And how long would it take to re-establish nat-
ural spatio-temporal dynamics? What forces drive these dynamics? What
would be practical indicators of naturalness in forest reserves and managed
forests? Because of the large spatial and temporal scales involved, modeling
is the only way to answer these questions. But how can we find a model
structure which is simple enough to be practical while having the resolution
to capture essential structures and processes?
What we can do to find the right resolution of the model is use patterns

observed at the system level. For example, old-growth beech forests show a
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Figure 1.1 Individual decisions and population-level phenomena in the wood-
hoopoe IBM of Neuert et al. (1995). (a) Group size (black: male;
white: female) in 30 linearly arranged territories. Subdominants de-
cide whether to undertake long-distance scouting forays to find vacant
alpha positions. (b) Observed group size distribution (black), and pre-
dicted distributions for the reference model (scouting decisions based
on age and social rank; light grey); and a model with scouting decisions
independent of age and status (dark grey). (After Neuert et al. 1995.)
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mosaic pattern of stands in different developmental phases (Remmert 1991;
Wissel 1992a). The model must therefore be spatially explicit with resolution
fine enough for the mosaic pattern to emerge. Another pattern is the char-
acteristic vertical stuctures of the developmental stages (Leibundgut 1993;
Korpel 1995). For example, the ‘optimal stage’ is characterized by a closed
canopy layer and almost no understory. The model thus has to have a ver-
tical spatial dimension so that vertical structures can emerge (Figure 1.2).
Within this framework the behavior of individual trees can be described by
empirical rules because foresters know quite well how individual growth and
mortality depend on the local environment of a tree. Likewise, empirical
information is available to define rules for the interaction of individuals in
neighbouring spatial units.

0-8 trees, crown size
variable (1/8 - 8/8 cell area)

0-8 trees, crown size
identical (1/8 cell area)

Percentage cover

Percentage cover

30 - 40 m

20 - 30 m

0.3 - 20 m

0 - 0.3 m

Figure 1.2 Vertical structure of the beech forest model BEFORE (Neuert 1999;
Rademacher et al. 2001). (Modified from Rademacher et al. 2001.)

The model BEFORE (Neuert 1999; Neuert et al. 2001; Rademacher et al.
2001, 2004; Section 6.8.3), which was constructed in this way, reproduced
the mosaic and vertical patterns. It was so rich in structure and mechanism
that it also produced independent predictions regarding aspects of the forest
not considered at all during model development and testing. These pre-
dictions were about the age structure of the canopy, spatial aspects of this
age structure, and the spatial distribution of very old and large trees. All
these predictions were in good agreement with observations, considerably
increasing the model’s credibility. The use of multiple patterns to design
the model obviously led to a model which was structurally realistic. This
realism allowed the addition of model rules to track woody debris, which
was not an original objective of the model. Again, the amount and spatial
distribution of coarse woody debris in the model forest were in good agree-
ment with observations in natural forest and old forest reserves (Rademacher
and Winter 2003). Moreover, by analyzing hypothetical scenarios where, for
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example, no windfall occurred, it could be shown that storms and windfall
have both desynchronizing (at larger scales) and synchronizing (at the local
scale) effects on the spatio-temporal dynamics of beech forests. The model
thus can be used for answering both applied (conservation, silviculture) and
theoretical questions.

Example 3.—Models have been used to assess the effects of alternative
river flow regimes on fish populations at hundreds of dams and water di-
versions. However, the approach most commonly used for this application,
habitat selection modeling, has important limitations (Garshelis 2000; Rails-
back et al. 2003). IBMs of stream fish have been developed as an alternative
to habitat selection modeling (e.g., Van Winkle et al. 1998). These IBMs
attempt to capture the important processes determining survival, growth,
and reproduction of individual fish, and how these processes are affected
by river flow. The trout literature, for example, shows that mortality risks
and growth are nonlinear functions of habitat variables (depth, velocity, tur-
bidity, etc.) and fish state (especially, size); and that competition among
trout resembles a size-based dominance hierarchy. River fish rapidly adapt
to changes in habitat and competitive conditions by moving to different
habitat, so modeling this adaptive behavior realistically is essential to un-
derstanding flow effects.
However, existing foraging theory could not explain the ability of trout to

make good tradeoffs between growth and risk in selecting habitat under a
wide range of conditions. A new theory was developed from the assumption
that fish select habitat to maximize the most basic element of fitness, the
probability of surviving over a future period (Railsback et al. 1999). This
survival probability considers both food intake and predation risk: if food
intake is insufficient the individual will starve over the future period, but
if it feeds without regard for risk it will likely be eaten. The new theory
was tested by demonstrating that it could reproduce, in a trout IBM, a
wide range of habitat selection patterns observed in real trout populations
(Railsback and Harvey 2002).
Once its theory for how trout select habitat was tested, the IBM’s ability

to reproduce and explain population-level complexities was analyzed (Rails-
back et al. 2002). The IBM was found to reproduce system-level patterns
observed in real trout including self-thinning relationships, ”critical periods”
of intense density-dependent mortality among juveniles, density-dependence
in juvenile size, and effects of habitat complexity on population age struc-
ture. Further, the IBM suggested alternatives to the conventional theory
behind these patterns (Section 6.4.2).
In an example management application, the trout IBM was used to predict

the population-level consequences of stream turbidity (Harvey and Rails-
back, unpublished manuscript). Individual-level laboratory studies have
shown that turbidity (cloudiness of the water) reduces both food intake and
predation risk. The population-level consequences of these two offsetting
individual-level effects would be very difficult to evaluate empirically, but
was easily predicted using the IBM: over a wide range of parameter values,
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the negative effects of turbidity on growth outweighed the positive effects on
risk.

1.3 INDIVIDUAL-BASED ECOLOGY

The above examples address different systems and problems, and the models
differ considerably in structure and complexity. What they have in common,
however, is the general method of formulating theories about the adaptive
behavior of individuals and testing the theories by seeing how well they
reproduce, in an IBM, patterns observed at the system level. The main focus
may be more on the adaptive behavior of individuals, as in the woodhoopoe
and stream trout examples, or on system-level properties, as in the beech
forest example, but the general method of developing and using IBMs is the
same.
This general method of using IBMs is a distinctly different way of think-

ing about ecology. We therefore have taken the risk of coining a new term,
individual-based ecology (IBE), for the approach to studying and modeling
ecological systems that this book is about. Classical theoretical ecology,
which still has a profound effect on the practice of ecology, usually ignores
individuals and their adaptive behavior. In contrast, in IBE higher organiza-
tional levels (populations, communities, ecosystems) are viewed as complex
systems with properties that arise from the traits and interactions of their
lower-level components. Instead of thinking about populations that have
birth and death rates that depend only on population size, with IBE we
think of systems of individuals whose growth, reproduction, and death is
the outcome of adaptive behavior. Instead of going in the field and only
observing population density in various kinds of habitat, with IBE we also
study the processes by which survival and growth of individuals is affected
by habitat (and by other individuals) and how the individuals adapt.
The following are important characteristics of IBE. Many of these have

more similarity to interdisciplinary complexity science (e.g., Auyang 1998;
Axelrod 1997; Holland 1995, 1998) than to traditional ecology:

1. Systems are understood and modeled as collections of unique individ-
uals. System properties and dynamics arise from the interactions of
individuals with their environment and with each other.

2. Individual-based modeling is a primary tool for IBE because it allows
us to study the relationship between adaptive behavior and emergent
properties.

3. IBE is based on theory. These theories are models of individual behav-
ior that are useful for understanding system dynamics. Theories are
developed from both empirical and theoretical ecology and evaluated
using a hypothesis-testing approach. The standard for accepting the-
ories is how well they reproduce observations of real individuals and
systems.
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4. Observed patterns are a primary kind of information used to test theo-
ries and design models and studies. These patterns may be system-level
patterns or patterns of individual behavior that arise from the individ-
uals’ interactions with the environment and other individuals.

5. Instead of being framed in the concepts of differential calculus, models
are framed by complexity concepts such as emergence, adaptation, and
fitness.

6. Models are implemented and solved using computer simulation. Soft-
ware engineering, not differential calculus, is the primary skill needed
to implement and ‘solve’ models.

7. Field and laboratory studies are crucial for developing IBE theory.
These studies suggest models of individual behavior, and identify the
patterns used to organize models and test theory.

We of course do not propose that IBE replace existing branches of ecology
such as behavioral ecology or classical population ecology. We do not claim
that IBE is the new “right” way to do ecology and that other approaches
should be abandoned. Instead, IBE is a way to apply a variety of concepts,
most of them already fundamental to ecology and other sciences, to kinds
of problems that cannot be addressed by approaches that look only at indi-
viduals or only at populations. IBE is simply a new addition to the toolbox
that ecologists can use to solve particular problems.
The IBE research program we develop in this book is based on, but dif-

fers from earlier statements of the role of IBMs in ecology (e.g. Huston et
al. 1988). These differences reflect the experience gained during the last
20 years or so, which has demonstrated both the potential and the specific
problems of the individual-based approach. To understand how IBE deals
with these problems, it is important to understand the problems and the rea-
sons why they were not detected earlier. Therefore, in the following sections
we give an overview of the development of the IBM approach, including the
research programs outlined by the pioneers of IBM. We explain why it is
important to clearly distinguish IBMs from the other modeling approaches
which also consider individuals. Then, we briefly summarize the current sta-
tus of individual-based modeling and list the most important challenges of
the approach. Addressing these challenges is, of course, another major focus
of this book.

1.4 EARLY IBMS AND THEIR RESEARCH PROGRAMS

Modeling the behavior of individuals and testing whether this behavior leads
to realistic system-level properties is a natural idea. Therefore, IBMs were
developed occasionally, and independently of each other, as soon as adequate
computers were available (e.g., Newnham 1964; Kaiser 1974; Thompson et
al. 1974; Myers 1976). Two early models were very influential and con-
tributed significantly to the establishment of IBMs: the JABOWA forest
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model (Botkin et al. 1972) and the fish cohort growth model by DeAn-
gelis et al. (1979). The purpose of JABOWA was to model succession in
mixed-species forests and thereby predict species composition. JABOWA
was based on the notion that the interactions that drive forest dynamics are
local. JABOWA gave rise to a full pedigree of related models (figure 1 in
Liu and Ashton 1995; Shugart 1984; Botkin 1993) and probably is one of
the most successful ecological simulation models ever developed. A main
feature of JABOWA is that it can be parameterized rather easily and that
its results are easily tested. (See Section 6.7.5 for more details on JABOWA
and other forest IBMs.)
The fish cohort model of DeAngelis et al. (1979) is a similar success story.

The model was able to accurately predict the outcome of laboratory exper-
iments in which minute changes in the initial size distribution of the pop-
ulation lead to completely different distributions at the end of the growth
period. The reasons for this sensitivity to initial conditions were positive
feedback mechanisms including asymmetric competition and cannibalism.
As did JABOWA, the fish cohort model of DeAngelis et al. gave rise to a
full family of fish cohort models (DeAngelis et al. 1990; Van Winkle et al.
1993).
Interestingly, neither of these two influential models was presented as part

of a larger program to develop individual-based modeling as an approach
to ecology. Rather, the individual-based approach was chosen for pragmatic
reasons: it would simply not have been possible to tackle these problems with
classical approaches that ignore individual differences and local interactions.
This pragmatic motivation of JABOWA and the fish cohort model is in con-
trast to the work of two other pioneers of the IBM approach, H. Kaiser and
A. OLomnicki, whose attitude may be referred to as ‘paradigmatic’ (Grimm
1999). They explicitly discussed the limitations of the classical ecological
modeling paradigm and speculated about a new individual-based paradigm
that could lead to fundamentally new insights.
Kaiser (1979) first constructed classical models to explain certain phe-

noma, for example that the number of male dragonflies searching for mates
along the shoreline of a lake was almost independent of the number of males
foraging in the neighborhood of the lake. Kaiser then identified a number
of limitations of these classical models: it was not possible “to trace the
systems properties back to the behaviour of the individual animals”; the
models contained parameters, e.g. the arrival rate of male dragonflies at the
shoreline, which have no direct biological meaning because “the dragonfly
males have no means of observing the arrival rate”; and the parameters of
the model were fit to one set of observations which reflected one certain envi-
ronment, and there was no way to extend the model to situations beyond the
original one. Kaiser concluded that the classical models did not offer much
explanation of the processes determining population dynamics. In contrast,
the IBMs developed by Kaiser used simple behavioral rules or physiological
mechanisms for which empirical parameters were available. The populations
had certain properties because individuals behaved in a certain way. This
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characteristic allowed the models to be extended—cautiously—to situations
which were not observed in the field, such as longer or shorter shorelines and
other temperatures.
The other paradigmatic pioneer, A. OLomnicki (1978, 1988), focussed on

the problem of why some individuals should leave a habitat of optimal qual-
ity and disperse to suboptimal habitat. Classical population models could
not answer these questions because in classical models individuals are all
the same. Within the framework of classical theory, the only solution to the
problem of dispersal to suboptimal habitat was group selection: individu-
als behave suboptimally for the benefit of the population. Classical theory,
OLomnicki argued, thus contradicts one of the most fundamental assump-
tions of evolutionary theory: that individuals (or their genes) are the units
of natural selection, not groups of individuals. The only way to solve this
dilemma is to construct models which include differences among individu-
als. As a central mechanism of population regulation, OLomnicki assumed
that resources are unequally partitioned and that this inequality increases
when resources become scarce (Section 6.5.1). Ironically, the model used by
OLomnicki to demonstrate regulation by unequal resource partitioning does
not simulate individuals as discrete entities, but consists of two coupled dif-
ference equations. Although OLomnicki’s attitude is strongly paradigmatic,
claiming that classical theory leads ecology into a “blind alley”, he still used
the classical modeling approach.
Neither the work of Kaiser nor that of OLomnicki had a strong impact on

the early development of the IBM approach. Kaiser received little attention
because he published mainly in German. OLomnicki stuck to using analytical
models, and his exclusive focus on resource partitioning and population reg-
ulation was too narrow to influence a larger array of modelers and ecologists.
The visionary paper by Huston et al. (1988), entitled “New computer mod-

els unify ecological theory”, is widely regarded as having established the use
of IBMs as a self-conscious discipline. Interestingly, this paper does not
discuss the paradigmatic notions of Kaiser and OLomnicki; Kaiser is ignored
completely and OLomnicki is only mentioned briefly. Instead, the paper starts
with the statement that “individual-based models allow ecological modelers
to investigate types of questions that have been difficult or impossible to
address using the [classical] state-variable approach” (p. 682). These ques-
tions include the significance of individual variability and local interactions
among individuals. Huston et al. saw the main potential of IBMs as their
ability to “integrate many different levels in the traditional hierarchy of eco-
logical processes” (p. 682) because all ecological phenomena can eventually
be traced back to the physiology, autecology, and behavior of individuals.
Today it is impressive to note how clearly all these pioneers saw both the

pragmatic and paradigmatic potential of IBMs (see also the insightful early
review of Hogeweg and Hesper 1990). On the other hand, these real pioneers
cannot be blamed for not having foreseen all the challenges and limitations
of the IBM approach so that these problems could have been recognized and
tackled earlier. The first of these problems is to explicitly distinguish IBMs
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from other types of models.

1.5 WHAT MAKES A MODEL AN IBM?

Kaiser (1979) and Huston et al. (1988) defined IBMs as models that describe
individuals as discrete and autonomous entities, but they did not precisely
distinguish IBMs from classical models. The first and frequently cited vol-
ume about IBMs, entitled “Individual-based models and approaches in ecol-
ogy” (DeAngelis and Gross 1992), also does not clearly delineate what an
IBM is. The models considered in this volume range from IBMs as defined by
Kaiser and Huston et al., to analytical models dealing with distributions of
individual properties instead of discrete entities, to cellular automata which
do not necessarily describe individuals at all. By the middle of the 1990s,
the term ‘individual-based’ had become so fuzzy that it became increasingly
difficult to tell if IBMs really had the potential to unify ecological theory
and to overcome the limitations of classical modeling approaches. There-
fore, Uchmański and Grimm (1996) proposed four criteria that distinguish
what we consider IBMs in this book, those reflecting the research programs
of the IBM pioneers, from other more or less “individual-oriented” models
that acknowledge the individual level in some way but still adhere mainly
to the classical modeling paradigm. The four criteria are: (1) the degree to
which the complexity of the individual’s life cycle is reflected in the model;
(2) whether or not the dynamics of resources used by individuals are explic-
itly represented; (3) whether real or integer numbers are used to represent
the size of a population; and (4) the extent to which variability among indi-
viduals of the same age is considered.
The degree to which the life cycle is reflected in a model (criterion 1) is im-

portant because individuals of most species change significantly in the course
of their life: they need more and, often, different resources while they are
growing; in different states of their development they interact with different
biotic and abiotic elements of their environment; and individuals can adapt
life-history characteristics as they grow and develop, for example growing or
reproducing more slowly when resources are scarce or competition is high.
IBMs thus have to consider growth and development in some way; otherwise
they neglect essential aspects of the “ecology of individuals” (Uchmański
and Grimm 1996).
The second criterion refers to resources exploited by individuals. Mod-

els that simply assume a constant carrying capacity for resources cannot be
fully individual-based because they ignore the important, and often local,
feedback between individuals and resources. Moreover, carrying capacity is
typically a population-level concept, often used to describe density depen-
dence in a population’s growth rate. Such population-level concepts have
little meaning at the individual level: individuals usually cannot know the
overall density of their population, but instead are affected by their local
resources.
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The third criterion is obvious: individuals are discrete so population size
necessarily is an integer. However, sometimes classical models are made
‘individual-based’ merely by rounding the real number results to integer
numbers. But the model’s population dynamics are still fine-tuned using
real numbers, whereas in real populations where individuals usually interact
locally and only with a limited number of other individuals, this fine-tuning
does not exist. Truly individual-based models are built using the mathemat-
ics of discrete events, not rates.
The fourth criterion distinguishes models using age, size, or stage distri-

butions from IBMs. In distribution models, differences among individuals
belonging to the same group, e.g., age class, are ignored. In reality, how-
ever, even individuals of the same age, or size, may develop along different
pathways so that after some time the variation among individuals within a
class is comparable to the variation among class averages (Pfister and Stevens
2003). Neglecting this degree of freedom in population structure could mean
ignoring important mechanisms determining population dynamics.
This classification scheme has been described as interfering “with the in-

sightful process of comparing models at different levels of detail” (Bolker et
al. 1997), but this was not the intent of its authors (Uchmański and Grimm
1997). Their objective was not to distinguish models as true and false, or
useful and useless, but to provide classification criteria necessary to answer
the question of whether IBMs can lead to a fundamentally new view of eco-
logical systems and processes (Uchmański and Grimm 1996). This question
cannot be answered unless IBMs are clearly delineated from other kinds of
models, which we here refer to as “individual-oriented”.
There are of course numerous models which do not fulfill all of these

four criteria but nevertheless provide important theoretical insights. Matrix
models describing age- or stage-structured populations are powerful for de-
termining the intrinsic rate of increase and the stable age or stage structure
of exponentially growing populations (Caswell 2001). More sophisticated
distribution models successfully describe laboratory populations of plank-
tonic species (Diekmann and Metz 1986), or patterns in fish communities
(Claessen et al. 2000). Models of predator-prey systems which describe in-
dividuals as discrete units having local interactions but no life cycles or
variability can demonstrate the stabilizing effect of local interactions and
the emergence of striking spatial patterns (de Roos et al. 1991; Figure 1.3;
see also Donalson and Nisbet 1999, Section 6.6.1). All these models consider
individuals to some extent, but still refer to the framework of classical mod-
els and theory. They ask: what do we gain—compared to classical, highly
aggregated models—if we include, for example, the discreteness and local
interactions of individuals (Durrett and Levin 1994)? But none of these
“individual-oriented” models allows us to fully “trace the systems properties
back to the behaviour of the individual animals” (Kaiser 1979).
Individual-oriented models are, like classical models, indispensible, use-

ful, and sometimes fascinating tools, but they should indeed be “separated”
(Bolker et al. 1997) from IBMs. This separation is necessary if we are to
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Figure 1.3 Spatial patterns produced by the model by de Roos et al. (1991) of an
artificial predator-prey system. The model world consists of 256× 256
grid cells, which can be in the states empty (black), prey (white), preda-
tor (grey), or predator handling prey (dark grey). Predator individuals
are just “points” which jump to neighbour cells and eat, if present,
prey “points”. (Figure produced using a program written by H. Hilden-
brandt.)

compare the classical framework, which describes ecological systems as rel-
atively simple and characterized by system-level state variables, to the view
that ecological processes and systems emerge from the traits of adaptive
individuals.

1.6 STATUS AND CHALLENGES OF THE INDIVIDUAL-BASED

APPROACH

The individual-based approach is now firmly established in ecology. Hun-
dreds of papers have been based on IBMs, prompting Grimm (1999) to
review fifty IBMs of animal populations published in the decade after the
paper of Huston et al. (1988). Earlier reviews of IBMs (DeAngelis et al.
1990, 1994; Hogeweg and Hesper 1990) provide useful summaries of existing
IBMs, but Grimm focused on the degree to which the vision that IBMs ‘unify
ecological theory’ (Huston et al. 1988) has been fulfilled. The conclusion of
this review was rather sobering: although every model served its purposes
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and was thus useful, ecology as a whole seemed to have learned less from
the individual-based approach than originally expected. The main reason
for this conclusion was that few IBMs addressed general issues of theoreti-
cal population ecology like persistence, resilience, or regulation. Similarly,
new theoretical issues like emergence (Chapter 5) or self-organization were
rarely discussed; IBM applications seemed driven more by pragmatic moti-
vations then by paradigmatic ones. Grimm (1999) also concluded that most
IBMs were: (1) developed for specific species with no attempt to general-
ize results; (2) rather complex, but lacking specific techniques to deal with
this complexity; and (3) too elaborate to be described completely in a sin-
gle paper, making communication of the model to the scientific community
incomplete (note that both JABOWA and the fish cohort model of DeAnge-
lis et al. 1979, mentioned above as particularly influential IBMs, were each
completely described in one paper).
The pioneers’ vision that IBMs would induce a paradigm shift and unify

ecological theory has clearly not come true automatically. The promise of the
individual-based approach still exists (as we will try to show in this book),
but the experience gained in one and a half decades of individual-based
modeling shows that two closely linked problems have been underestimated.
First is the complexity of IBMs, which “imposes a heavy cost compared with
the other model types” (DeAngelis et al. 1990, p. 585) in understanding,
testability, data requirements, and generality (Murdoch et al. 1992). Second
is the lack of a theoretical and conceptual framework for individual-based
modeling, leading to the widespread use of ad hoc assumptions and pre-
venting a more coherent development of the approach (Hogeweg and Hesper
1990).
Because IBMs deal with many entities, spatial scales, heterogeneities, and

stochastic events, they are necessarily more complex than classical, ana-
lytically tractable models. Many IBMs are complex as indicated by such
conventional measures as the number of variables, parameters, or rules in
the model. However, even IBMs that are relatively simple by conventional
measures can be complex in new ways, such as in the number of unique
individuals; the number, type, and order of interactions among individuals;
and the number of ways a model population can reach any particular state.
This complexity, along with the lack of an overall theoretical framework for
individual-based modeling, has resulted in the following challenges to the
productive use of IBMs. (Do not panic! This book shows how to meet these
challenges.)

Development.—Developing IBMs is a challenge because much more of the
complexity of the real world is acknowledged and not ignored a priori. De-
signing the model structure and resolution is a more time-consuming and
complex task than when developing classical models, which are constrained
to a coarser representation of reality.

Analysis and understanding.—The more complex a model, the more diffi-
cult it is to analyze and understand. Many theorists and modelers therefore
assume that an increase in complexity inevitably reduces a model’s potential
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to provide understanding. Critics of IBMs argue that complex models are
as hard to understand as the real world and therefore of little use.

Communication.—Classical models are easy to communicate because they
are formulated in the common language of mathematics. IBMs, on the other
hand, have essential characteristics that cannot be described by equations
and parameters. As yet, we lack a common, concise language for communi-
cating IBMs. Moreover, many IBMs are too big to describe completely in
publications. Therefore, IBMs are often not fully open and available to the
scientific community, which is probably the most serious threat to the cred-
ibility of the whole approach (Lorek and Sonnenschein 1999; Grimm 1999,
2002; Ford 2000).

Data Requirements.—The more kinds of entities, scales, and events a
model represents, the more parameters are needed. Sufficiently precise
parameter values are, however, notoriously difficult to obtain in ecology.
IBMs have therefore been criticized as being too ‘data hungry’—especially,
IBMs designed for specific, applied problems. For example, the usefulness
of spatially explicit population models, many of which are individual-based,
has been questioned because adequate parameter values are never available
(Beissinger and Westphal 1998).

Uncertainty and Error Propagation.—Data available to parameterize IBMs
are likely to be uncertain. It therefore seems wiser to keep the number of pa-
rameters low because many uncertain parameters might combine to produce
extremely high uncertainty in system-level results. This error propagation
potential appears capable of rendering IBMs totally useless for solving ap-
plied problems and of limiting the testability of IBMs, yet has received very
little investigation.

Generality.—Classical models using population size as a state variable
are considered most general because they ignore almost every aspect of real
species and populations. As more details are included (e.g., adding age or
stage structure, space, habitat dynamics, dispersal), models become less gen-
eral. Each detail added to a model makes it more specific to a particular
population. How, then, can IBMs be general or produce theory when they
are highly detailed? It has even been argued that using IBMs necessar-
ily means to relinquish the ‘holy grail’ of general ecological theory (Judson
1994).

Lack of standards.—Classical theoretical ecology has a suite of standard
models with known properties. These standard models serve as building
blocks for all kinds of structured classical models. It is no longer necessary
to explain or even justify the use of these standards. If, for example, a model
addressing synchronisation of local population dynamics in different patches
assumes that the local dynamics are described by the so-called Ricker equa-
tion, the assumption is familiar and noncontroversial. Using this standard
assumption makes analysis, communication, and comparison to other simi-
larly structured models easier. In contrast, most IBMs have been built from
scratch using ad hoc assumptions not guided by general concepts. The lack
of standard, widely accepted, building blocks makes individual-based mod-
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eling both inefficient and controversial. This lack also makes it difficult to
compare models and develop theory. If two IBMs produce different results,
it is much more difficult to explain and learn from the differences when the
IBMs have different structures and use many non-standard assumptions.
Many of these same challenges have limited the progress of individual-

based (or ‘agent-based’, the term used in fields other than ecology) ap-
proaches in other fields of science. A period of initial excitement and ex-
ploration (e.g., Waldrop 1992; Arthur 1994; Axelrod 1984, 1997) has not
been followed by as much rapid progress as some undoubtedly expected.
Our observations have been that agent-based modeling has not become a
widespread, paradigm-altering tool even among scientists focused on com-
plexity. (There are, of course, important and exciting exceptions to this
generalization.) Building and learning from the models, and producing re-
sults of general theoretical interest, has proven difficult.

1.7 CONCLUSIONS AND OUTLOOK

The individual-based approach is no longer new, being established as a dis-
tinct approach for over ten years and having intrigued ecologists for over
20 years. IBMs can address types of questions that cannot be addressed
with classical models. From many IBMs of real and hypothetical systems,
we have learned much about the ecological significance of local interactions,
individual variability, etc. However, the most notable result of our experi-
ence with IBMs so far may simply be an understanding of the approach’s
many challenges and fundamental differences from classical ecology. The
potential of IBMs remains high yet largely unfulfilled. To see this potential
realized in the future, it is now time to formulate strategies for coping with
the challenges listed above.
This book presents our reseach program for IBE, much of which concerns

strategies for coping with the problems that have limited IBMs so far. These
strategies, outlined here, are adapted from existing theory and practice in
ecological and simulation modeling, analysis of complex systems, and soft-
ware engineering.

Pattern-oriented modeling.—The term ‘IBM’ contains not only the word
‘individual’, but also the word ‘model’. So far, methodological work on
IBMs has focussed too much on individuals and their significance and not
enough on modeling. Perhaps the most decisive modeling issue is how can
we find the optimal level of complexity for an IBM. Using multiple patterns
at different levels of ecological process (‘pattern-oriented modeling’) helps
optimize model complexity, parameterize models, and make models testable
and general.

Theory.—In IBE, ‘theory’ mainly concerns how to represent individual-
level behavior in a way useful for explaining system-level processes. These
theories could also be referred to as ‘models’ or ‘assumptions’, but referring
to ‘theory’ underlines the research program of IBE: to develop a general
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theoretical framework for describing individual behavior. The rationale of
this program is that generality should be easier to achieve at the individual
level than at aggregate levels because all individuals follow, as pointed out
above, the same master plan: seeking fitness. Individuals must continually
decide—in the literal or the more metaphorical sense—what to do next, and
these decisions are based on the individual’s internal models of the world.
It seems reasonable to believe that individuals of many types have similar
internal models and traits that are based on fitness seeking; and complexity
science teaches us that individuals with identical adaptive traits but their
own unique states, experiences, and environments can produce an infinite
variety of system dynamics. Coherent and predictive theories of these traits
will provide an important key to understanding ecological phenomena in
general.

Design concepts.—Designing every element of a model requires decisions
about variables, parameters, functional relationships, etc.; and if these de-
cisions are not to be ad hoc they must be based on a consistent set of
concepts. Unfortunately, differential equations do not provide a useful con-
ceptual framework for IBMs. Instead, a general conceptual framework for
designing IBMs can be borrowed from the new discipline of complex adaptive
systems (Waldrop 1992; Holland 1995, 1998). Such concepts as emergence,
adaptation, and prediction can provide an explicit basis for design decisions
and reduce the need for ad hoc modeling decisions. These concepts also
provide a common terminology for designing and describing IBMs.

Software design and implementation.—Software development is inevitably
a major part of an IBE project, and project success requires software that
is well-designed and thoroughly tested. Computer models are the primary
tools of IBE and, as in any other science, the rate and nature of progress
is highly dependent on the quality of the tools. Successful conduct of IBE
often requires software expertise beyond the meager training ecologists now
typically receive.

Simulation experiments.—We can only understand and learn from simu-
lation models such as IBMs if we design and execute controlled simulation
experiments. Thus, the art of analyzing IBMs is in designing experiments
whose outcome can at least partly be predicted, and falsified, and to com-
bine such experiments in a way that we get a comprehensive understanding
of the key structures and processes of ecological systems. The ability of
this experimental approach to produce new and general insights has been
demonstrated in a number of studies.

Communication.—The complexity of IBMs and newness of IBE makes sci-
entific communication more important yet more challenging. Both models
and software need full documentation, and often separate publications are
required to describe an IBM and then its research or management applica-
tions. A model, or any scientific idea, is successful if it is memorized in total
or part by peers who then use it in future work. Improving this ‘memetic
fitness’ (Blackmore 1999) of IBMs is critical to the success of IBMs and IBE.
Where will we be in another decade or two? We envision IBE being con-
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ducted by interdisciplinary teams having expertise in simulation modeling
and complex systems science, software engineering, and the biology and ecol-
ogy of the organisms and systems being studied. As in other kinds of ecology,
toolboxes of standard IBE modeling practices, theory, software, and anal-
ysis methods will gradually be developed and refined as more models are
designed and tested and more theory is developed. These toolboxes will
allow us to rapidly build models and conduct analyses that explain many
ecosystem dynamics and complexities that we currently cannot explain. IBE
and more traditional approaches will continue to contribute to each other
in many ways (e.g., see Chapter 11). However, what will continue to set
IBE apart is its goal not to simplify ecological complexity but to understand
complexity and how it emerges from the adaptive traits of individuals.
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Chapter Two

A Primer to Modeling

Modeling is presented as a discipline that draws (in the first
instance) on the perception of the detective rather than the ex-
pertise of the mathematician.

Anthony Starfield and Andrew Bleloch, 1986

2.1 INTRODUCTION

Individual-based modeling is, above all, modeling. If we want to make
individual-based modeling effective and coherent, we must understand what
modeling really is and how it works. Therefore, in this chapter we introduce
general guidelines for developing models, referring readers to other authors
(especially: Starfield et al. 1990; Starfield and Bleloch 1986; and Haefner
1996) for more detailed introduction to the principles of modeling. These
guidelines also set the stage for the remainder of the book: subsequent chap-
ters address the modeling tasks introduced in this chapter.
Intuitively, we know a model is some sort of simplified representation of

a real system. But why do we build models and what do models have
in common? The answer is fundamental and independent of the context
in which we build models: the purpose of modeling is to solve problems
or answer questions, and the common feature of models is that they are
developed under constraints (Starfield et al. 1990). A model may address a
scientific problem, a management problem, or just a decision in everyday life:
any attempt to solve such problems is constrained by scarcity of information
and time. We can never take into account all the elements of the real world
which influence a problem. We cannot know everything about a problem,
and if we did know everything we would not be able to process the flood of
information. For solving real-world problems, simplified models are the only
alternative to blind trial and error, which usually is not a good approach.
A simple real-world problem is choosing a checkout queue in the super-

market, with the objective of minimizing the time spent waiting to check
out. Very often we choose the shortest queue because we apply a very
simple model: the length of a queue predicts the time spent waiting in
it. We make—usually subconsciously—numerous simplifying assumptions
in our model, such as that all customers require the same handling time and
that all checkers are equally efficient. Certainly, the model is oversimplified.
We could have observed the employees for a while, trying to identify the most
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efficient one; we could have checked the shopping carts of the customers in
all queues to predict the handling time of each; etc. But gathering all this
additional information would require time, which conflicts with our objec-
tive of minimizing the time spent checking out. Moreover, even if we invest
time in gathering information, we still can never be sure that we choose the
fastest queue. How, for example, could we know which customers will be
very slow in filling out a check? How could we predict which checkout stands
will open or close, or which checkers will go on break, as we wait?
This example demonstrates that modeling is problem-solving under con-

straints. We know that the model we use is not perfect, but—facing the
constraints of information and time—we also know that even a simple model
will probably lead to a better solution to the problem than not using any
model at all, for example by simply entering the first queue encountered.
And we know that a more complex model will not necessarily provide a
better solution to the problem of minimizing the waiting time.
A completely different model of the queue system would be used, though,

if we had a different objective such as minimizing the waiting time of all
customers. Models addressing this problem differ fundamentally from the
single customer model in that they cannot ignore the variability in customer
handling time and employee efficiency. It is exactly this variability which
increases the average waiting time of all customers. Multi-customer models
predict that the use of one queue for all customers, common at banks and
airport check-in counters (and now used, quite famously, at one particularly
crowded New York City supermarket), significantly reduces total waiting
time compared to separate queues for each employee.
The difference in the structure of the two queue models is due to their

different purposes. The lesson from this difference is that a model must
not be viewed as merely a representation of a system but as a “purposeful
representation” (Starfield et al. 1990). A model’s structure depends on the
model’s purpose because the purpose helps decide which aspects of real sys-
tem are essential to model and which aspects can be ignored or described
only coarsely. Now, what does all this mean for individual-based modeling?
We can draw three main lessons from the checkout queue example:

1. Mere ‘realism’ is a poor guideline for modeling.—Modeling must be
guided by a problem or question about a real system, not just by the system
itself. The problem to be solved provides a filter which should be passed only
by those elements of the real system considered essential to understanding
the problem. Without a clearly stated problem, we have no such way to
filter what should vs. should not be included in a model, often with fatal
consequences. Models become unnecessarily complex and are never finished
because there are always more details to add. In fact, Mollison (1986) ob-
served that modelers following ‘naive realism’ as a guideline can easily be
identified by their promise that their model will be ‘finished soon’. IBMs cer-
tainly can be more ‘realistic’ than the highly aggregated models of classical
population ecology, but not in the naive sense of just including more details
of the real world. IBMs are more realistic when we believe that individual
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behavior is an essential process affecting the problems we want to solve.
2. Constraints are essential to modeling.—It is a widely held myth that

a model cannot be developed before we have sufficient data and a compre-
hensive understanding of the system (Starfield 1997). The opposite is true:
our knowledge and understanding are always incomplete and this, exactly,
is the reason to develop models. Models are useful because we want to solve
problems despite of our lack of knowledge and understanding. If we knew
and understood everything, why bother with models and theory? Admit-
tedly, constraints on information, understanding, or just time, are painful
when we want to solve a problem and we naturally complain about these
constraints. But, as Starfield et al. (1990) point out, constraints reward
clear thinking, forcing us to hypothesize about factors essential to the prob-
lem. One of the main problems with IBMs is that they are less constrained
by technical limitations than classical models. IBMs can include many more
factors than analytical models. Thus, to improve individual-based modeling,
the important role of constraints has to be acknowledged and new, powerful
constraints must be identified. This will be a major theme in the remainder
of this book, especially Chapter 3.

3. Modeling is ‘hardwired’ into our brains.—Modeling is not a specific
method used only by specialists calling themselves ‘modelers’; we are all
modeling all the time, for each decision we make, because each decision is
constrained by a lack of information and time. Most of the time we are not
aware that we are modeling, but use powerful modeling heuristics to solve
problems. These heuristics are mental problem-solving resources that are
often more effective than logical reasoning for dealing with complex systems.

2.2 HEURISTICS FOR MODELING

Starfield et al. (1990) define a ‘heuristic’ as a “plausible way or reasonable
approach that has often (but not always) proved to be useful” (p. 21), or
simply as “rules of thumb”. If we want to make scientific modeling, includ-
ing individual-based modeling, efficient, it is important to be aware of these
powerful heuristics so that we learn to use them consciously. While develop-
ing an IBM, the following heuristics should be used as a checklist; modelers
can review the list to make sure they use the most helpful heuristics. If used
in this way, the heuristics will help exorcise the ghost of naive realism which
lurks behind many IBMs (Grimm 1999), because the heuristics reinforce the
fundamental notion of models as purposeful, not complete, representations
of a system.
These heuristics should be checked at all hierarchical levels of a modeling

project: for the entire model, but also for particular parts of a model, for
example submodels representing the abiotic environment and its dynamics,
behavioral traits of individuals, or physiological processes. The heuristics
we describe here were formulated by Starfield et al. (1990), and are only the
most important and general heuristics. Modelers can profit from their own
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experience by adding their own heuristics to this list.
Rephrase the problem to be solved with the model.—This is obviously im-

portant if someone else’s problem is to be solved, for example a management
problem. Rephrasing the problem helps make sure the modeler understands
it. In science we typically address problems we define ourselves, but rephras-
ing the problem is still valuable because it forces us to be explicit: what
exactly is the question we want to ask? Good science requires good ques-
tions, and good questions are clear and explicit. If the question is not clear,
we probably are aiming too high, trying to understand too many things at
the same time. Especially when we are dealing with complex systems, as in
ecology, rephrasing a problem in a productive way is not trivial, but decisive.
For example, “explaining dynamics of a beech forest” would be too broad of
a problem, providing no guidance on the model’s structure. The model could
describe individual trees, or plant-animal interactions, or primary produc-
tion, or whatever. Rephrasing the problem as “explaining spatio-temporal
dynamics” is a step in the right direction because now we know that the
model has to include spatial structures in some way.

Draw a simple diagram of the system to be modeled.—This technique is
useful because most of us are very poor in drawing. To make sure that
the objects we draw can be identified, we focus on drawing essential aspects.
We might even produce caricatures (Clark and Mangel 2000) which exagger-
ate essential aspects. Thus, while drawing simple diagrams of the system’s
objects and processes, we make use of powerful filters hardwired into our
brains. These visual filters can be more effective then verbal arguments,
perhaps because human perception and imagination are mainly visual. The
vague term ‘simple diagrams’ means exactly this: the diagrams require no
formal structure, just draw and have confidence in your brain! Simple dia-
grams are also ideal for communication, especially in early stages of model
development. Modeling requires communication, and simple diagrams are
efficient for explaining how we understand the problem and what elements
of the modeled system we consider essential.

Imagine that you are inside the system.—This heuristic is of particular
importance for IBMs. The perspective from inside the system keeps us from
imposing our external perspective on the system’s objects. For example,
as external observers we may know the size or density of a population, but
this information usually is not available to the individuals in the population.
While imagining that we are an object inside the system, we can ask: what
is going on around me? What affects me, and what do I affect?

Try to identify essential variables.—The model we are developing will
represent a real system, so the question arises: which variables are essen-
tial for representing the system? There are, for example, questions about
populations for which it is sufficient just to know the number of individu-
als, so that population size (or density) is the only essential state variable.
However, there are many questions—including the ones we focus on in this
book—where additional variables are essential. These variables often include
the location, size, age, sex, social rank, etc., of individuals.
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Identify simplifying assumptions.—The purpose of modeling is to find a
simplified representation of the real system which can be used for solving a
problem. Simplification includes using only a small number of variables to
represent the system. Every aspect of the real system which is not repre-
sented by a variable is assumed to be constant and uniform. We know that
this assumption is not true literally, but we assume that the simplification
does not interfere with solving the problem. If first drafts of a model turn
out to be too complex to be useful, we have to simplify further, for example
by aggregating variables.

Use ‘salami tactics’.—This is one of the most powerful modeling heuris-
tics: if we have no idea how to find the answer to the problem in one big
step, we can approach the problem in many small steps. This technique is
particularly valuable when the problem we address is the dynamics of essen-
tial variables. Usually, we have no idea how to deduce the dynamics over
long times, but often we can rather easily predict what happens over the next
small time interval. This prediction can be made from simple bookkeeping of
the most important processes that affect the essential variables. Because we
are predicting only a short time interval we often can use the approximation
that changes are linear. In the case of discontinuous changes caused by some
event, e.g. a disturbance, we can specify the probability that the event will
occur and how it will affect the variables. Salami tactics are routinely used in
simulation models: time is ‘sliced’ into steps short enough to predict changes
between time steps. In spatial models, space can also be cut into small pieces
such as grid cells, so spatial processes can be represented as acting among
adjacent cells. The ‘salami tactics’ heuristic is also powerful when applied
to the process of modeling itself, especially when modeling complex systems.
Instead of trying in one step to formulate a complete model containing all
essential system characteristics, it is usually better to start with a strongly
and deliberately simplified ‘null model’ (Haefner 1996). Then, the model’s
complexity can be increased step by step.

2.3 THE MODELING CYCLE

The heuristics described above are powerful, but not sufficient by themselves
as a general guide to modeling because they do not include the full cycle of
tasks performed in developing and using models. Modeling is an iterative
process (Haefner 1996; Thulke et al. 1999) in which several tasks are per-
formed repeatedly. We now describe these tasks and the typical ‘modeling
cycle’ (Figure 2.1). Some of the tasks are nearly identical to the heuris-
tics described above, and most tasks are discussed in more detail in later
chapters.
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 Formulate the 
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Figure 2.1 The six tasks of the modeling cycle. Considering patterns is especially
important when choosing model structure and analyzing the model.

2.3.1 Task 1: Formulate the Question

This task corresponds to the ‘rephrase the problem’ heuristic. Modeling
requires deciding which aspects of the real system to represent, and at what
resolution. Without clearly formulating the question or problem the model
is to address, we could not make these decisions. With the question clear,
we can consider every known element and process of the real system and
decide whether we believe them to be essential for addressing the question
or problem.

2.3.2 Task 2: Assemble Hypotheses for Essential Processes and
Structures

Every answer to the above question—whether an element or process is es-
sential for addressing the modeling question—is a hypothesis that could be
true or false. Modeling means exactly this: to build a model with working
hypotheses and then to test whether these hypotheses are useful and suffi-
cient for explaining and predicting observed phenomena. But where do these
hypotheses come from? They reflect our first, preliminary understanding of
the system, which in fact is a first ‘conceptual model’ (DeAngelis and Mooij
2003). Without a conceptual model, consisting of hypotheses about what is
important, we could not start the modeling cycle. This means in particular
that if we have ‘no idea’ how a certain system works, we cannot develop a



g-r May 17, 2004

A PRIMER TO MODELING 27

model.
The hypotheses of the conceptual model are formulated verbally (and

often graphically). They are based mainly on two sources: theory and expe-
rience. Theory provides a framework through which we perceive a system.
If, for example, our theoretical background is ecosystem theory, we will view
ecosystems as a system of compartments containing nutrients and energy,
with fluxes of nutrient and energy driving the system’s dynamics. Popu-
lation ecologists will focus on a few population rates and on census time
series. In this book, the focus is simultaneously on the adaptive behavior of
individuals and on characteristic properties, or patterns, of the system.
Experience, the other source of hypotheses about the system, is shaped

by theory or by the way we use the system. Theory constrains the field data
we collect and the experiments we perform; empirical research is thus never
theory-free (Fagerström 1987). Therefore it is important to also consider
the empirical knowledge of those who simply use the system (e.g., natural
resource managers), or who just know them well (e.g., naturalists). Every
naturalist or natural resource manager knows much more than can be ex-
pressed in hard data. Often, this qualitative knowledge is latent and will
only be expressed if the right questions are asked by the modeler. Empiri-
cal knowledge can easily be expressed in ‘if-then’ rules. For example, forest
managers that have observed, a hundred times or more, how a canopy gap in
a beech forest closes over time, can formulate empirical rules for this process:
either the neighboring canopy trees will spread to close the gap or one of the
younger trees of the lower canopy will grow into the gap. It may not be pos-
sible to predict which of these two processes will occur in any particular gap,
but experienced managers can estimate probabilities of the two alternative
outcomes.
Assembling the first conceptual model of the system will require some

time, especially when the system is complex, and often it will be necessary
to cycle through Tasks 1 and 2 several times before we can proceed to Task
3. We might initially have formulated the question of the modeling project
in a way that does not easily lead to useful hypotheses about the essentials.
Or, while formulating our working hypotheses, we might realize that we can
again rephrase the question because formulating the working hypotheses
forced us to think more deeply and clearly about the question.

2.3.3 Task 3: Choose Scales, State Variables, Processes, and Pa-
rameters

The next task is to make the working hypotheses quantitative by translating
them into a specific model structure and into equations and rules describing
the dynamic behavior of the model’s entities. To do this, first of all we have to
select the variables, which describe the state of the system (thereby defining
the model’s structure); the essential processes which cause changes of the
state variables, and the parameters, which are used in our models of the
essential processes, i.e. equations and rules, and which quantify when, how
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much, and how fast the variables change (defining the model’s dynamics).
The basic structure of IBMs is a collection of discrete individuals, because

we consider the discreteness and adaptive behavior of individuals essential.
We therefore have to select variables describing the state of individuals,
parameters describing individual behavior, and variables and parameters
describing the individuals’ environment. Of course, we would have to use
thousands of variables if we want to completely describe an individual and its
environment. But complete description is not our purpose. Instead, we ask
ourselves: which characteristics of an individual are really essential to the
question we are trying to answer? Location, age, size, and sex are essential
for many questions, but not for all. Important variables may include the
energy an individual has stored, the individual’s social rank, the number of
mating attempts it has made so far, the distance it has traveled, etc.
Most often, the initial list of variables will look intimidating because it is

too long. Each additional state variable makes a model harder to develop,
parameterize, implement, analyze, and understand—so we should fight hard
to limit the list of variables. Empirical biologists who know the diversity of
their systems well often find it especially hard to boil all this diversity down
to a handful of variables. A good heuristic is, at this point, to shorten the list
of variables to the threshold of pain, or a bit farther. This heuristic is useful
because ‘pain’ means that we—for the time being—consider all remaining
variables absolutely essential.
In addition to working with lists of variables, it often makes sense to draw

simple graphical representations of the model’s elements, e.g. simplified For-
rester diagrams (see, for example, Haefner 1996) or ‘influence diagrams’
(Figure 2.2; Jeltsch et al. 1996; Brang et al. 2002) where boxes delineate
structural elements or processes and arrows indicate influence: ‘element A
has an influence on element B’. Influence diagrams are also useful for aggre-
gating processes to keep initial model versions simple and manageable.
Variables represent the structure of the model system, whereas parame-

ters, which are used in equations and rules, represent processes. Parameters
are constants which quantify the relationships between variables. Making
this quantification constant usually involves simplifying assumptions. For
example, when changing currencies as a traveller, e.g. dollars to euros, we use
the simple model N($) = aN(¤), with a being the exchange rate (Starfield
and Bleloch 1986). Assuming that a is constant is a simplifying assumption.
In fact, a is not constant and depends on very complex processes which are
hard to predict. But for the purpose of a traveller—to assess the price of
something in a foreign currency—the simplifying assumption is reasonable.
(The same assumption is not reasonable for the purposes of professional cur-
rency traders.) Parameters determine the resolution by which we describe
processes. Later on in the modeling cycle, we may decide to change this level
of resolution, either by aggregating several model processes into one param-
eter, or by replacing a constant parameter by a submodel, e.g. equations and
rules which dynamically produce values of the parameter.
The selection of variables, parameters, and the equations and rules they
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Figure 2.2 Influence diagram of the model SGM of Grewia flava, a woody plant
species in the southern Kalahari Desert. This diagram was developed
and used to decide on model structure (state variables) and the pro-
cesses to be included in the model. Bold arrows indicate processes
through which population parameters and variables are affected by an-
nual rainfall. (Modified after Tews 2004.)

are used in, is inseparably bound to the selection of the spatial and temporal
scales of our model. ‘Scale’ has two aspects: the grain, i.e. the smallest slice
of time or space we are going to consider, and extent, i.e. the time horizon or
area to be covered by the model. (Note that in ecology ‘large scale’ often is
used to refer to large extents, whereas originally, in geography, i.e. for maps,
‘large scale’ referred to a large resolution or a small grain; Silbernagel 1997.)
One of the major recent advances in ecology is understanding how the

scales we select affect results of field studies and models (Levin 1992). Most
spatial models in ecology are grid-based, so that their spatial extent is the
size of the entire grid and their spatial grain is the size of a grid cell. The
choice of the extent depends on the spatial processes and structures to be
modeled, for example long-distance dispersal events or a mosaic of habitat
patches of different quality. The extent should also be large enough to avoid
significant edge effects, unless these effects are important to the problem
to be solved. The grain should be defined by the distance below which we
believe spatial effects can be ignored. For example, the location of animals
within a territory can often be ignored so that the grain, i.e. the size of
the grid cell, is determined by the average size of a territory (Jeltsch et al.
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1997b; Thulke et al. 1999). On the other hand, if we consider the variation
in the size of territories essential, we have to choose a grain considerably
smaller than the mean size of territories (Figure 2.3). For plants and mobile,
non-territorial animals, environmental variability is a major consideration in
selecting the spatial grain: over what distances do environmental conditions
change significantly? Additional guidance and examples for selecting spatial
scales are provided by Laymon and Reid (1986), Bissonette (1997), Mazerolle
and Villard (1999), Storch (2002), and Trani (2002).

Figure 2.3 Size and distribution of male territories of the wall lizard (Podarcis
muralis) in five consecutive years (top to bottom) (Hildenbrandt et
al. 1995; Bender et al. 1996). Numbers denote the identity of male
territorials, ~ symbols indicate the location of occupied female ter-
ritories within a male’s territory. As individuals die, neighbors or a
non-territorial lizard (e.g., individual 67 in year 3) take over the free
space. At the very bottom, the grid underlying the territories is shown.
Territories may vary in size between one and five grid cells. A grey grid
cell is not occupied by a male. (After Hildenbrandt et al. 1995.)

Similar considerations are used to determine grain and extent of the tem-
poral scales of a model. The grain, or time step, is the time span over
which we ignore details of temporal variation; instead, we consider only the
net change in variables over the entire time step. Some IBMs that describe
physiological states and behavioral motivations of animals use time steps of
15 (Wolff 1994) or even only 5 minutes (Reuter and Breckling 1999). Other
typical and more or less ‘natural’ time steps are days, seasons, or years. For
slowly developing systems, larger time steps may be sufficient: the BEFORE
model of beech forest structure uses 15 years (Neuert 1999; Rademacher et
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al. 2004; Section 6.8.3).
At the end of Task 3 we will have—preliminarily—decided on the spatial

and temporal extent and grain of the model, its variables and parameters,
and the equations and rules to describe the processes identified in Task 2.
Before we can proceed to the next task, we might have to go back to Task
2 or even Task 1. While considering variables, parameters, scales, equa-
tions, and rules, we may change our mind about the hypothesized processes
and structures, or about the formulation of the problem in the first place.
Nevertheless, at some stage we proceed.

2.3.4 Task 4: Implement the Model

Starfield et al. (1990) quote a heuristic coined by the engineer Billy V. Koen:
“At some point in the project, freeze the design”. To freeze the design does
not mean to freeze it forever, but any modeling project will reach a stage
where the model’s design cannot be improved until the model is implemented
in computer code. Only the implemented model, an ‘animated’ entity (Lotka
1925) with a ‘life’ of its own, can show us the logical consequences of the
model’s formulation. Once we implement a model and start analyzing its
results, the modeling process can truly become cyclic: we analyze the con-
sequences of our model assumptions, develop new assumptions, implement
them, generate new consequences, etc.
It is important to enter this modeling cycle soon, especially when we are

dealing with complex systems. Facing the complexity of an ecological system,
we might feel more and more confused, insecure, and lost while designing
a model. As a consequence, we may hesitate and rethink the design again
and again. Neophytes in modeling often get trapped in this way, but they
must realize that the very reason to develop a simulation model is that we
are not, by any means, able to understand the problem merely by reasoning
because it is too complicated. Therefore, an important heuristic for breaking
this psychological barrier is to start with a ridiculously oversimplified model,
called a ‘null model’ (Haefner 1996). The null model might be stripped of
virtually all the complexity that confuses us: we might make all individuals
the same, make the environment homogeneous and constant, let the individ-
uals be stupid, etc. The purpose of the null model is simply to get started,
to enter the modeling cycle. The null model is much easier to analyze than
the full model. The null model may be even so simple that we can predict
its results: “Of course! What else could have happened with such stupid in-
dividuals?”. The null model is just a trick to get the modeling cycle started
and therefore does not interfere with the heuristic to freeze the design once
we cannot improve the design anymore without implementing the model. It
is always a good idea to first implement and analyze a model which is much
simpler than we expect the final model to be. This is salami tactics: don’t
make steps that are too big while developing a model!
Implementing the model means designing and writing its computer soft-

ware. Before we can do this, we have to decide on the order in which model
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processes occur, i.e. the ‘schedule’. Flow charts are useful for developing and
visualizing the sequence in which model processes are executed (Starfield et
al. 1990; Haefner 1996). However, the order of events in a simulation model
is not necessarily specified entirely by the modeler; events can also be sched-
uled by the model entities themselves (‘event-based’ simulations; Section
5.10).
Many simple ecological models can be implemented in software by novice

programmers (see examples in Starfield et al. 1990). However, even simple
IBMs involve special software challenges. Especially important is that the
software must allow the modeler to observe and conduct experiments on all
parts of an IBM: the software must not only implement the model, it must
also provide a virtual laboratory for experiments on the model. We must be
able to observe individual behavior, patterns over space and time, and other
such results that are unique to IBMs. A second special consideration is that
software errors are especially difficult, yet important, to detect in IBMs. In
Chapter 8 we present detailed recommendations for implementing IBMs (see
also Haefner 1996; Ropella et al. 2002). Here, we simply advise modelers
that the quality and efficiency of the software is of utmost importance to
the quality and efficiency of the modeling project. Without a competent
implementation, models cannot be analyzed and revised effectively and the
modeling cycle will grind to a halt.
The last thing to do in Task 4 is to specify initial values for all variables

and specify values for all parameters. Parameterization is an important
issue, especially for complex models such as IBMs, and is discussed in more
detail in Chapter 9.

2.3.5 Task 5: Analyze, Test, and Revise the Model

Non-modelers often believe that designing a model is the most difficult part
of modeling. However, some sort of model can always be formulated and
implemented rather quickly. The real challenge is building a model that
produces meaningful results. Even experienced modelers need at least ten
times longer to analyze, test, and revise a model than they need to design
and implement the first version.
As with designing models, there are many useful heuristics for analyzing

models in general, and simulation models in particular. In Chapter 9 we
discuss analysis of simulation models extensively. Here we only discuss the
most general heuristic for analyzing models: decide what currency is used to
rank different versions of the model. Analyzing a model means comparing
and ranking different versions, so we need a basis for comparison, a cur-
rency which tells us if we improved the model or not. Of course, the basic
currency is how useful the model is for answering the question for which it
was developed. The model will be useful only if it captures the essentials
of the system that are needed to address the question. But how can we be
sure that it captures these essentials? Somehow we have to learn how much
we can trust the model. Testing models means exactly this: assessing the
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confidence with which we can apply model results to our real system and
problem. The only way to assess this confidence is to evaluate the extent to
which the model behaves in the same way, and has the same properties, as
the real system. ‘Pattern-oriented modeling’, explained in the next chapter,
is a formal way of making this evaluation.
The purpose of analyzing and testing a model is to improve it. Improving a

model may include simplifying it by excluding elements that turn out not to
be essential, adjusting its resolution when elements turn out to be described
too coarsely (or too finely), modifying its representation of processes or its
structures, making it better at reproducing observations, making it easier to
understand, and making it more predictive. Therefore, analyzing the model
can lead to cycling back through tasks 4, 3, and 2; and even to task 1 if the
analysis improves our understanding so much that we can again rephrase
the original question in a more productive way.
However, we cannot stay in this modeling cycle forever. What we there-

fore need is a ‘stopping rule’ (Haefner 1996) defining the point at which
we consider the model good enough. Haefner (1996) recommends that the
stopping rule be specified at the start of the project because this rule has
an influence on model design. For example, it makes a big difference for the
model’s design if the purpose of the model is to predict general trends vs.
predicting specific variables within a standard deviation of not more than,
say, 5%. However, stopping rules, like all other elements of the modeling
process, may change during model development. In the real world, probably
the most important stopping rule is the constraints of time and resources:
most modeling projects stop just because the funding is depleted. But even
this seemingly trivial stopping rule should influence model design: when we
know that we have resources for only two researchers for two years, we should
reject model designs that are obviously too complex to be dealt with in only
2× 2 person-years.

2.3.6 Task 6: Communicate the Model and its Results

When we finally have a model in which we have sufficient confidence and
which provides answers to our original question or problem, we are still not
finished. This book is about scientific modeling, which means that we have
to communicate both model and results to the scientific community, or to
the managers who are going to use our models. Observations, experiments,
findings, insights—all these become scientific only when communicated in
a way that allows others to independently reproduce the observations and
experiments and to achieve the same insights. The same holds for models.
However, IBMs are hard to communicate because they cannot be described
unambiguously with a few equations and parameters. Therefore, all the hard
work of building and analyzing an IBMmakes no contribution to science until
we find a way to communicate our model completely and unambiguously.
We must plan from the start of a project to devote sufficient resources to
the task of communicating the model. In practice this may imply that we
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have to make our model even simpler—that we stop the cycle of model
design and analysis even earlier so we have time for communication; and
that we use tools for implementing and analyzing the model that facilitate
communication, such as software platforms that are widely used and provide
visual output. Communicating models and their results is no less important
than developing and analyzing models. We therefore devoted Chapter 10 to
this issue.

2.4 SUMMARY AND DISCUSSION

This chapter provides guidance on the entire modeling process. The guid-
ance has three main elements: the fundamental understanding that a model
is a purposeful representation, a list of powerful yet versatile model design
heuristics, and a description of the general modeling cycle as six tasks. Fol-
lowing these general guidelines can make individual-based modeling more
efficient and coherent than it typically has been.
The historic inefficiency and incoherence of many IBMs is not to be blamed

on the IBMs’ developers. These problems reflect an important gap in how we
educate ecologists, conservation biologists, natural resource managers, and
biologists in general. Few universities provide modeling courses at a level
as basic as this chapter. Most textbooks on theoretical ecology focus on
models but fail to address the process of modeling; and confine themselves
to analytical models, not simulation models. To our knowledge, the books
of Starfield et al. (1990), Starfield and Bleloch (1986), and Haefner (1996)
are the only textbooks in biology, ecology, and natural resource management
which really introduce the modeling process and which partly or completely
(Haefner 1996) focus on simulation models. Computer simulation is an ex-
tremely powerful new tool for scientists, including biologists (Casti 1998).
The modeling and software skills needed to do simulation well could be just
as important as calculus and statistics, yet are rarely taught to biologists.
The most important general guidelines presented in this chapter are that:

• Modeling is problem-solving under constraints.
• A model is a purposeful representation.
• Modeling includes several tasks which must be cycled through repeat-
edly.

• Models should be simplified to the threshold of pain, at least initially.
• Parameterizing, analyzing, and communicating models is at least as
important as designing the models, especially for simulation models.

But do these guidelines really apply to all kinds of models? Scientists
may refer to completely different things when they talk of ‘models’, and
many different categories of models have been labeled: tactical and strategic
models (Holling 1966; May 1973); descriptive, complex systems, and concep-
tual models (Wissel 1989); predictive, explanatory, and prescriptive models
(Casti 1998); minimal and synthetic models (Roughgarden et al. 1996), to
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name but a few of the categories identified in the literature (see also Section
11.2). The differences among all these model types are due to the different
purposes models can serve, but are not a reflection of differences in the basic
modeling process.
The main purposes of models in science are description, explanation (also

referred to as understanding), and prediction. The criteria for telling good
models from bad depend on the model type, which is determined by model
purpose. Models which provide good explanations may fail completely in
prediction (Darwin’s theory of natural selection being an example; Casti
1998); models almost perfect in prediction may fail in explanation (e.g., the
Ptolemaic model of planetary movement; Casti 1998); and models can be
good in both explanation and prediction, as is Newton’s famous F=ma.
However, there is no fundamental difference in the modeling process behind
all these different models: they all originated from a specific question about
a real system, then working hypotheses about essential processes were for-
mulated, essential variables and parameters specified, and—if possible—the
model implemented and analyzed. Likewise, classical ecological models and
IBMs are different not because they originate from different modeling pro-
cesses but because they are based on fundamentally different hypotheses of
what elements of the real system need to be represented in a model.
Now, if everyone developing IBMs follows the general guidelines provided

in this chapter, will IBMs become as effective and coherent as they could be?
Not necessarily. The reason is that computer models are less constrained
technically than mental or mathematical models. Even if we try hard to
limit the complexity of an IBM, its design can still be complex compared
to those of classical models. What we need are additional guidelines for
coping with the complexity of bottom-up simulation models and IBMs. In
the next chapter we will introduce a strategy—pattern-oriented modeling—
which supplements the guidelines in this chapter for organizing IBM projects
and designing IBMs. The implementation, analysis, testing, and communi-
cation phases of modeling are also more difficult for simulation models and
IBMs. Figure 2.1 is an overview of the general modeling cycle described
in this chapter that also provides a roadmap of the following chapters that
focus on each part of this cycle.



g-r May 17, 2004

Chapter Three

Pattern-oriented Modeling

A change without a pattern is beyond science.

Boris Zeide, 1991

3.1 INTRODUCTION

Models of complex systems should be neither too simple nor too complex if
they are to be useful. Complexity in a model causes many difficulties, yet
models that are too simple cannot explain much. To find the right level of
complexity, we rely on the principle of parsimony, or “Occam’s razor”: if
we have two models that both explain a phenomenon, we should stick to
the simpler one. However, we must be careful to use Occam’s razor appro-
priately: the simpler model should be chosen only if it really explains the
phenomenon! With IBMs the phenomenon we want to explain is the mutual
relationship between the behavior of individuals and ecological systems. If a
model is too simple, for example by ignoring individuals or their variability,
we may not to be able to explain this mutual relationship. Albert Einstein
famously re-stated the principle of parsimony as “things should be made as
simple as possible, but not simpler”. To modelers, Einstein’s statement is a
compelling summary of what we try to do.
The tradeoff between the difficulties caused by complicated models and the

need to explain complex systems means that with bottom-up models such as
IBMs the relationship between a model’s payoff and complexity no longer is
monotonic and negative (as assumed for classical models), but hump-shaped
(Figure 3.1). There is a zone of intermediate complexity where the payoff is
high. This zone might be called the ‘Medawar zone’, because Peter Medawar
described a similar relationship between the difficulty of a scientific problem
and its payoff (Loehle 1990). But how do we design models so that they end
up in the Medawar zone? How can we find the ‘right’ level of detail – decide
which aspects of a real ecological system should be included in a model and
which should be ignored?
Before we can find the complexity that maximizes an IBM’s payoff, we

must ask what determines the payoff of a model. When we use IBMs for
ecology, we are trying to learn something about the real world, not just
about the properties of virtual worlds in the computer. Therefore, appro-
priate criteria for deciding on a model’s structure are those which allow us
to test the model, i.e. to understand the IBM and to compare it to observed
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Figure 3.1 A model’s payoff—how much we can learn from it—versus its complex-
ity. For IBMs (humped curve), a zone of intermediate complexity—the
“Medawar zone” (named after Peter Medawar; Loehle 1990)—exists
where payoff is maximized. For analytical models of classical theoret-
ical ecology (straight line), payoff is high only for very simple models
and then declines continuously with complexity. This unequivocally
negative effect of complexity is often—erroneously—assumed for IBMs
and other bottom-up simulation models.

phenomena of the real world. An IBM’s payoff is thus determined to a large
degree by its testability (Grimm 1994). To develop IBMs which end up in
the Medawar zone, we should therefore think about how we can make the
models testable in the most productive way.
The way to make IBMs testable in a productive way is obvious yet un-

derused in ecological modeling: models should be designed so that their
properties and dynamics can be compared to patterns observed in real sys-
tems. If an IBM is too simple, realistic patterns will not emerge from it; if
the model is too complex, we will not be able to understand how patterns
emerge from it. Patterns thus provide the criteria for optimizing a model’s
complexity. Modeling which uses real patterns for designing, testing, and
parameterizing models is referred to as ‘pattern-oriented modeling’ (POM;
Grimm 1994; Grimm et al. 1996; Grimm and Berger 2003; Wiegand et al.
2003). POM is useful for any kind of modeling, not just individual-based.
The fundamental idea of this chapter, that the structure of models be de-

termined by the need to test the models against patterns, does not conflict
with the basic guidance of Chapter 2 that the structure of a model is deter-
mined by its purpose. Whatever scientific or management problem we want
to solve with a model, the credibility and, therefore, the testability of the
model will be important. Moreover, in science the patterns themselves are
often the problems to be solved: the purpose of a model or theory is often
to explain specific patterns.
In fact, science abounds with examples of patterns that determined the
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structure of models, not just analytical or simulation models but also our
general understanding and theories of how important systems work. It is
very worthwhile to scan introductory textbooks and historical accounts of
scientific discovery for patterns and how they have been detected and used
in physics, chemistry, biochemistry, genetics, geosciences, etc. For exam-
ple, biologists are familiar with how the double-helix structure of the DNA
was discovered by Watson and Crick; the identification and explanation of
patterns (e.g., in specific X-ray photographs, and in the general behavior
of nucleic acids and crystals) were critical to this discovery (Watson 1968).
The more aware we are of how patterns determined the structure of succesful
theories and models, the more likely it is that we detect and use patterns
successfully ourselves.
In the following sections we discuss the significance of patterns for mod-

eling and describe the four main tasks of POM within the modeling cycle
describe in Chapter 2. The remainder of the book, in particular Chapter 6,
will contain numerous examples of POM and the use of patterns.

3.2 WHY PATTERNS, AND WHAT ARE PATTERNS?

A pattern is any display of order above random variation. The presence
of a pattern indicates the presence of specific mechanisms that cause the
pattern. Patterns that are defining characteristics of a system are likely to
be indicators of essential underlying processes and structures; non-essential
properties are unlikely to leave clearly identifiable traces in the system. Pat-
terns thus provide information on the essential properties of a system, but
this information is available only in a ‘coded’ form. The purpose of POM is
to ‘decode’ this information (Wiegand et al. 2003).
The attempt to identify patterns, then decode them to reveal the essential

properties of a system, is the basic research program of any science and of
natural sciences in particular. Physics and other natural sciences provide
numerous examples of patterns being the key to understanding the essence
of systems: classical mechanics (Kepler’s laws), quantum mechanics (atomic
spectra), cosmology (the red shift), molecular genetics (Chargaff’s rule),
and paleontology (mass extinctions and the iridium layer at the Cretaceous
boundary).
In ecology, however, this basic pattern-oriented research program seems

to be less acknowledged (but see, e.g., Watt 1947; Levin 1992). Even when
patterns have been addressed using ecological models, the pattern-oriented
approach has usually not been explicitly used as a modeling strategy, so its
full potential has not been realized. The well-known population cycles of
snowshoe hares and lynx in Canada provide an instructive example. These
cycles are certainly a pattern, but it is relatively easy to reproduce cycles
with many kinds of mechanisms (Czárán 1998). Therefore, a number of
different models could explain the cycle pattern—this pattern by itself pro-
vided no ability to falsify any of the alternative models, so we could not
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infer which model best explained the cycles. Recently, however, another
pattern in the hare-lynx cycles was also considered: the period length of the
cycles is almost constant, whereas the amplitude of the peaks varies chaot-
ically (Blasius et al. 1999). This second pattern could only be reproduced
by a model with a specific structure—a food chain of vegetation, hare, and
lynx—and a previously ignored mechanism: in times of low hare abundance
the lynx may switch to other prey (presumably squirrels). Considering both
patterns eliminated many of the competing models and greatly reduced the
uncertainty in our understanding of the hare-lynx cycles.
This example is particularly revealing because of the frequent complaint

that there are so few clear patterns in ecology. Two or more seemingly
weak patterns (constant period and chaotic amplitude) may reveal more of
the essence of a system than one single strong pattern because it is usually
harder to reproduce multiple patterns simultaneously than to reproduce just
one pattern. Multiple patterns often arise from different essential properties
of a system, so addressing several patterns is a more powerful way to identify
models that capture the full essence of a system (and to reject models that
do not; see ‘multi-criteria assessment’ of models; Reynolds and Ford 1999;
Ford 2000).
Unfortunately, empirical ecologists often use experimental designs that do

not address patterns and therefore often have relatively little value for mod-
eling. Field and laboratory experiments commonly use factorial designs that
elegantly answer a few specific questions, but rarely provide the broad pat-
terns of system response that help build and test models (individual-based or
otherwise) that elicit underlying processes. Suter (1996) provides an exam-
ple from ecological risk assessment: field studies often use replicate samples
to determine whether some ecological indicator is statistically different at
a contaminated site, compared to an uncontaminated site. Studies that in-
stead look for patterns in how ecological indicators vary along gradients in
contaminant concentration are much more likely to be useful for developing
and testing models (and for supporting management decisions).

3.3 THE TASKS OF PATTERN-ORIENTED MODELING

The term ‘pattern-oriented modeling’ is admittedly redundant because mod-
eling should be pattern-oriented anyway. But many classical ecological mod-
els are not pattern-oriented but more ‘free-style’: simple, unspecific, and not
easily tested (Grimm 1994). Such free-style models are presented in many
ecology textbooks and thus narrow the ecologists’ view of what constitutes
a useful model. The term ‘pattern-oriented’ was introduced to remind us of
the basic research program of science: ascertaining the essential properties
of a system by decoding its patterns. The term POM is similar in purpose to
‘evidence-based medicine’, a term introduced in medicine to remind doctors
of the obvious, that their therapy should be based on evidence instead of
tradition, gut feeling, or whatever (Gigerenzer 2002).
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POM as described below is not genuinely new. Many modelers apply this
method intuitively (e.g. Jeltsch 1992; Jeltsch et al. 1992; Jeltsch and Wissel
1992, 1994; Wood 1994; Ratz 1995; Johst and Brandl 1997; Lewellen and
Vessey 1998; Blasius et al. 1999; Casagrandi and Gatto 1999; Doak and
Morris 1999; Bjørnstad et al. 1999; Briggs et al. 2000; Claessen et al. 2000;
Elliot at al. 2000; Turchin et al. 2000; Ellner et al. 2001; Fromentin et
al. 2001). There have also been attempts to describe the usage of patterns
as a general strategy (e.g. Kendall et al. 1999; Turchin 2003), but most
of this work is concerned with selecting the most appropriate analytical
model to reproduce a population time series. In contrast, POM as it is
presented here encompasses modeling in general and in particular bottom-up
models such as IBMs. DeAngelis and Mooij (2003) independently developed
a notion of modeling which is very similar to POM, which they refer to as
‘mechanistically rich’ modeling.
What is new about POM, as we describe it here, is making the use of

patterns explicit and integral to a general protocol of ecological modeling.
The main feature of POM is the use of multiple patterns to develop and test
models and thereby identify essential elements of ecological systems. POM
is not different from the general modeling cycle described in Chapter 2, but
augments this cycle. Figure 2.1 indicates where the following four tasks,
specific to POM, fit into the modeling cycle.

3.3.1 Identify Multiple Patterns

The first POM task is to identify patterns to use in structuring and testing
a model. Of primary importance are patterns that the model is designed
to explain. When a model is designed to explain specific patterns, then the
whole modeling project is easier because it has a specific target to constrain
and guide model design and testing (Thulke et al. 1999). However, many
models (including many IBMs) are designed to address a problem that is not
captured in a well-known pattern. Instead, for example, we might design an
IBM to predict a population’s response to some alteration that has never
been observed: how would a beech forest’s age structure change if different
harvest practices are used? How would a river fish population respond to
major changes in the magnitude and variability of flow?
Identifying the patterns against which a model will be tested is also a very

important part of this task, and these patterns can be just as important to
a model’s success as identifying the problem or pattern a model addresses.
The confidence we develop in a model depends on how we test it against
these patterns. Models used to predict system response to unobserved con-
ditions must especially be tested thoroughly to develop confidence in the
mechanisms underlying system responses. Further, the diversity of patterns
used to test an IBM determines what structures and processes must be in
the model. Patterns that all emerge from the same structures and processes
might be successfully reproduced by a simple IBM, but a variety of patterns
emerging from many structures and processes can only be reproduced by a
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more complex but structurally realistic model.
In selecting the patterns used to structure and then test and parameter-

ize an IBM, it is important not to focus only on ‘strong’ patterns. Strong
patterns are strikingly different from random variation and therefore seem
to be strong indicators of underlying processes. However, as the hare-lynx
population cycle example shows, a single strong pattern may be not suffi-
cient to eliminate competing explanations and identify the most appropriate
model structure. A combination of several seemingly ‘weak’ patterns can be
more powerful for finding good model designs (Railsback 2001b; Railsback
and Harvey 2002): each pattern may eliminate a competing model design so
the combination of multiple patterns leaves only one clear way to proceed.
The power of multiple kinds of ‘weak’ information is widely known. For
example, it is virtually impossible to identify a person if we know only their
age, but as we add information such as their sex, profession, birth place,
etc., we rapidly eliminate alternatives and focus on the right person. In the
subsequent tasks of POM, we use each pattern as a test that can reject false
hypotheses for how some part of an IBM should be represented. A variety
of simple or weak patterns can provide a rapid and easy way to filter out
unuseful approaches and identify useful model designs.
Not only system-level patterns, but also patterns at the bottom level—

individual behavior, local dynamics—are both powerful and necessary in
POM. An IBM may reproduce system-level patterns well, but if the behav-
ior of the individuals is unrealistic then the IBM is not yet useful. This
situation has in fact been quite common in IBMs. A good example is a
very simple IBM of salmon migration down a large river-reservoir system
that one of us helped develop. With calibration, this IBM could reproduce
observed population-level patterns of migration timing; however, examining
the individuals found that calibrated swimming speeds were far faster than
real salmon can swim. Only the examination of individual-level patterns
revealed that the IBM’s structure was inadequate. Like system-level pat-
terns, individual-level patterns used to structure and test an IBM must not
be hard-wired into the model but must emerge from the interaction of the
individuals with each other and their environment (Section 5.2).
A caveat with identifying multiple patterns is that the patterns need to

be compatible with each other in the processes they emerge from and the
scales at which they occur. Patterns caused by processes not important to
a model’s objectives will not be useful for testing the model (or, worse, can
distract modelers from the task at hand and tempt them to add unnecessary
complexity to the model). Likewise, patterns occurring at spatial or tempo-
ral resolutions incompatible with a model will not be useful—we cannot test
an IBM that uses daily time steps and 100 meter grid cells by how well it
reproduces patterns of individual interactions that occur minute to minute
over a few meters.
The following discussions of how patterns are used will further help readers

understand how to select patterns. Selecting patterns, especially for testing
an IBM, tends to be an iterative process, with new patterns being chosen as
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model design and testing proceeds.

3.3.2 Use Patterns to Design an IBM

In POM, we use patterns along with (or as) the problem the model addresses,
to guide design of the model’s structure, resolution, and processes. This is
the general idea of POM: we decide to use a pattern to guide model design
because we believe the pattern contains information about essential struc-
tures and processes. To reveal this essential information we provide model
structure, resolution, and processes that make it possible for the observed
pattern to emerge. The model must include the state variables through
which the patterns are expressed and the processes that cause the patterns
to emerge, and must use spatial and temporal scales over which the patterns
are detected.
Patterns can guide model structure by showing us what kinds of object

or entity need to be in an IBM and what state variables are needed. For
example, in designing the BEFORE beech forest IBM (Section 6.8.3), the
modelers identified patterns in vertical structure (single- vs. multi-layered
canopies) as characteristic of real forests. This pattern suggested that the
model should not only represent the horizontal structure of natural beech
forests, as in earlier models (Wissel 1992b), but also the vertical structure
(Neuert 1999; Rademacher et al. 2004). Therefore, the modelers designed a
simple vertical structure with trees grouped into four different height classes.
This design does not hard-wire the vertical structure of a beech forest into the
model, but allows the modelers to test the IBM by whether typical vertical
structures emerge or not. Other examples of how patterns determine and
constrain model structure include:

• Using spatial patterns requires the model to be spatially explicit (e.g.,
Levin 1992).

• Temporal patterns (including constancy) in population age structure
require the model to represent individual age and an age-structured
population.

• Patterns in how life history strategies vary among biotic or abiotic
environments require the IBM to represent the individuals’ life cycle
(Uchmański and Grimm 1996).

• In benthic marine systems, patterns in larval settlement with elevation
require representation of topography (Grimm et al. 1999a).

• Patterns in how habitat selection depends on growth potential and mor-
tality risk require that the IBM represent how both growth and mortal-
ity risk vary over space and time (Railsback and Harvey 2002).

Patterns guide the selection of a model’s spatial and temporal resolution
because the model’s resolution must be compatible with the resolutions over
which the pattern is detected and over which the processes causing the pat-
tern act. For example, the IBM built to explain fish schooling patterns
(Section 6.2.2) needs very fine spatial and temporal grains because the pro-
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cesses that cause schooling happen very rapidly and over distances of a few
centimeters. The spatial extent of this IBM must be large enough to include
the whole fish school and the distance it moves while the schooling patterns
of interest emerge. The temporal extent must also be long enough for the
schooling patterns to fully emerge. In strong contrast, the beech forest model
(Section 6.8.3) was designed to explain patterns of forest dynamics that take
place over long time periods and large distances, so the model was designed
with a large spatial extent, long time steps (15 years), and long temporal
extent (with model runs of thousand years and more). However, these same
patterns are caused by processes (interactions among individual trees) that
occur over small distances. These patterns determined that the IBM needed
a relatively fine spatial grain of a few meters.
Once an IBM’s general structure and resolution have been determined,

patterns are then used to determine what processes need to be represented.
Of course we cannot know, simply by looking at patterns, what processes
caused them to arise; yet patterns can provide strong clues that help us
start deciding what processes need to be represented in an IBM and how.
We can examine the observed patterns that we want our IBM to explain or
be tested against, and use our judgement (and as much knowledge of the
real system as we can accumulate!) to make a good guess at the processes
causing the patterns. We can, for example, determine what environmen-
tal variables or individual interactions appear responsible for the patterns.
What individual- or system-level responses characterize the pattern? How
do the environmental variables or interactions at the bottom of the pattern
appear to be linked to the responses that characterize the pattern?
The herring migration case study (Section 6.2.3) provides a good example

of how a pattern can point to underlying processes. In this case, the IBM was
designed to explain an observed pattern with two components. First, the ob-
served behavior was a sudden change in where a herring school overwinters-
usually the school overwinters in the same location year after year, but in
occasional years the location changes. The second component of the pat-
tern was the observation that these changes in overwintering location occur
in years when the experienced, adult migrants made up an exceptionally
low fraction of the whole school. Thinking about how the observed change
in an individual’s biological environment—fewer experienced migrants as
neighbors in the school—might be a cause for the system-level response—
a new migration destination—immediately suggested to the modelers (who
were already familiar with the theory that schooling fish simply follow their
neighbors; Huth and Wissel 1992) a process causing the pattern.
Telling us what we do not need to include in an IBM is a crucial benefit

of POM. IBMs probably suffer more often from too many variables and
processes than from too few, and patterns provide criteria for leaving things
out. If variables or processes are not necessary to reproduce the patterns of
interest, they can be left out. Even better, when we use explaining patterns
as a filter for putting things into an IBM, then the model will automatically
be as simple as it can be without being too simple (Wiegand et al. 2003). In
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contrast, using “realism” as a guide for model structure provides no criteria
for what can be left out.
POM is valuable for suggesting model structures and processes, but simply

suggesting hypotheses for a model’s design is not enough. We want to test
these hypotheses, and we need to test how we represent processes in an IBM;
so we move on to the next task.

3.3.3 Use Patterns in Model Analysis and Testing

As we discussed in Chapter 2, model testing and analysis requires a currency
that we can use to compare alternative model versions. What measure of
an IBM’s “goodness” can we use to compare versions and identify the best?
POM provides such a currency: we can evaluate alternative models by how
well they reproduce the patterns we have observed in real systems.
Pattern-oriented testing and analysis of an IBM can proceed by identify-

ing alternative versions of the IBM and then seeing how well each version
reproduces the patterns selected in Task 1 for this purpose. Alternative ver-
sions may differ by using different representations of an important process,
for example different rules for how the individuals make some key decision
(see the next chapter on “IBE theory”). Or alternative versions may differ
only in using different parameter values, or in having fundamentally different
structures.
At this point the benefits of using multiple patterns for testing are very ap-

parent. We should be very happy if each of the alternative models reproduces
some of the patterns but only one model reproduces all of the patterns: then
we can be confident that we not only have identified a useful model but have
also found a powerful way to falsify hypothesized models. However, if none
of the model versions can reproduce all the patterns well (and we remain
confident in the realism and appropriateness of the patterns), then we must
conclude that the IBM is not capturing the system’s essential characteristics
that are captured by the patterns. If several alternative models reproduce
all the patterns, we can (if we want) search for new patterns that have the
power to falsify one of the models; this search may require additional study
of the system being modeled.
Once we find a model version that adequately reproduces all the observed

patterns, we can analyze the model in more detail. This analysis (the subject
of Chapter 9) addresses the following kinds of questions. Which processes
and structures of the model are responsible for the patterns? Can the model
be simplified while still reproducing the patterns (sections 9.4.4, 11.4.2)?
And, of course, we must still tackle the original problem that the model was
intended to solve, perhaps using the same pattern-oriented approach. These
kinds of analysis can be informal or can be conducted as inferential hypoth-
esis testing with the patterns (and, sometimes, statistical analyses such as
those described by Hilborn and Mangel 1997) used to exclude inadequate
models.
The use of patterns to test and analyze an IBM has implication for the
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model’s software. The software, right from the beginning, needs to provide
efficient tools for observing and comparing patterns. Because human per-
ception is mainly visual, visual model output—graphical interfaces—often
facilitates pattern comparison (Grimm 2002; Mullon et al. 2003; chapters 9
and 10).

3.3.4 Use Patterns for Parameterization

Finding appropriate parameter values is almost always an issue in ecological
modeling. Model output can depend both quantitatively and qualitatively on
parameter values, but usually we have precise values for few parameters. For
other parameters we may be able to specify biologically meaningful ranges,
while some parameter values may be completely unknown. If values of too
many parameters are too uncertain, the model’s output may be too uncertain
to allow the model to be tested or to answer the original question it was
intended for.
With POM, patterns can be used to determine parameter values indirectly

(Wiegand et al. 2003; Wiegand et al. 2004a, b). This is similar to the
traditional method of calibration where a parameter is tuned until model
output shows some desired behavior. The new aspect of calibration with
POM is that not only one, but several parameters can be simultaneously
determined by calibration, not despite but because of the model’s complexity.
The traditional view on model complexity is that it has only disadvantages,
but if the model was constructed following the POM approach, it is likely
to be structurally realistic so that its richness in structure and mechanisms
can be exploited to estimate parameter values. If a model is capable of
reproducing multiple patterns simultaneously, then parameter values can be
estimated by excluding values that produce model output not matching the
observed patterns. For example, Hanski (1994, 1999; Wiegand et al. 2003)
uses this kind of indirect parameterization to find values of parameters of real
metapopulations. His simple but structurally realistic metapopulation model
(the ‘Incidence Function Model’) includes the position and size of habitat
patches and a simple relationship between patch size and local extinction
risk. Parameters for this relation are estimated by fitting model output to
empirical presence-absence data from the real network of patches. Similarly,
Wiegand et al. (1998) used specific patterns in the census time series of brown
bears (including information about family structure) to narrow down the
uncertainty in a model’s demographic parameters. (This pattern-oriented
parameterization is well-known in other disciplines as “inverse modeling”;
e.g. Burnham and Anderson 1998.) We discuss pattern-oriented, indirect
parameterization more thoroughly in Chapter 9.
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3.4 DISCUSSION

In this chapter we describe what pattern-oriented ecological modeling is, why
it is useful, and how it can be used within the modeling cycle. Patterns can
guide how we design a model’s structure and resolution, provide a currency
for testing and comparing versions of a model, and allow parameters to
be determined indirectly. Still, this discussion does not prove that using
patterns helps us find the range of model complexity where the model’s
payoff is greatest. To that end, we present in Chapter 6 several studies where
the pattern-oriented approach lead to particularly successful IBMs. A great
part of this success was that the pattern-oriented IBMs turned out to be
‘structurally realistic’, which means they succeeded in capturing the essence
of an ecological system so well that they could produce testable, independent,
predictions of system properties that were not even considered during the
IBM’s development and testing. When such independent predictions can be
made and validated, we have even greater confidence that the model captures
the system properties underlying the patterns we built the model to explain
(Section 9.9).
Of course, POM has its limitations and problems. First of all, patterns

must be chosen carefully. Of primary concern is making sure the patterns
chosen to guide model design and testing are themselves realistic. The hu-
man mind is inclined to perceive patterns all the time, even if they do not
exist, and in field biology and natural history myths can be common. It
is not unusual for patterns (e.g., “Species A is more fond of habitat type
X than is Species B”) to be widely believed and sometimes reported in
the literature even though poorly supported by evidence. Especially com-
mon are patterns that may emerge from site-specific conditions and then be
misinterpreted as universal. (IBMs can be great tools for exposing such mis-
interpretations.) DeAngelis and Mooij (2003) discuss an example in which a
flawed census time series was used as a pattern for parameterization. On the
other hand, there may be patterns that are generally realistic and very use-
ful despite occasional exceptions. The modeler must carefully scrutinize the
literature supporting patterns and be wary of experimental design artifacts
or site-specific conditions that reduce a pattern’s value.
A second limitation is that we must never naively infer that the mecha-

nisms producing a pattern in a model must be the mechanisms at work in
the real system. The pattern produced by a model may be correct while the
model’s mechanisms are completely wrong. The most prominent example is
the Ptolemaic model of planetary movement, which reproduced the planet’s
trajectories in the sky well while assuming they revolve around the earth
(Casti 1998). In ecology, multiple models exist to explain such patterns as
cyclic population dynamics, the species-area relationship of MacArthur and
Wilson (1967), and the linearity and slope of the self-thinning trajectory of
plant monocultures. Obviously, several different models for the same pattern
cannot all be true—most of them must be partly, or even completely, wrong.
These two potential problems are additional reasons why it is valuable
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to (1) build an IBM around a specific, well-understood pattern or problem,
and (2) at least start the pattern-oriented analysis of an IBM using a variety
of simple, well-documented, and well-understood patterns. Care should be
taken to search for many patterns and use them gradually, pattern by pat-
tern, to increase confidence in the model. The highest degree of confidence
is provided by successful independent predictions, which indicate that the
model is structurally realistic. But even after successfully testing a model’s
independent predictions, we must remember that the model is still just a
model and will never be able to represent all aspects of the real system.
Modeling and models have a momentum of their own (Grimm 1994), and
models that are initially successful pose the risk that modelers will stop
distinguishing sufficiently between the real system and their model. (The
ethologist Konrad Lorenz recommended that a good exercise for scientists
is, every day before breakfast, to discard a pet hypothesis.)
A third potential limitation of POM, discussed extensively in succeeding

chapters, is the question of emergence: do the patterns in the IBM really
emerge from the model’s structure or are they accidentally imposed : hard-
wired into the model by giving individuals behaviors that force the pattern to
arise? A good way to test whether patterns have been imposed on an IBM is
to replace rules for individual behavior with ones that are obviously absurd
and see if the patterns are still produced. For example, the beech forest
model BEFORE (Section 6.8.3) could be tested by assuming a young tree
dies whenever it is shaded at all, or never dies but waits forever to grow into
a canopy opening. If the forest model still produced realistic patterns with
these absurd rules implemented, then the patterns probably were somehow
hard-wired into the model structure.
POM is certainly not a panacea for ecological modeling in general or for

bottom-up modeling in particular. It is also not a simple step-by-step recipe,
but a general approach to be adapted to each problem and model. Neverthe-
less, POM clearly helps us avoid the pitfalls of both “free-style” models that
lack testability and relevance to real systems, and overly-detailed IBMs that
are too complex to understand. Likewise, thinking about POM can help
empirical ecologists develop study designs that, in combination with mod-
els, are more likely to improve our understanding of ecological mechanisms.
Using POM is, after all, simply to follow the general research approach of all
science: to systematically search for the mechanisms underlying the patterns
we observe.



g-r May 17, 2004



g-r May 17, 2004

PART 2

Individual-based Ecology



g-r May 17, 2004



g-r May 17, 2004

Chapter Four

Theory in Individual-based Ecology

The most important challenge for ecologists remains to under-
stand the linkages between what is going on at the level of the
physiology and behavior of individual organisms and emergent
properties such as the productivity and resiliency of ecosystems.

Simon Levin, 1999

4.1 INTRODUCTION

In Chapter 1 we identified the complexity of IBMs as a major challenge to
their efficient and coherent use. Therefore, in chapters 2 and 3 we presented
general modeling guidelines and pattern-oriented modeling as ways to help
modelers end up in the “Medawar zone” of complexity that provides a high
payoff (Figure 3.1). However, these techniques are not sufficient to provide
coherence to the use of IBMs. By coherence we mean that different IBMs
are consistent with each other in some important, general, ways. Without
coherence, it is difficult to compare the structure of different IBMs and to
integrate the insights produced by individual IBMs into a general body of
knowledge. Consistency and coherence among models, is—in any science—
the role of theory. Without coherence we will have no theory, and without
theory IBMs will lack coherence.
A key conclusion of Grimm’s (1999) review of over 50 early IBMs was that

the insights gained from individual IBMs could not easily be integrated into a
general understanding of how either ecosystems or IBMs work. An important
reason for this difficulty was discussed in Chapter 2: the structure of a model
is largely determined by its purpose. If different IBMs have different purposes
and no common underlying theme, they cannot be coherent. Individual-
based modeling has lacked a master plan or theoretical framework that we
can use to relate different IBMs to each other, develop general knowledge,
and reduce the need to reinvent, in each new IBM, how we model individuals.
Now that we can take advantage of the experience provided by pioneering

IBMs and new approaches to theory in Complex Adaptive Systems (CAS;
Section 5.1), we are in a much better position to establish an approach to
theory for individual-based ecology (IBE) and IBMs. The theoretical frame-
work we propose in this book formulates theories of the adaptive behaviors
of individuals and tests the theories by seeing how well they reproduce, in
an IBM, patterns observed at the system level. These theories are in one
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sense just models or hypotheses, but calling them theories emphasizes that
they are the basic, underlying elements of IBE: models of individual be-
havior that explain system dynamics. These models are ‘theories’ because
they, after maturation, can be re-used in different IBMs to explain a broad
range of phenomena. This concept of theory is widely used in other sciences:
when engineers want to predict how a complex electronic circuit behaves, or
how a large building responds to novel loads, they build models based on
simple theory of how individual elements of these systems—transistors and
resistors; steel beams—behave and interact. While we use the word ‘theo-
ries’ for models of individual behavior, we use the term ‘IBE theory’ for the
whole body of theories in IBE (including theories about ecological systems
produced via IBE) and the process by which we develop theories. (A fur-
ther note on terminology: we use “trait” as a general term for a model of
something individuals do in an IBM. A theory is a special kind of trait.)
IBE theory specifically addresses the challenge laid out by Simon Levin in

this chapter’s motto. In IBE we model system properties as emerging from
the traits of individuals. Therefore, IBE theory must provide a means of ex-
plaining the links between individual traits and system behavior. However,
we are not merely interested in seeing what system patterns emerge from
some specific individual trait. Instead, we want to identify and understand
the individual traits that give rise to the specific system behaviors we are
interested in. Conventional ecological theory does not address these links:
the classical theory of population ecology includes models built only at the
population or community level, and the theory of behavioral ecology typ-
ically addresses only the individual level and not how individual behavior
explains emergent system behavior. In IBE, therefore, we need to develop
new theory that links the individual and higher levels. The lack of such the-
ory has been a great obstacle both to understanding ecosystem complexity
and to the practice of using IBMs.
In this chapter we propose a process for developing theory of how individ-

ual traits explain system behaviors. The goal of the process is to find the-
ories of how individuals interact with each other and the environment that
have been tested and shown to produce, in IBMs, useful representations of
population-level behavior. These theories will eventually fill a toolbox that
can be used to assemble IBMs for theoretical and applied studies. Near the
end of this chapter we describe an example of IBE theory development using
the individual-based, pattern-oriented analysis process we advocate.

4.2 BASIS FOR THEORY IN IBE

The approach to theory we present in this chapter is a direct adaptation of
the conventional scientific method attributed to Francis Bacon: the cycle of
proposing hypotheses, devising and conducting experiments with the power
to distinguish the most valid hypotheses, and repeating the cycle with refined
hypotheses and more powerful experiments. Platt (1964) argued that this
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cycle is critical for propelling science forward. This conventional scientific
method has previously been adapted to the problem of understanding the
relationship between individual traits and system behavior in complex sys-
tems. Auyang (1998) outlines a general approach, referred to as “synthetic
microanalysis”, for developing theory in such systems. Auyang’s approach,
adapted to our ecological context, includes devising theories for the traits of
individuals, representing these theories in an IBM of the system, and test-
ing the theories by how well the IBM then reproduces patterns observed in
nature at the system level. This approach has several characteristics which
clearly distinguish it from other approaches to ecological theory (Auyang
1998).

• Theory is neither holist (system-level) nor reductionist (individual-level).
We do not assume that ecological systems can be understood from only
the system level, but we also do not assume that a system is simply the
sum of its individual parts. Systems have properties of completely dif-
ferent types than the properties of individuals, and theory must explain
these system properties.

• Theory must therefore be multi-level, linking traits of individuals to
properties of the system. We are not interested in understanding all
aspects of individual behavior but instead are interested in developing
models of individuals that explain important system properties.

• Observational and experimental science at both the individual and sys-
tem level is the basis of theory development. Such empirical science is
important both for discovering the phenomena driving the system and
for testing theories.

The merits of a hypothesis-testing approach to ecological theory have been
debated quite famously. In particular are objections to the notion of falsify-
ing hypotheses against data: (1) our data are often highly uncertain or influ-
enced by preconceived ideas of theory, and (2) all our theories are wrong at
some level, so rejecting wrong theories leaves us with nothing (Chitty 1996;
Fagerström 1987; chapter 1 of Turchin 2003). Our approach accommodates
these realities, first by using a wide range of evidence to evaluate alternative
theories, not rigid tests against single data sets; and by evaluating theories
not by whether they are “wrong” but by how useful they are for solving
specific problems in specific contexts.

4.3 GOALS OF IBE THEORY

The process we outline here for developing IBE theory has the goal of pro-
ducing theories with four critical qualities: testability, generality, integration
among levels of ecology, and usefulness in applied ecology.

Testability.—Certainly, ‘minimal’ models (Roughgarden et al. 1996; Sec-
tion 11.2) are important aids for thinking about ecosystems: devising con-
cepts and exploring logical possibilities. But at some stage ecologists want
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to learn something about the real world, not only about our ability to think
about the world. Therefore, the ability to test hypothesized models with
increasing levels of rigor is critical to making progress. For theory to be
testable, hypothesized models must lead to specific predictions and there
must be practical means of testing the predictions with increasing levels of
rigor. The ability to use an IBM as a virtual laboratory for testing theory is
an important advantage of IBE. Whereas population-level ecological models
have often proven difficult to test, IBMs can make many easily tested pre-
dictions at both the individual and population level (Murdoch et al. 1992;
DeAngelis and Mooij 2003). The pattern-oriented process we propose in
this chapter can be a practical and powerful way to compare the validity of
alternative theories: it allows us to test models of individual traits, often
even before the IBM used in testing is fully calibrated to any particular site
or data set.

Generality.—Intuitively, we think of ‘general’ theory as being independent
of specific contexts. Theory in physics is very general in this way, but physics
deals with matter and forces, which are indeed independent of history and
context. Seeking the same sort of generality in ecology has not proven to be
very productive (Grimm 1999; Ghilarov 2001). Organisms are not atoms,
and the ‘forces’ of ecology are not fundamental properties of matter and
space, but emerge from interaction among individuals and their environment.
In ecology, therefore, useful theories are likely to be context-specific and the
search for generality must include the search for the limits of this generality.
Any theory or statement about an ecological system is specific to how we
define the system (Jax et al. 1998) and how we view the system: at which
scales, using which state variables, considering which types of disturbances,
etc. (Levin 1992; Grimm and Wissel 1997).
The quest for general theories at the population and community levels has

often neglected the search for appropriate context. Many ecological theories
at the system level are context-free, for example not considering temporal
or spatial resolution and variability. In contrast, IBE seems to force us to
deal with context because IBE theory focuses on what individuals do: how
they adapt to their situation, an inherently context-specific problem.
The need to address context in IBMs has led some to assume that IBMs are

always specific instead of general, especially that they are highly dependent
on context-specific data instead of being built from general theory. While
many early IBMs have indeed been very specific, the IBE theory development
process is designed to identify general models of individual behavior. The
process helps us find theories that work in many contexts while also (just
as importantly) delineating the contexts in which a theory does and does
not apply. Instead of thinking of general ecological theory as context-free,
we think of theory in IBE as being general when we know it works in many
specific contexts.
The search for general theory of how ecological systems function may be

more productive when we look at how system functions emerge from indi-
vidual traits because, using IBMs, we can test theories in many different
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contexts. Another reason is that complex systems are often much easier to
understand when we consider the individual level. For centuries, astronomers
struggled to understand the apparently complex movement of celestial bod-
ies; but as soon as Newton developed a general model of gravitational in-
teraction between individual bodies it became possible to accurately predict
the motion of complex celestial systems. (Newton’s law of gravity is an ex-
cellent example of a theory that is over-simplified at the individual level yet
extremely useful for modeling systems.) Even though organisms are not as
simple as planets, many kinds of organisms do many similar things (feed,
grow, move, reproduce, etc.) so we can expect—and verify—that some indi-
vidual traits are useful in IBMs of different species and systems. But a more
important reason to expect individual-level theory to be general is that at
the individual level, we have a very firm foundation for modeling behavior:
the theory of evolution. The theory that the genetic traits of organisms have
evolved because they provide fitness is one of the most powerful and least
controversial concepts in biology, and (as we discuss in Chapter 5) can be
directly applied to IBE theory.

Integration Across Levels.—Traditionally, ecology has been conducted at
discrete levels: behavioral ecology focuses on what individuals do, popu-
lation and community ecology address higher levels of organization, and
evolutionary ecology addresses longer time scales and genetic adaptation.
Ecologists are generally aware that these levels are not really separate: pop-
ulation dynamics, for example, are affected both by individual behavior and
community factors such as interspecific competition. Ecological processes
are important drivers of evolution, and evolution can affect community dy-
namics. An important aspect of IBE and its theory is that it links the
various levels of ecology, contributing to the unification of theory promised
by Huston et al. (1988). In the theory development process we describe
below, natural history becomes an important resource in developing and
testing theory, and theories of individual behavior (the realm of behavioral
ecology) are tested and refined specifically to explain phenomena observed
in population, community, and evolutionary ecology.

Usefulness in Applied Ecology.—We believe strongly that both ecological
theory and environmental management benefit when theory development is
closely tied to applied ecology. Obviously, theories that have been tested
and shown valid can contribute to better management of the systems they
address. On the other hand, when theory development proceeds without
being closely tied to real-world applications, there is a risk of theories being
developed for reasons (e.g., mathematical or conceptual elegance) other than
providing models useful for understanding real ecosystems (Suter 1981). An-
other risk when theory development is not tied to management applications
is the temptation to search for instances in nature where a theory appears
valid instead of searching for theories that best explain specific problems.
When we closely link theory to mangement applications, we force our the-
ory to solve specific problems; finding theory that solves specific problems
is a productive path toward finding theory that is general in the sense of
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solving many problems.
IBE theory is intended to be as useful for applied ecology as for basic ecol-

ogy. At the individual level, the distinction between applied and theoretical
ecology is actually hard to make; organisms often exhibit the same adap-
tive behaviors in response to both natural and human-influenced situations.
There are, of course, types of disturbance caused only by man— for example,
pesticide pollution. However, the IBE theory development process can be
used without modification to develop models of how man-made disturbances
affect individuals and ecosystems.

4.4 THEORY STRUCTURE

In this section we describe the general structure of our concept of IBE theory.
Major elements of a body of theory are axioms, theories, and testing (or
proof); we define what these elements are in IBE.

4.4.1 Fundamental Axiom

An axiom is a central assumption underlying a body of theory. Our approach
to theory for IBE has one fundamental axiom: that phenomena occurring
at higher levels of observation (populations, communities) emerge from the
traits of individuals and characteristics of the environment that together de-
termine how individuals interact with each other and their environment. In
other words, IBE theory is based on the assumption that the dynamics of
an ecological system can be modeled usefully by (1) modeling the character-
istics of the system’s environment that affect its individuals, (2) modeling
the traits of the system’s individuals that affect how the individuals interact
with each other and their environment, and (3) simulating these interactions
in an IBM.

4.4.2 Theories

The terms “theory” and “hypothesis” have many different meanings in sci-
ence. In some sciences, hypotheses are not accepted as theories until they
have undergone tests considered sufficient to exclude all alternative hypothe-
ses, or until their ability to make accurate independent predictions is well-
established. In ecology the word “theory” traditionally has been applied to
models in general, without regard to how they have been tested. We take a
middle approach and call individual traits “theories” after they have been
tested and shown useful in some specific contexts.
We define theories in IBE to be:

Models of individual behavior that are useful for explaining population-
level phenomena in specific contexts, with contexts being char-
acterized by the biotic and abiotic environment, sometimes in-
cluding the individual’s own state.
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This definition means that in IBE we are not interested in theory that
explains individual behavior in detail, only in models of individual behaviors
that are readily used in IBMs to explain population dynamics. Often, IBE
theory is a highly simplified representation of the real behavior of individuals.
Our focus in this chapter is on theories that are not easily tested in the

field or laboratory. Many individual traits that are crucial for IBMs can
be formulated and tested using controlled experiments on real organisms.
For example, many IBMs use models of how an individual’s growth varies
with energy intake and metabolism; such models can often be developed
and parameterized in the laboratory with relative ease. Other behaviors,
however, are complex responses to a wide range of stimuli and therefore
are not readily modeled using only empirical experiments. Useful models of
adaptive behavior, crucial to IBMs, are often difficult to develop and validate
using only field or laboratory observations.

4.4.3 Testing

Testing is essential to theory development in any science, as it is the process
by which we eliminate inadequate hypotheses and establish the credibility
of useful ones. In complex sciences we do not hope to prove that a theory is
“true” but instead look for evidence of how general and useful a theory is.
The validity of a theory increases as it is shown better able than alternative
theories to reproduce observed phenomena in tests of increasing rigor.
Two kinds of experiments can be important in testing theory in IBE: ex-

periments on real organisms and the pattern-oriented IBM analyses that we
discuss below. Scientists using both kinds of experiment can follow the scien-
tific method using strong inference, designing and conducting experiments
to distinguish among alternative theories and then refining and re-testing
the theories.

4.5 THEORY DEVELOPMENT CYCLE

Because they are models of what individuals do, theories in IBE can be
developed and tested using a cycle almost identical to the cycle for developing
pattern-oriented models that we describe in chapters 2 and 3. Here, we
adapt the pattern-oriented modeling cycle specifically to develop and test
IBE theory. This cycle has six phases, corresponding to the tasks of modeling
and pattern-oriented modeling described in previous chapters. The theory
development cycle compares alternative theories by seeing how well each
theory, when implemented in an IBM, causes realistic patterns of individual
and system behavior to emerge. (The cycle is illustrated with an example
in Section 4.6.)

Phase 1: Define the Trait and Ecological Contexts of Interest.—The first
step in any research should be to define the problem. In developing theory for
IBE, the problem we address is to find useful models for a specific behavior
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of a specific kind of organism. Even though we may being trying to find
“general” theories that are useful in many contexts, we must also define the
contexts in which the theory will be tested and used.

Phase 2: Propose Alternative Theories.—In this phase, the researcher
identifies or devises potential theories for the individual-level trait of inter-
est. The trait is a model of how individuals decide, literally or metaphor-
ically, what to do in certain situations. This step is often an opportunity
for the individual-based ecologist to take advantage of the existing natural
history, autecology, and behavioral ecology of the organisms being studied.
Proposed theories should be thoroughly grounded in the natural history
and autecology of the organisms (Hengeveld and Walter 1999; Walter and
Hengeveld 2000), and sometimes can fruitfully be based on existing theory
of behavioral ecology (e.g., Sutherland 1996). However, our experience has
been that existing empirical and theoretical science at the individual level
does not always provide theories “ready to go” for IBE. Much of the exist-
ing ecological literature is descriptive, and many studies are too restricted
in scope to test the generality of the potential theories they suggest. The in-
dividuals in many IBMs are confronted with a wide range of situations they
must adapt to, whereas empirical research on behavior is usually restricted
by practicalities to addressing only a few situations. Existing knowledge is
essential for suggesting and screening potential IBE theories, but synthesis
and adaptation of theoretical approaches (discussed extensively in Chapter
5) are typically necessary.
Platt (1964) suggested that theory development is most rapid when al-

ternative models are proposed and then tested using experiments designed
to determine which model best predicts observations (see also Hilborn and
Mangel 1997). Comparing alternative theories also helps researchers avoid
the risks of becoming too attached to any one approach (Platt 1964). Al-
ternative theories for specific individual traits can be generated from funda-
mentally different approaches to understanding the behavior of interest; for
example, alternative traits could be developed from the fitness maximization
and simple heuristics approaches to decision theory (Section 7.5). On the
other hand, it is also often necessary to compare alternative theories that
are conceptually similar but different in their details.

Phase 3: Identify Test Patterns.—In Phase 5 (below), proposed theo-
ries are tested by analyzing how well they explain a set of test patterns
in individual-based simulations. The test patterns are identified in Phase
3 because their selection can affect design and implementation of the IBM
used for testing. Identifying the test patterns is a critical step because these
patterns are the data set against which theories are tested. The validity of
a theory is limited by the power of the tests it has been subjected to, and
the choice of test patterns determines how much power the analyses have to
distinguish among alternative theories and establish the range of contexts in
which a theory is useful.
Test patterns are patterns of behavior that emerge in an IBM and depend

on the individual trait for which theories are being tested. These patterns
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can occur at the individual level and at higher levels. Test patterns can range
from very simple individual behaviors to extensive time series of population
responses, or spatial patterns. Qualitative patterns can be very useful, at
least early in the development of a theory, because a theory can be tested
against qualitative patterns before the IBM used in testing (Phase 4, below)
is fully parameterized and calibrated.

Phase 4: Implement the Proposed Theories in an IBM.—An IBM provides
the virtual ecological system in which proposed theories are tested. When
a theory is to be tested, it is implemented as an individual trait in an IBM.
The IBM must also represent the biological and environmental processes
to which the trait responds, and any other processes that are necessary to
reproduce the test patterns.
As a testbed for theory, IBMs have many advantages over natural systems,

especially the abilities to test a theory under many conditions, to conduct
completely controlled and reproducible experiments, and to make thorough
and accurate observations without affecting results. A major disadvantage
of this approach is, of course, that the extent to which results obtained from
an IBM apply to real ecosystems depends on the design and implementation
of the IBM. This is a chicken-or-the-egg problem: we implement theories in
an IBM to test them, but the IBM must be built from theories. A flawed
IBM could certainly produce misleading conclusions about the validity of
a proposed theory. However, this problem is avoidable because IBMs can
be customized to test one trait at a time. By judicious selection of what
processes are modeled as emergent vs. imposed (Chapter 5), an IBM can be
customized so that everything other than the theory being tested is “hard-
wired” and noncontroversial. A theory that has been successfully tested can
of course then become part of an IBM used to test other theories.

Phase 5: Analyze the IBM to Test the Proposed Theories.—A proposed
theory for an individual trait is tested by determining whether it, when
implemented in an IBM, causes the test patterns to emerge. For each test
pattern, the IBM is used to simulate the conditions under which the pattern
is expected to emerge, and observations are taken from the IBM to determine
whether the pattern was indeed reproduced. (Analysis methods are discussed
further in Chapter 9.)
The analysis of the IBM must address more than just whether the pro-

posed theory succeeded in reproducing the test patterns. As in any model-
testing exercise, it is also important to consider and document the inferential
power of the test: its ability to distinguish among alternative theories. Us-
ing the pattern-oriented approach, statistical measures of inferential power
usually are not feasible (but see Hilborn and Mangel 1997). Instead, we can
qualitatively evaluate the power of a theory test by addressing such questions
as:

• How many test patterns were used, and how general or specific were
they? It is very important to understand the concept, which may at
first seem counterintuitive, that testing proposed theories against a wide



g-r May 17, 2004

60 CHAPTER 4

variety of specific patterns is better able to distinguish the most gen-
eral theory than is testing theories against general patterns. The more
general a pattern is, the more likely it is that multiple traits are able
to reproduce it. On the other hand, a single trait that can reproduce a
wide variety of specific patterns (as illustrated in Section 4.6) is most
likely to be a useful and general theory.

• Did more than one proposed theory explain the test patterns? If so,
then the test patterns did not provide sufficient inferential power to
distinguish among theories.

• How robustly were test patterns reproduced in the IBM? If a test pat-
tern is widely observed in nature but only reproduced in an IBM under
a narrow range of parameter and input variable values, then the test
results are weak.

Phase 6: Repeat the Cycle to Refine Theory and Tests.—Repeating and
refining the cycle of theory development and testing may be necessary to find
satisfactorily general and useful theories. In the case that none of the pro-
posed theories succeeds in reproducing the test patterns in the IBM, then
the cycle must start over at Phase 1. If more than one proposed theory
passes the pattern-oriented IBM analysis, or if the analysis had low infer-
ential power, then it can be desirable to start the cycle over at Phase 3 by
identifying additional test patterns that provide greater resolution to the ex-
periment. Often when a proposed theory appears good in concept, it takes
several cycles through the testing phases to determine the best detailed im-
plementation of the concept. Identifying additional test patterns may require
new field or laboratory studies specifically designed to distinguish between
competing theories. Again, it is important to understand that the most gen-
eral theories explaining an individual trait are most likely to be found by
testing them against a wide range of specific patterns, not by testing against
general patterns.

4.6 EXAMPLE: DEVELOPMENT OF HABITAT SELECTION

THEORY FOR TROUT

To illustrate the process of IBE theory development, we describe develop-
ment of theory for habitat selection in stream trout. This work used the
stream trout IBM described in sections 1.2 and 6.4.2. One of the interest-
ing lessons from this example is its illustration of a point made in Section
4.3—that applied ecology is important to theory development. The need
to simulate a specific individual behavior in a realistic management con-
text forced the development of new, more useful theory for an important
ecological problem.
(A similar story is told by the papers of John Goss-Custard, Richard Still-

man, and coworkers [Goss-Custard et al. 2001, 2002, 2003; Stillman et al.
2002, 2003; West et al. 2002], which address interference among overwin-
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tering shorebirds. The management problem at the start of their project
in the 1980s was predicting the effect of habitat loss on the birds’ winter
mortality. Over the years, detailed and very well tested models of individual
foraging behavior have been developed. Now, this toolbox of established
theory allows Goss-Custard et al. to adjust the model quickly to new species
and habitats. The theory development cycle, and its relationship to specific
management problems, was very similar to that of trout modeling project
described here.)

Phase 1: Define the Trait of Interest and the Ecological Context.—The
trout IBM was designed for environmental impact assessment: comparing
the effects of alternative stream flow and temperature regimes on abun-
dance and production of trout populations. The ecological context included
(1) spatial variation (at a resolution of several square meters) in the habitat
variables driving growth rates and mortality risks; (2) temporal variation in
stream flow and temperature, which affect growth rates and mortality risks;
and (3) competition among trout for food and feeding habitat. Field studies
indicate that moving to different habitat is the primary way trout adapt
to changes in flow and temperature, so habitat selection was identified as a
critical individual behavior that the IBM must represent realistically.

Phase 2: Select Alternative Theories for Habitat Selection.—Previous IBMs
for stream fish and the behavioral ecology literature were examined for use-
ful, tested models of habitat selection within the trout model’s ecological
context (Railsback et al. 1999). An especially important aspect of the trout
model’s context is its assumption that habitat selection is driven by both
growth potential and mortality risk. Two general approaches were examined.
The first approach is that of deriving, from fitness maximization theory, a
simplified rule for making tradeoffs between growth and mortality risk. One
such rule is that fitness is maximized by selecting habitat to minimize the
ratio of mortality risk to growth rate (Gilliam and Fraser 1987); a similar
rule was derived by Leonardsson (1991). This approach was rejected for the
trout IBM because the assumptions needed to derive these simplified rules
are highly incompatible with the IBM’s ecological context. For example,
these rules were intended to apply only to juveniles, and typically assume
that all locations offer positive growth rates whereas in the IBM (as in na-
ture) there are many locations where fish would lose instead of gain weight.
These rules also produce results that seem incompatible with a basic un-
derstanding of natural history, for example by predicting that trout with
already-high energy reserves would take on substantially higher mortality
risks to gain even more food.
The second theoretical approach to habitat selection examined is the “Uni-

fied Foraging Theory” or state-based dynamic modeling approach (Mangel
and Clark 1986; Houston and McNamara 1999; Clark and Mangel 2000).
The state-based approach is a less-simplified model of fitness maximization,
assuming animals select their habitat over time to maximize their expected
number of offspring at some future time of reproduction. The expected num-
ber of offspring is a function of growth and accumulation of energy reserves,
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and also the expected probability of surviving until the future time. Sur-
vival to a future time depends on food intake as well as predation and other
risks: food intake must be sufficient to avoid starvation. This approach has
many conceptual advantages, including adaptability to many ecological con-
texts, freedom from some of the restrictive assumptions, and more closely
representing the real problem (survival and reproduction) that animals are
adapted to solve.
A significant problem with the state-based approach is its assumption that

the growth potential and mortality risks in each habitat patch are static over
time, which is incompatible with the IBM’s context. To retain the benefits of
the state-based approach while accommodating temporal variation in habi-
tat conditions, a new theory was proposed: animals are assumed to make
a very simple prediction of habitat conditions over a future time horizon
and then select the habitat that maximizes their expected probability of
surviving (and their growth to reproductive size, for juveniles) over the time
horizon. This approach was called the “state-based, predictive” habitat se-
lection theory; Railsback et al. 1999; Railsback and Harvey 2002; Section
7.5.3).
To make the subsequent tests of the state-based, predictive habitat selec-

tion theory more rigorous and interesting, two additional traits were also
tested. These traits assume trout select habitat to (1) maximize their imme-
diate growth rate, and (2) maximize their immediate probability of survival.

Phase 3: Identify Test Patterns.—Six patterns were selected to test the
traits for trout habitat selection (Railsback and Harvey 2002). These pat-
terns were selected from the published trout literature. Each is relatively
simple (i.e., a ‘weak’ pattern as discussed in Chapter 3) and noncontrover-
sial, yet is a specific response to a known change in conditions. Together the
patterns include responses to a wide range of factors.

1. Hierarchical feeding: trout of similar size exhibit preference for a single
best feeding site, which is occupied by the most dominant individual.
When this dominant individual is removed, the preferred site is then
occupied by the next-most dominant individual.

2. Response to high flow: when extremely high stream flows occur, trout
move to slower water along the stream margin and then return to their
previous location as flow recedes.

3. Response to inter-specific competition: in the presence of another trout
species with larger individuals, trout shift their habitat, usually to
higher velocities.

4. Response to predatory fish: in the presence of large, predatory fish,
juvenile trout use faster, shallower habitat.

5. Seasonal velocity preference: the average velocity used by trout in-
creases with temperature among seasons.

6. Response to reduced food availability: when food availability is re-
duced, trout shift habitat to obtain higher food intake, and this shift
happens before starvation is imminent.
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It is important to realize that behaviors reproducing these patterns could
each be hard-wired into the model trout (which would be an example of
imposed behavior; Section 5.2), but doing so would not prove that the be-
haviors were a useful, general model of habitat selection. When we instead
see if these behaviors emerge from a single theory for habitat selection, they
provide a powerful test of the theory.

Phase 4: Implement the Proposed Habitat Selection Theories in an IBM.—
The three alternative habitat selection theories—the “state-based, predic-
tive”, “maximize growth”, and “maximize survival” traits—were each im-
plemented in the trout IBM. Simulations were designed to represent the
conditions under which each of the six test patterns was expected to occur.
These simulations could then be repeated, altering only the IBM’s habitat
selection trait.

Phase 5: Analyze the IBM to Test Theories.—The trout IBM was analyzed
to determine if the six test patterns were reproduced under the expected con-
ditions, with the analyses repeated for each of the three alternative habitat
selection traits. The results of the analyses (Figure 4.1) show that the wide
range of patterns was important in resolving the three traits. Patterns 1
and 3 were not reproduced by the “maximize survival” trait, excluding it as
a useful theory for the trout IBM. The “maximize growth” and state-based
traits both could reproduce the first three patterns, but pattern 4 showed
that maximizing growth (or any other trait neglecting mortality risks) is not
generally useful.

Pattern Maximize growth Maximize survival
State-based,
  predictive

Hierarchical feeding    +    

Response to high flow             

Response to inter-
specific competition 

        

Response to 
predatory fish

        

Seasonal velocity
preference

    

Response to reduced
food availability

    

+

+

+

+

+

+

+

+

+

+

Figure 4.1 Summary of the pattern-oriented test of habitat selection theory for the
trout IBM. Only the state-based, predictive trait for habitat selection
caused all six patterns to be reproduced in the IBM.
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Patterns 5 and 6 proved to be the decisive tests, as they were not re-
produced by either of the traits based on maximizing immediate growth or
survival probability. Patterns 5 and 6 can be reproduced only by traits that
consider how an animal’s state is expected to change over a future period.
When temperature (and hence metabolism) is increased, or food availability
reduced, the immediate state of the individual is not changed but the indi-
vidual’s predicted future starvation risk is increased. Consequently, expected
fitness is increased by changing habitat to obtain more food even if mortality
risks are higher. The analyses indicated that the state-based, predictive trait
is a useful theory for habitat selection in the IBM; the analyses also showed
that conventional foraging models based only on immediate food intake and
mortality risks are unlikely to be general and useful in realistic contexts.

Phase 6: Repeat to Refine Theories and Tests.—In subsequent develop-
ment of the trout IBM, the habitat selection theory was revised to include
choice of activity in conjunction with habitat selection (Railsback et al., un-
published manuscript). Trout routinely switch between two activities: feed-
ing and hiding. Different habitat is used for the two activities, and under
different conditions trout exhibit different preferences for feeding during day-
time vs. night. The IBM was revised to represent selection of feeding and
hiding activity along with habitat selection because both of these activities
may be important in determining how flow and temperature affect trout.
(For example, habitat for hiding instead of feeding may limit populations in
some situations.) This change in context required revision of the previously
developed theory.
The state-based, predictive habitat selection theory was modified to in-

clude selection of activity along with habitat. Under the revised theory,
trout are assumed to examine all four possible activity combinations (day-
time feeding and night feeding, daytime feeding and night hiding, etc.) for
each potential habitat patch and then choose the best combination of activity
pattern and habitat.
Testing this revised theory in the IBM immediately identified a weakness:

adult trout ceased to grow, instead feeding only enough to avoid starvation
and spending as much time as possible in hiding to avoid predation risk.
This model prediction contradicted observations from the study site, where
food is abundant and adult trout grow to large size. (This problem did
not arise previously because the IBM previously assumed trout always feed
during the daytime, in which case feeding enough to avoid starvation also
produced realistic growth rates.)
The theory was again modified, this time by including a function repre-

senting how the fitness of adult individuals continues to increase as their size
increases. This modification was certainly inspired by the need to make IBM
results reproduce observed adult growth (a key observed pattern), but it also
has a sound foundation in evolutionary theory. This function summarizes the
many benefits to fitness of larger size, which include better ability to compete
for food and mates, higher gonad mass, and better ability to protect eggs.
The revised habitat and activity selection theory was implemented in the
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IBM and, with minor calibration, produced reasonable growth and survival
rates. A set of eight patterns were identified for testing the revised theory.
These patterns are ways that the frequency of diurnal vs. nocturnal feeding
have been observed to change in response to environmental or competitive
factors. The test patterns were taken primarily from controlled experiments
conducted independently by Metcalfe et al. (1999). The revised theory of
habitat and activity selection successfully resulted in the eight test patterns
being reproduced in the trout IBM.
This whole theory development exercise took advantage of a great deal

of existing experimental ecology, but identified important new topics for
empirical study. The conclusion that behaviors such as selection of habitat
and activity can be modeled as a state-based, predictive process calls for
empirical testing and explanation. The theory could be refined via controlled
experiments on real trout, perhaps in conjunction with simulation. Such
experiments could, for example, test alternative theories about the ability of
fish to predict future conditions and about the value of growth in decisions
such as habitat selection.

4.7 SUMMARY AND DISCUSSION

The problem of linking behaviors of populations and ecosystems to the traits
of individual organisms and the characteristics of the individuals’ environ-
ment is now accepted as critical to ecology. However, ecology (like other
complex sciences) currently not only lacks an established body of theory for
how system-level properties arise from individual traits; we also lack a pro-
cess for developing such theory. This chapter goes to the heart of the most
basic problem we address in this book: How do we learn how system-level
properties of ecosystems arise from the traits of individuals?
Fortunately, other scientists working on CAS have developed approaches

to theory that are readily adapted to IBE. Their approaches that we adopt
have an advantage the importance of which is difficult to overstate: they
are based on the conventional scientific method in which new theories are
proposed, tested against alternative theories in controlled experiments, and
revised and re-tested using experiments of increasing rigor. The use of IBMs
and pattern-oriented analysis provide the ability to follow this theory devel-
opment cycle with reasonable effort and cost.
We propose an approach to the theory of IBE in which (1) the fundamen-

tal axiom is that system-level properties arise from the traits that determine
how individuals interact with each other and their environment, and from
characteristics of the individuals’ environment; (2) theories are models of in-
dividual behavior that are useful for predicting system-level behaviors; and
(3) theories are “proven” by developing experimental evidence of how gen-
eral and useful they are. This approach to theory is designed to provide
four important qualities. First is testability : the pattern-oriented analysis
approach makes it practical to test theories thoroughly. Second is generality :
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this approach promotes the development of theories of individual traits that
apply under wide ranges of conditions. More importantly, it provides a way
to document how general theories are known to be; theories cannot hon-
estly be considered general until they have been tested under a wide range
of conditions. This theory development process can document the range of
situations and contexts where a theory has been found useful and unuseful.
The theory process also provides integration across ecological levels, as it
can use natural history and behavioral ecology in producing models of indi-
viduals that are useful for understanding population- and community-level
behaviors. Finally, the process is designed to produce theories with appli-
cability to real-world ecological management problems. In fact, we argue
(and illustrate in the example of developing habitat selection theory for a
trout model) that application to real management issues advances theory
development by forcing our theory to confront reality.
So far, the ecologists who have used IBMs have developed little re-usable

theory of the kind we describe in this chapter (Grimm 1999). The same can
be said about any of the sciences addressing complex systems of adaptive
individuals (e.g., economics, microbiology, sociology); science as a whole is
just learning how to study such systems. One purpose of the example IBMs
we present in Chapter 6 is to identify models of individual traits that have
been explored and found useful in some contexts.
As IBE progresses, our toolbox of established theory will grow. As more

scientists take up the challenge of understanding the links between individ-
ual traits and system behaviors, they will identify theories and establish
the contexts in which those theories are useful. Even more useful will be
identifying general classes of theory from which models for specific species
and contexts can be developed rapidly. The “state-based, predictive” ap-
proach mentioned in Section 4.6 is one example, and it was adapted from
another class of theory, state-based dynamic modeling. The general idea
of the state-based, predictive approach, that individuals make decisions to
maximize some realistic estimate of their future survival and reproductive
potential, can be applied to many traits in addition to habitat selection.
Other general classes of theory no doubt are applicable to many traits and
organisms. In fact, much of Chapter 5 is dedicated to general concepts that
can guide and facilitate development of IBE theory. To us it seems very
likely that the problem of IBE theory will, once tackled seriously by ecolo-
gists, prove more tractable than our experience with IBMs so far indicates.
A few general classes of theory may allow us to identify useful theory for
many specific traits and contexts with relative ease, and we may be able to
assemble IBMs for many management applications completely from existing
theory.
Why are we optimistic that ecologists can succeed in producing useful

and general theory for IBMs? There are specific reasons why the approach
to theory we propose here seems likely to be productive. First, it gives up
on the notion of context-free generality and instead focuses on the more
realistic goal of finding different theories that are useful in different, specific
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contexts. Second, instead of trying to impose system-level theory, we try to
understand ecosystems as they really are: emergent properties of adaptive
individuals. Models of how individual components behave and interact have
been very successful at predicting the behavior of complex physical systems.
As simplified representations of such systems, IBMs help us find useful theory
for emergent system properties without getting lost in too much complexity.
Finally, and perhaps most importantly, the pattern-oriented analysis process
makes IBE theory relatively easy to test. The ability that IBMs provide to
test and contrast alternative theories under wide ranges of conditions makes
it practical to propel ourselves forward via the scientific method and strong
inference, a power that is lacking in many other approaches to ecological
theory.
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Chapter Five

A Conceptual Framework for Designing

Individual-based Models

To describe the complexity approach, we begin by pointing out
six features of an economy . . . that together present difficulties
for the traditional mathematics used in economics: Dispersed
Interaction . . . No Global Controller . . . Cross-cutting Hier-
archical Organization . . . Continual Adaptation . . . Perpetual
Novelty . . . Out-of-Equilibrium Dynamics . . .

Because of the difficulties outlined above, the mathematical tools
economists customarily use, which exploit linearity, fixed points,
and systems of differential equations, cannot provide a deep un-
derstanding

W. Brian Arthur, Steven Durlauf, and David A. Lane, 1997

5.1 INTRODUCTION

The modeling guidelines of chapters 2 and 3 and the process of theory devel-
opment described in Chapter 4 address the strategic level of individual-based
modeling: they provide efficient strategies for designing IBMs to address spe-
cific problems and for developing theory of how individual traits determine
system dynamics. Now, however, we turn to the process of actually design-
ing an IBM: how do we represent those processes that we determined, at the
strategic level, must be in the IBM?
At this point, modelers in most fields turn to an established conceptual

framework: well-known and widely used classical concepts that provide a
way to think about the problem, frame a model, and derive results. Classi-
cal ecological modeling has the benefit of the familiar and non-controversial
modeling framework of differential calculus. By providing a framework,
terminology, and notation that all scientists are familiar with, differential
calculus is also a very efficient language for communicating models—a few
equations and sentences about solution methods can describe most classical
models thoroughly.
Individual-based modeling has lacked this kind of established conceptual

framework, with very important and detrimental consequences. First, with-
out an established conceptual basis, IBMs are inherently more controversial
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than differential equation models. IBMs are more difficult to communicate
and seem highly ad hoc—if a model cannot be described using established
terminology and concepts, it tends to sound as if it were made up arbitrarily.
In fact, their seemingly ad hoc nature has been a common criticism of IBMs
(e.g., Hogeweg and Hesper 1990). Second, many IBMs have not been as good
as they could have been because modelers did not understand what issues
needed to be considered in designing the IBM, much less what approaches
were most appropriate for each issue. A sound conceptual framework is the
most fundamental tool for model-building: it keeps us from starting over
with each new model and provides a basis for discovering general techniques
and theory.
Fortunately, general concepts that characterize systems of adaptive indi-

viduals have been developed within a new approach to science referred to
as Complex Adaptive Systems (CAS). Scientists working in CAS attempt
to understand the dynamics of systems of adaptive individuals, often using
individual-based (or “agent-based”) computer simulation as a tool. (Note
that “Adaptive” in CAS refers to the entities making up the system, not the
system itself, because there is no clear concept of fitness at the system level;
Sommer 1996). IBE can be considered a subset of CAS, although much of
the founding work in CAS has been in completely abstract systems and in
sciences other than ecology.
A general understanding of CAS can be very beneficial for ecologists, both

as a new and refreshing way to view the world and as background for IBE.
In addition to the pioneering work of economist Brian Arthur, the highly
accessible books of Axelrod (1997), Holland (1995, 1998), Kauffman (1995),
and Waldrop (1992), and the somewhat less accessible but rewarding work
of Auyang (1998) all help develop an understanding of CAS and its general
concepts. In the past decade, the literature of CAS has mushroomed, with
the appearance of many books and journals (e.g., Artificial Life, Complexity,
Emergence, and Journal of Artificial Societies and Social Simulation). The
concepts presented in this chapter were extracted from the most basic ele-
ments of CAS and applied to ecology (Railsback 2001a). We do not review
the extensive CAS literature comprehensively, instead seeking a few general
concepts for thinking about and modeling systems of adaptive individuals.
We certainly expect this initial attempt at a conceptual framework for IBMs
to evolve as both CAS and IBE evolve and crystallize.
Ecology and CAS are closely related; after all, ecologists have been study-

ing complex systems for many decades. Many of the concepts at the heart of
CAS are also at the heart of ecology and evolution. Concepts such as adap-
tation, fitness, interaction, and sensing are fundamental to how we think
about organisms and populations. The relevance of some of these concepts
to IBMs and IBE has in fact been strongly anticipated by ecologists with-
out reference to CAS (e.g., Tyler and Rose 1994; Giske et al. 1998). The
particular value of CAS to ecology is its determination to explicitly address
how individuals and populations affect each other, even if doing so requires
completely new conceptual approaches.
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One objective of this chapter is to introduce a list of standard modeling
concepts that can serve as a framework for building and communicating
IBMs, much as differential calculus provides a standard set of model design
decisions for classical models. But a further objective is to show, through
examples and design guidance for IBMs, how to think about IBMs using
these concepts. As a conceptual framework, the concepts we present should
help with many modeling tasks, including the following.

• Designing IBMs: thinking about how to address each of these concepts
will help modelers identify and make important design decisions in a
more informed way.

• Developing theory: the modeling concepts provide the framework within
which we develop theory in IBE (Chapter 4). In particular, the concepts
of emergence, adaptive traits, and fitness are critical for devising theory
of how individual traits explain system behaviors.

• Describing IBMs: the concepts provide terminology for essential char-
acteristics of IBMs that are not easily described by equations. They
should reduce the effort and improve the clarity of communicating an
IBM to others (Chapter 10).

• Classifying and evaluating IBMs: reviewers of proposed or completed
work based on IBMs can use the modeling concepts as an aid. Not all
IBMs need consider all of these concepts explicitly, but the concepts can
help make reviews thorough and specific.

Each of the next ten sections discusses one concept. We describe the
concept and why it is important, and alternative ways to address it. We then
provide guidance on specific model design decisions related to the concept:
how do we put the concept to work in designing an IBM? At the end of
the chapter we provide a conceptual design checklist for IBMs: a list of
important model design issues related to the ten concepts. The checklist is
intended to be a concise roadmap for thinking about and documenting the
essential characteristics of an IBM.

5.2 EMERGENCE

One of the most decisive steps in designing an IBM is determining which
behaviors of the system emerge from adaptive traits of the individuals.
In some ecological and CAS literature, the terms emergence and adaptive

refer to evolutionary processes: new genotypes emerge as a result of genetic
adaptation and natural selection. We have chosen (for reasons explained in
the Preface) not to address evolutionary or genetic processes in this book.
However, these terms are very applicable to processes within the lifespan
of individuals. Organisms continually adapt their behavior and state in re-
sponse to internal and external conditions, and we ecologists are interested
in the population dynamics that emerge from the adaptive behavior of indi-
viduals.
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In our terminology for IBMs, a trait is an algorithm (or model, or theory;
cf. Chapter 4), specified by the modeler, for some behavior of the individuals.
An adaptive trait (defined more completely in Section 5.3.1) is a trait involv-
ing a decision or response to changes in the individual’s environment or its
internal state, made with the intent of improving the individual’s eventual
fitness. An individual’s behavior is what the individual actually does during
simulations, an outcome of the individual’s traits and its experiences. This
terminology is loosely based on the metaphor of a real organism’s genetic
traits being the “rules” it is born with, and its behavior being the result of
applying those rules in whatever situation the organism finds itself in.

5.2.1 Emergent and Imposed System Behaviors

Scientists working on CAS enjoy debating the exact meaning of emergence,
but for IBMs only a general definition is necessary. Emergence occurs at
the system level: system behaviors may emerge from the traits of individu-
als as the individuals interact with each other. In many IBMs, individuals
interact with their environment as well as with each other, so system behav-
iors can emerge in part from the simulated environment: different system
behaviors can emerge from the same individuals when they are in different
environments. Emergent system behaviors are not limited only to dynamics
of system state variables (e.g., fluctuations in abundance). Emergent behav-
iors can also include patterns of individual behavior that arise within the
system: things that individuals do in the system that they do not do alone
(e.g., forming flocks or schools; Section 6.2); such patterns are properties of
the entire system.
Not all system behaviors in an IBM are emergent. Three criteria are often

used to distinguish system-level properties that are emergent:

• Emergent properties are not simply the sum of the properties of the
individuals,

• Emergent properties are of a different type than the properties of the
individuals (e.g., the spatial distribution of individuals is a system prop-
erty of a type that none of the system’s individuals has), and

• Emergent properties cannot easily be predicted by looking only at the
individuals.

That emergent properties are not easily predictable from individual traits
does not mean that emergent behavior is mysterious or impossible to under-
stand, or is always spectacular and unexpected. In fact, one of the primary
goals of IBE is to understand how even the most basic, common properties
of ecological systems emerge from the traits of individuals. Understanding
emergence is a declared aim of IBE: “For a simulation model to be of any use,
both obvious and non-obvious patterns must be explained and not brushed
under the carpet of emergence as this amounts to an admission of failure.”
(Di Paolo et al. 2000).
Research in CAS has shown that it can be surprisingly easy to produce in-
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teresting and realistic emergent behavior in IBMs by including simple repre-
sentations of the underlying mechanisms (e.g., Axelrod 1997; Holland 1998).
Camazine et al. (2001) document many fascinating examples of emergent (or
“self-organized”) structures and behavior in biological systems. The book
of Camazine et al. is especially valuable because it documents research pro-
cesses that can determine how complex structures emerge from individual
behavior. (Camazine et al. include IBMs in the category of “Monte Carlo
models” in discussing techniques for understanding emergence.)
In contrast to emergent system behaviors are imposed behaviors—system

properties that are directly predictable from, or tightly constrained by, indi-
vidual traits. The difference between emergent and imposed behaviors—and
their significance to what we can learn from an IBM—are illustrated by the
following two examples.

Example 1: Individual Mortality Risk.—Consider one IBM in which the
mortality risk for individuals—their probability of dying during one time
step—is constant: all individuals always have the same risk. Also consider a
second IBM in which mortality risk varies and depends on individual behav-
ior: whether individuals decide to forage or hide, what habitat they choose
to occupy, etc. In the first IBM, the population’s mortality rate (average
number of deaths per time step) is imposed : it is readily predicted from
the constant mortality risk of individuals. In the second IBM, however, the
population mortality rate emerges from the traits individuals use to make
decisions that affect risk, and from the habitat itself (what risks are present
in which kinds of habitat); the mortality rate is not directly predictable from
the model’s parameters and rules.

Example 2: Upstream Migration of Salmon.—When adult salmon are
ready to spawn, they migrate upstream from the ocean, usually to spawn
in the stream where they were born. Some salmon, however, “stray” into
streams other than their natal stream. How could we design an IBM that rep-
resents this migration and the possibility of straying into non-natal streams?
One approach is to impose upstream migration behavior by giving each
salmon traits that tell it which way to turn at each river junction so that
it returns to the natal stream (Figure 5.1). Straying could be imposed by
giving each salmon a probability of randomly taking a wrong turn; adjust-
ing these probabilities could force the model to reproduce observed rates of
straying.
Alternatively, upstream migration behavior could be modeled as emerging

from the mechanisms salmon use to navigate. Research on salmon has iden-
tified the primary mechanism they use to navigate upstream: if the fish are
in water that contains the odor of their natal stream, they swim upstream;
if they cannot smell their natal river, the salmon swim downstream (Figure
5.1). This mechanism can be implemented in an IBM using two simple rules:

1. Periodically (e.g., once per day) each salmon senses whether it is in a
river containing flow from its natal stream. If so, the salmon moves
upstream; if not, it moves downstream.
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Figure 5.1 Emergent upstream migration of adult salmon in an unpublished IBM
of the Sacramento River basin, California. Model salmon navigate by
sensing whether they are downstream of the river segment where they
were born. Early in the migration (a), the model salmon (white dots)
enter the basin from the ocean via the Golden Gate at San Francisco (1).
After several weeks (b), the salmon approach their natal segment, the
upper Sacramento River below Keswick Reservoir (4). Realistic pat-
terns that emerge include salmon following divergent pathways through
the complex channels of the Sacramento-San Joaquin Delta (2) and a
tendency to stray into other rivers such as the Feather (3).
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2. When a salmon reaches a junction, it decides stochastically which river
to move into, with the probability of moving into a river proportional
to the river’s flow rate.

The upstream migration patterns of the salmon then emerge from this trait
for navigation and the simulated river network.

5.2.2 Comparison of Emergent vs. Imposed Behaviors

When we decide to model some particular behavior of an IBM as emerging
from adaptive individual traits, we are essentially choosing a mechanistic
representation of the behavior. Instead of simply forcing the behavior to
be exhibited, we model the underlying, individual-level mechanisms that
give rise to the behavior. Like mechanistic modeling approaches in general,
modeling an IBM behavior as emergent has the advantages of being more
explanatory and general and the disadvantages of being more complex.
The primary problem in modeling system behaviors as emergent is, of

course, finding individual traits that cause the system behaviors to emerge.
This problem is exactly the one that Chapter 4 addresses: finding theory
for how system behaviors emerge from individual traits. So if we choose to
model a system behavior as being emergent, we must find or develop the nec-
essary theory—often, a major project. The emergent approach sometimes
also requires more complex traits: individuals must make complex calcu-
lations or evaluate a large number of decision alternatives. Consequently,
the challenge of testing, analyzing, and understanding an IBM (Chapter 9)
typically increases sharply with the number of emergent behaviors.
When we do model behaviors as emergent, we typically learn much more

about the system. Modeling emergence requires us to develop an under-
standing of the real mechanisms driving individual behavior and the system.
When we succeed in producing simple traits that capture these mechanisms,
the IBM no longer simply reproduces observed behaviors but explains how
the system works. Returning to the above example of modeling mortality,
clearly only the second IBM would be useful for understanding mortality
rates, e.g., how they depend on habitat, population density, or behavior. A
second point, also important but less obvious, is that we must also use the
second IBM if we want to understand processes that depend on how indi-
viduals adapt to mortality risks. We cannot study how individuals behave
to avoid risk using an IBM in which mortality risk does not vary.
Modeling behaviors as emergent can also make IBMs surprisingly general.

A successful mechanistic model of some process should have the advantage of
being generally applicable under a wide range of conditions, not just under
the conditions used to estimate parameters (Kaiser 1979; DeAngelis and
Mooij 2003). In the salmon migration example above, the emergent behavior
alternative is a much more general model: it is not necessary to program
each salmon with a map to follow back to its natal spawning stream. Instead,
fish find their way back to their natal stream with no information other than
the identity of the stream; the stream network’s flows or connections can be
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modified and migration re-simulated with no changes in salmon traits. In
fact, mechanistic individual traits often produce realistic emergent behaviors
that were not even thought about as the traits were designed; examples of
IBMs that produced such unexpected but realistic behaviors are in sections
6.2.2 and 6.8.3.
The alternative to emergence—imposing a system behavior—resembles

an empirical approach: instead of representing the mechanisms driving the
system, we simply force it to reproduce behaviors observed in real systems.
When a mechanistic understanding of the system behavior is not of interest,
this approach can be a simple, easy way to obtain the desired outcomes.
When we choose to impose some system behavior by giving individuals

non-adaptive traits that force them to reproduce observed behaviors, the
primary model design concern becomes whether such traits are appropriate
under all the conditions that could arise in the IBM. This concern is es-
sentially the extrapolation issue common to all empirical models: does the
model work under unforeseen conditions? This risk can be serious because
behaviors exhibited only occasionally, and therefore likely to be ignored in
empirical modeling, can sometimes be very important. For example, IBMs of
territorial animals often assume that individuals always maintain a territory.
This assumption precludes the animals from using non-territorial behaviors
that can occasionally be highly adaptive: for example, animals may abandon
their territories to seek refuge during high-risk events. If an IBM includes
such events, it could predict that most animals die during an event that real
animals would avoid by simply abandoning their territories and moving to
refuge habitat. If observed behaviors are imposed in an IBM, great care
must be taken to assure that the imposed behaviors are appropriate under
all conditions that could arise in simulations.
Certainly, all processes of an IBM must be imposed at some level— oth-

erwise system behavior would have to be modeled as emerging from the
fundamental properties of subatomic particles (somewhat beyond the scope
of this book). When we model emergence in an IBM, we represent how sys-
tem behavior depends on individual behavior and how individual behavior
depends on lower-level processes; these lower-level processes must at some
point be imposed using empirical relations.

5.2.3 Design Guidance for Emergence

One of the most fundamental IBM design decisions is selecting the model
outcomes that emerge from adaptive individual traits vs. the outcomes that
are imposed. The highest-level outcomes of IBMs are almost always emer-
gent, according to our definition: all the IBMs we examine in this book have
processes through which the interactions of individuals with each other and
their environment affect system behavior. But most IBMs also have inter-
mediate outcomes that are imposed by model rules: if mortality risks are
assumed to be constant, then mortality rate outcomes are imposed; if the
number of offspring parents produce is assumed unaffected by the parents’
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state, then fecundity relationships are imposed; if the distance that dispers-
ing individual move each day is drawn randomly from the same distribution,
then dispersal speed results are imposed. How do we decide which results
should vs. should not be imposed?
First, if the purpose of an IBM is to explain how a particular system behav-

ior arises from individual traits, then of course it is essential that the system
behavior emerges from adaptive mechanisms acting at the individual level.
In fact, for this modeling objective we need to be especially careful: when
we claim that an important outcome emerged from individual traits, critics
will look for ways in which the outcome might have subtly been imposed.
A second reason to use emergence is to help make an IBM general and

easily applied to a wide variety of sites and situations. In most IBMs there
are one or several key individual traits from which the most important sys-
tem behaviors emerge. Representing these traits in a mechanistic way can
help ensure that individual decisions are realistic under a wide range of con-
ditions. When we use traits that impose intermediate outcomes, we must be
careful to make sure that the imposed outcomes are appropriate under all
the conditions that could occur in the IBM.
For other intermediate system behaviors, it is generally best to limit emer-

gence. A complete lack of emergence makes IBMs unrealistic and uninterest-
ing, but if too many outcomes emerge from too many mechanistic processes
it can be very difficult to analyze and learn from an IBM. An IBM is most
likely to be useful if it focuses on one or only a few of the most important
emergent behaviors of the system it represents.

5.3 ADAPTIVE TRAITS AND BEHAVIOR

How do we design an IBM so that system behaviors of interest emerge from
the adaptive traits of individuals? This is probably the most important
question addressed by this book and by IBE, and it is addressed in different
ways throughout the book.

5.3.1 What Adaptive Traits Are

Organisms typically have a variety of mechanisms for responding to changes
in their environment and in themselves. Presumably, evolution has pro-
vided these mechanisms because they improve an individual’s fitness—they
produce behavior that, on average, increases the individual’s success at re-
producing and passing its genes on to later generations. We use the term
adaptive traits for the decision-making rules used by the individuals in an
IBM to select behaviors that improve their potential fitness (Zhivotovsky et
al. 1996). An adaptive trait does not simply tell individuals what to do; it
gives individuals a procedure for making situation-specific decisions. Adap-
tive traits produce adaptive behavior that varies with the situation or state
an individual is in when it makes the decision.
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The adaptive traits in an IBM are typically designed to model the real
organisms’ behaviors, which may be genetically programmed or learned. Of
course, not all characteristics or behaviors of organisms are adaptive, and
“adaptive” cannot be equated with “optimal”. Some characteristics of or-
ganisms are simply constraints of evolutionary history and cannot be as-
sumed to increase fitness; and organisms’ limited ability to sense, predict,
and calculate means that their decisions cannot be truly optimal. In de-
signing adaptive traits, our objective should be to find traits that provide
realistic adaptive abilities, not necessarily assuming individuals find optimal
solutions to the problems they face.
Organisms exhibit a wide range of adaptive behaviors in response to differ-

ent stimuli over different time scales. The following are some of the adaptive
mechanisms that could be useful for explaining system behavior in IBMs.

• At very short time scales, animals choose among such behaviors as feed-
ing, resting, and hiding. This choice may be driven by short-term mo-
tivations like hunger, satiation, and fear.

• Mobile animals adapt to changing conditions by moving. Movement
may be in response to changes over time or space in food availability
and mortality risks, or to seek habitat for specialized behaviors like
mating.

• Both plants and animals can demonstrate plasticity in physiology and
life history. Plants choose how much of their resources to invest in leaves,
branches, roots, reproductive organs, defense chemicals, etc. Likewise,
animals decide how much energy to store, commit to growth, expend
for activity, or use for reproduction. An example life history adaptation
is deciding when to reproduce—in many organisms delaying reproduc-
tion can result in higher fecundity but increases the risk of dying before
reproducing. Changes in phenotype and life history state can be under-
stood as determined by partly genetic constraints and partly by adaptive
decisions considering the individual’s state (size or energy reserves) and
environmental conditions (Thorpe et al. 1998).

• Learning is an adaptive process that takes place over time scales from
very short to an organism’s entire life span. Organisms may adjust
their behavior very quickly in response to strong signals (for example,
the presence of a new predator), or may learn slowly from slow or weak
signals (e.g., long-term or “noisy” trends in prey abundance).

In populations of real organisms, traits can of course vary among individu-
als: learned traits can vary due to the different experiences of individuals and
genetic traits can vary due to genetic polymorphism. Frequency-dependent
fitness—when the potential fitness provided by a genetic trait depends on the
trait’s frequency and the frequency of other traits for the same behavior—is
an issue discussed within the framework of Evolutionarily Stable Strategies
(EES; Maynard Smith 1989). EES questions could in principle be stud-
ied with IBMs (and probably will be in the future), but doing so requires
simulating genetics and inheritance, which we do not address in this book.
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(However, Section 6.9 discusses IBMs that are “calibrated” using artificial
evolution and can have trait polymorphism.) The adaptive traits we con-
sider represent an average over potentially polymorphic traits. However, we
remind readers that a diversity of observed behaviors does not necessarily
mean that there is a diversity of traits: even with the simplified traits we
use in IBMs, seemingly small differences among individuals in state or en-
vironment can produce major differences in behavior that look like different
strategies.

5.3.2 Advantages of Adaptive Traits to Model Behavior

Using adaptive traits in an IBM means that model individuals make deci-
sions by attempting (directly or indirectly; discussed below) to improve their
expected future reproductive success. Fitness-seeking adaptation as a basic
design concept for IBMs has several advantages. First, and most impor-
tantly, the adaptation concept makes the theory of evolution a fundamental
part of the IBM’s conceptual basis. The assumption that individual traits
act to improve fitness is one of the least controversial and most powerful
concepts in biology.
A second advantage is that modeling becomes focused on real biological

processes. If individual traits have evolved primarily to improve fitness,
then building models of individual behavior around this assumption helps
make the models realistic. The literature of the dynamic, state-variable ap-
proach to modeling behavior provides many good examples of this point.
This approach (e.g., Clark and Mangel 2000; Houston and McNamara 1999)
specifically assumes that decisions are made to maximize fitness, with fit-
ness being defined as reproductive output at a future time (or something
similar and closely related). Clark and Mangel (2000) illustrate a number of
situations in which this fitness-based approach produces more general and
realistic results than more abstract approaches to behavioral ecology.
A third advantage of using adaptive traits is that it facilitates using the

often extensive autecology and natural history of organisms to design traits.
Many kinds of observational and experimental information are often avail-
able, but it is often not clear how this information can be used to model
behavior. This kind of information can be included in IBMs by putting it in
the framework of adaptive traits. For example, often observations have been
made of how individuals behave in response to a wide range of events (e.g.,
predator presence, changes in food availability, competition from other indi-
viduals, extreme weather). These observed responses at first seem unrelated
and unuseful for modeling, but putting them in the framework of adaptive
behavior—thinking about how each behavior affects the individual’s proba-
bility of successful future reproduction—may help find a general model for
these behaviors.
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5.3.3 Directly and Indirectly Adaptive Traits

We define adaptive traits as being intended to improve fitness (i.e., to be
fitness-seeking), but do organisms really make all their day-to-day decisions
by trying to maximize probable future reproductive success? Almost cer-
tainly not: the decisions of organisms are often highly constrained by their
morphology and senses, the range of their innate or learned behaviors, and
their cognitive ability. Such constraints can be represented in the traits used
in an IBM. In addition, the modeler may not have the information or the
need to explicitly model how decisions affect fitness. Therefore, IBMs can
have traits that represent fitness-seeking either directly or indirectly.

Direct fitness-seeking traits explicitly model the fitness consequences of
each alternative behavior, using a specific fitness measure (discussed in Sec-
tion 5.4) along with a decision process to select one of the alternatives.
Example traits that have been modeled as direct fitness-seeking processes
are:

• Foraging behavior. The extensive optimal foraging literature is largely
based on the assumption that behaviors such as the time spent foraging
in various habitats optimize some measure of fitness.

• Habitat selection. Many models have assumed that animals choose
which habitat to occupy, or when to leave their current habitat, by con-
sidering the consequences of their decision to fitness-related variables
such as growth or survival.

• Changes in life history state. For example, Grand (1999) developed
a model in which salmon decide when to move on to their next life
history state in a way that maximizes their probability of surviving the
transformation.

Many IBMs have used direct fitness-seeking without clearly stating it as
such. Models in which individuals make decisions to improve growth, for
example, implicitly assume that growth conveys fitness (Section 5.4).

Indirect fitness-seeking traits are also common in IBMs. Typically, indirect
fitness-seeking is used to model specific behaviors that are observed in the
real organisms and assumed to contribute indirectly to fitness, but that
would be very difficult to link to fitness directly. Often, indirect fitness-
seeking involves following a set of simple rules instead of making a complex
evaluation of alternatives. Some examples of indirect fitness-seeking are:

• The salmon migration models described in Section 5.2. The individ-
ual salmon follow rules causing them to migrate toward their natal
stream for spawning; the indirect fitness-seeking assumption is that the
salmon’s probability of reproducing successfully is highest if they spawn
in their natal stream.

• “Boids” and related fish schooling models (sections 6.2.1-6.2.3). The
simple movement rules used by individuals in these models are not di-
rectly related to fitness; however, the rules produce emergent flocking
and schooling behaviors that are observed in birds and fish. Flocking
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and schooling are presumed to contribute to individual fitness, e.g. by
reducing individual predation risk.

• Traits that use probabilities or decision rules to reproduce observed
decision-making behaviors. Examples include the lynx dispersal and
beech forest IBMs described in sections 6.4.1 and 6.8.3. This approach
assumes that reproducing decision-making patterns observed in real or-
ganisms provides fitness to model individuals.

• The case studies presented by Camazine et al. (2001). These studies
found individual traits that explain many emergent phenomena observed
in biological systems; and few if any of the traits involve direct fitness-
seeking. Instead, these traits tend to be simple individual decision rules
that give rise to complex system-level phenomena such as construction
of elaborate nests by social insects. The structures that emerge from
these simple traits appear to convey fitness to the individuals.

5.3.4 Design Guidance for Adaptive Traits and Behavior

Our primary recommendation concerning adaptive traits and behavior is
that modelers think about and document the role of adaptation in their
IBM’s individual traits. In designing traits, it can be very useful to think
about how individual behaviors affect the different elements of fitness (prob-
ability of survival, accumulation of energy, etc.; discussed in Section 5.4) and
how traits might be evolved or learned to increase fitness. Thinking about
how each trait of model individuals affects potential fitness can help keep a
model grounded in real biological processes.
The question of when to use adaptive traits in an IBM is straightforward:

adaptive traits are used to produce emergence. When a modeler decides that
a particular system behavior should be emergent instead of being imposed,
then the problem becomes finding adaptive individual traits that give rise
to the emergent behavior. However, whether a particular trait should be
modeled as directly or indirectly fitness-seeking can be a more interesting
question.
In general, direct fitness-seeking is useful for traits clearly and directly

affecting key elements of fitness such as survival, growth, and production
of offspring. Direct fitness-seeking has been useful for modeling complex
decisions involving many inputs and many alternative outcomes. Direct
fitness-seeking is especially useful as a conceptually clear and powerful way
to model decisions that require tradeoffs among fitness elements: choosing
between behavior A that increases growth and gonad mass but reduces sur-
vival, and behavior B that reduces growth but increases survival. As we
discuss in Section 5.4, direct fitness-seeking using an appropriate measure of
fitness provides a way to translate changes in fitness elements such as survival
and growth into a common currency: potential fitness. This allows alterna-
tive behaviors to be compared by their effect on fitness potential. The cost
of this power is, of course, increased complexity of the model formulation.
Indirect fitness-seeking is more likely to be appropriate for traits designed
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to reproduce observed behaviors that have indirect (but possibly important)
effects on fitness. This approach is especially important for traits that ap-
pear to be highly “hardwired” in the real organisms and do not involve
consideration or evaluation of complex decision alternatives.
The best way to represent adaptive traits will not always be clear. The fol-

lowing subsections of this chapter provide additional concepts for designing
adaptive traits, and we provide more detailed guidance on modeling individ-
ual decisions in Section 7.5. The IBE theory development and testing cycle
in Chapter 4 is ultimately the way to test, compare, and refine the traits
used to model individual behavior.

5.4 FITNESS

In this section we explore one of the critical details of adaptive traits that use
direct fitness-seeking: modeling how individuals estimate the consequences
to their fitness that would result from each decision alternative. Unlike
most other styles of ecological models, IBMs are well suited for modeling
individual fitness directly; this section is designed to help modelers make
the most of this advantage.

5.4.1 Fitness Concepts for Modeling Adaptive Traits

The word “fitness” has been used in many ways so it is important to define
our terminology before proceeding. Fitness of an individual means its success
in passing its genes on to future generations. Therefore, fitness is an outcome
of the decisions an individual has made throughout its life and can only be
evaluated after the individual has finished reproducing and the success of its
offspring has been determined. The theory of natural selection allows us to
assume that the important decision-making traits an individual has inher-
ited genetically or learned are likely to be fitness-seeking : the individual has
these traits because they generally increase the individual’s eventual fitness.
Therefore, many individual traits can be modeled by assuming they produce
behaviors that increase the individual’s expected fitness, the probable success
the individual has in passing its genes on to future generations. Expected
fitness is a current estimate, made by an individual, of its future fitness. A
fitness measure is a specific, usually highly simplified and incomplete, model
of expected fitness that is used in an adaptive trait. In other words, when
an IBM assumes that individuals make decisions with the objective of in-
creasing their expected future reproductive success, the fitness measure is
the internal model of reproductive success that the individuals use to evalu-
ate decision alternatives. A common example of modeling behavior using a
fitness-seeking trait is assuming organisms make decisions to maximize their
growth rate: growth rate is the fitness measure. This approach assumes that
future fitness increases with growth, so growth rate is an adequate model of
expected fitness.
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It is important to understand that fitness is something that happens in
the future: the fitness consequences of some decision an individual makes
can occur long after the decision is made. Therefore, expected fitness is also
a future concept and a fitness measure must be thought of as a prediction
of the future consequences of a decision. (We therefore discuss prediction in
Section 5.5.)
In an IBM, an individual’s expected fitness can depend on a number of

events: survival until reproduction, growth to the size needed to reproduce,
etc. We refer to these events as fitness elements, which can be considered
targets that must be achieved for fitness to be high. The extent to which
these targets are achieved typically varies with several driving processes that
are affected by the individual’s decisions. Examples of fitness elements and
processes affecting them are shown in Figure 5.2. Driving processes are pro-
cesses, often strongly affected by environmental conditions, that determine
an individual’s state with respect to the fitness elements. Energy intake is
an important process driving many fitness elements, so it is no surprise that
energy intake (or growth) has often been used by itself as a fitness measure.

Driving variables Fitness elements

Energy intake

Mortality risks

Availability, 
knowledge 
of habitat

Mate availability

Survival until next 
reproduction

Attainment of reproductive 
size or life stage

Accumulation of energy for 
gonads or clonal reproduction

Location or construction of 
reproductive habitat

Location of mates; mating

Number of offspring

Size of offspring

Provision of parental care

Dispersal of offspring

Driving variables Fitness elements

Energy intake

Mortality risks

Availability, 
knowledge 
of habitat

Mate availability

Survival until next 
reproduction

Attainment of reproductive 
size or life stage

Accumulation of energy for 
gonads or clonal reproduction

Location or construction of 
reproductive habitat

Location of mates; mating

Number of offspring

Size of offspring

Provision of parental care

Dispersal of offspring

Figure 5.2 Example fitness elements and processes that drive them.

5.4.2 The Completeness and Directness of Fitness Measures

A wide variety of fitness measures have been used in IBMs and related
models. These fitness measures vary along two dimensions: completeness
and directness. A fully complete, direct fitness measure would model how
decision alternatives affect all of an individual’s fitness elements, accurately
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predicting the individual’s success at passing genes on to future generations
under each alternative. Highly complete and direct fitness measures are
biologically unrealistic, yet fitness measures that are too incomplete and
indirect can provide model individuals with unrealistically poor adaptive
ability.
The completeness of a fitness measure indicates how many fitness elements

and driving processes are considered. A fitness measure could consider only
one element, e.g., the probability of surviving over some future period, and
consider only one process affecting survival, perhaps predation risk. On
the other hand, the dynamic state variable modeling literature (Mangel and
Clark 1988; Clark and Mangel 2000; Houston and McNamara 1999) includes
such fitness measures as the expected number of female offspring, which con-
siders expected survival to reproduction, accumulation of energy for repro-
duction, and number of offspring; with each of these fitness elements being
driven by mortality risk and energy intake. The fitness measure proposed by
Railsback et al. (1999) for modeling habitat selection considers two fitness
elements: future survival and attainment of reproductive size. Attainment of
reproductive size is driven by energy intake, and future survival is driven by
energy intake (which determines survival of starvation) and other mortality
risks such as predation.
The directness of a fitness measure refers to how explicitly the measure

reflects the future fitness consequences of a decision alternative. A highly
direct fitness measure is a prediction of how successful an individual will be
at passing its genes on to future generations. In contrast, many IBMs (and
related work in behavioral ecology) attempt to model direct fitness-seeking
using very indirect fitness measures. The result is an IBM in which indi-
viduals make fitness-seeking decisions while lacking a good internal model of
how their decisions really affect fitness. Probably the most common example
of a very indirect fitness measure is assuming individuals make decisions to
maximize their energy intake or growth rate. Even though energy intake is
an important driver of many fitness elements (Figure 5.2), future fitness is
not a simple linear function of growth. For example:

• Survival depends in part on energy intake, which must be sufficient to
avoid starvation. However, the importance of energy intake to survival
can range from very high (if the individual is starving) to very low (if
the individual has high energy reserves, if metabolic rates are low, or if
risks other than starvation are high).

• Achieving the size or life stage necessary for reproduction also clearly
depends on energy intake, but once the reproductive size or stage is
achieved, growth may become much less important than other fitness
elements.

• Obtaining energy for reproduction (e.g., for reproductive migration or
gonad production) becomes important only as the reproductive phase
is entered, not during non-reproductive life stages or seasons.

Ignoring these nonlinearities and simply assuming individuals make deci-
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sions to maximize energy intake therefore precludes a model from reproduc-
ing such behaviors as placing more emphasis on energy intake when star-
vation is imminent or size is small or metabolic rates are high, and placing
less emphasis on growth when energy reserves are high, adult size is reached,
metabolic rates are low, or mortality risks are high. These behaviors can be
quite easily reproduced by using a more direct fitness measure: e.g., by mod-
eling how survival and achievement of reproductive status varies nonlinearly
with growth (Railsback and Harvey 2002).

5.4.3 Examples of Fitness Measures

Two approaches have been developed for finding fitness measures that are
direct and complete enough to produce realistic behavior, without being un-
realistically complex. One approach used by some behavioral ecologists is to
mathematically derive a simplification of the expected fitness consequences
of decisions involving tradeoffs between growth rate and survival probability.
For example, Gilliam and Fraser (1987) derived the result that the expected
fitness of juvenile fish is maximized if they select among alternative habitat
patches in a way that minimizes the ratio of mortality risk over growth rate;
Leonardsson (1991) derives a similar conclusion using a different set of as-
sumptions. These derived fitness measures may at first appear very useful
for modeling decision-making in IBMs, but upon close inspection they can
turn out to be quite problematic. The problem is the assumptions required
to make these derivations: the conditions that must be assumed to make
the derivation analytically tractable can be quite unrealistic and incompat-
ible with an IBM. Deriving the “risk over growth” fitness measure required
Gilliam and Fraser to assume, for example, that all habitat patches provide
positive growth rates; and that the population is stable and has fixed, intrin-
sic rates of reproduction and mortality. Such assumptions are not only often
violated in an IBM, they are incompatible with the fundamental assumption
of IBE that population characteristics are emergent, not fixed.
The second approach is to develop fitness measures that specifically rep-

resent one or several fitness elements and how they depend on the driving
processes, but are simplified enough to be computationally efficient and bio-
logically believable. In Section 7.5.3 we present an approach for developing
fitness measures that are sufficiently complete and direct to reproduce a
wide range of realistic behaviors, while still being realistically simple (see
also the trout IBM example, Section 6.4.2). This “state-based, predictive”
approach borrows concepts from the dynamic state variable modeling liter-
ature (Houston and McNamara 1999; Clark and Mangel 2000) and assumes
that organisms use simple predictions of future conditions to roughly es-
timate the fitness consequences of decision alternatives. The state-based,
predictive approach can be used to develop fitness measures that directly
estimate important, clearly defined fitness elements such as the probability
of surviving to some future time or the expected number of offspring, and
consider how these elements depend on processes such as mortality risk and
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energy intake.

5.4.4 Design Guidance for Fitness Measures

The two primary considerations for designing fitness measures are how com-
plete and direct the measures should be. A third consideration is whether
different fitness measures should be used as the individual’s state changes.
In designing fitness measures, we need to remember that they are mod-

els. Some fitness measures that have been quite successful in IBMs require
elaborate assumptions and calculations: assuming that individuals predict
future conditions, estimate probabilities, and consider a variety of state and
environmental variables in complex tradeoffs. When we use such fitness mea-
sures we of course do not think that the organisms actually make all these
calculations; instead, we only assume that the organisms have genetic and
learned behaviors that are modeled well by the fitness measures.

Completeness.—Selecting which elements and driving processes to include
in a fitness measure requires a tradeoff. If important elements or processes
are left out, then the decision-making trait will be too simplistic to repro-
duce some real behaviors; but adding too many elements can make a fitness
measure computationally difficult and possibly unrealistic. The following
sequence of questions can help decide what fitness elements and driving pro-
cesses should be included in a fitness measure.
First, what fitness elements are important to the IBM’s purpose? Is the

model intended to explain patterns in survival, growth, mating? If so, then
it is likely important to include those elements in fitness measures. If an
IBM is intended to explain patterns in fecundity, and a fitness measure is
being designed for a decision that clearly affects fecundity (e.g., how much
energy to allocate to growth vs. gonad production), then fecundity should
be included as an element of fitness measures. If an IBM is designed to
study how habitat fragmentation affects population persistence, then fitness
measures may need to consider the effects of habitat connectivity on the
ability of individuals to find mates and mating habitat. If, on the other hand,
the IBM’s purpose is to explain something less directly related to fitness (e.g.,
patterns of habitat selection or plant succession) then the modeler can ask:
what fitness elements are so basic that they are likely essential for explaining
any fitness-based decision? For most species and systems, survival to—and
attaining size and energy for—future reproduction are probably the most
fundamental elements of fitness and likely to be important in most decisions.
Second, what driving processes are directly affected by the decision that

the fitness measure is used for? Does the decision alter the individual’s
energy intake, mortality risks, ability to find mates, etc.? Third, considering
the real system being modeled, what environmental and biological processes
are the most important drivers of the selected fitness elements?
A final question is what driving processes can the individuals be assumed

to sense or “know” (Section 5.7)? Remember that a fitness measure is not
a model of how the environment affects individuals, but represents the indi-
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vidual’s internal model of how the environment affects its fitness. Therefore,
variables or processes should not be included in a fitness measure if the in-
dividuals are not aware of them. For example, an organism may be assumed
to make decisions by considering how mortality risks affect expected fitness,
but which risks should be included in the fitness measure? It seems reason-
able to assume that most organisms have some awareness of their current
energy status, so they are likely to “know” their starvation risk. Likewise,
many animals show instinctual knowledge of what conditions place them at
high risk to predators and some ability to sense predator presence, and so
could be assumed to “know” predation risk. On the other hand, it may
not be realistic to assume the organisms “know” risks they have had little
opportunity to adapt (genetically or via learning) to—perhaps harvest by
humans or introduced predators. Population density is usually not useful
for modeling individual fitness because individuals are unlikely aware of the
density of their population.

Directness.—The second major step in designing a fitness measure is ex-
plicitly simulating how driving processes affect the selected fitness elements.
Once a modeler has decided which fitness elements and driving processes
to include in a fitness measure, the problem becomes relating the two: how
exactly does expected fitness depend on driving processes such as energy in-
take and mortality risk? This is the point at which we take advantage of the
ability of IBMs to use more explicit and direct models of how expected fit-
ness is affected by decisions. Representing, even simply, the nonlinear ways
that processes such as energy intake and mortality risk affect future fitness
can be key to the success of an IBM.
Among the resources available to help model the relations between fit-

ness elements and driving processes are knowledge of the organism’s natural
history and physiology, energetics models, and probability theory. These re-
lations are inherently nonlinear, often because physiology sets bounds such
as a maximum rate of growth toward maturity and maximum fecundity.
Expected fitness also often depends on the individual’s current state—its
current size, energy reserves, life history stage, etc.—as well as the driv-
ing processes. Finding the right level of detail for a fitness measure can be
a challenge. The fitness measure needs to include essential relations and
nonlinearities, but simplicity is also desirable. The dynamic state variable
modeling literature (e.g., Mangel and Clark 1988; Clark and Mangel 2000;
Houston and McNamara 1999) uses a similar approach and provides many
helpful examples.
To emphasize biological realism and guide model design, it is desirable

(but not always completely feasible) for a fitness measure to have a spe-
cific meaning with clear biological significance. Examples include expected
probability of survival over an upcoming n days, and expected number of
offspring produced next reproductive season.
Another consideration important for many IBMs is designing the fitness

measure so individuals can make good choices even when no alternatives
offer high expected fitness. If an IBM sometimes simulates conditions when



g-r May 17, 2004

A CONCEPTUAL FRAMEWORK FOR DESIGNING INDIVIDUAL-BASED MODELS 87

none of the decision alternatives offer high expected fitness (due perhaps
to disturbance events or extreme competition), it can still be important
for individuals to identify the least-bad alternative so they can attempt to
survive until conditions improve. For example, a model might assume (as the
dynamic state variable modeling literature often does) that expected fitness
is zero when growth is negative. If this assumption is used, individuals
will be unable to make good decisions during temporary situations where
no alternatives offer positive growth, because all alternatives offer the same
expected fitness: zero. If, instead, expected fitness is modeled in such a way
that it decreases asymptotically toward zero as conditions get worse and
worse (e.g., Railsback et al. 1999), individuals will always be able to select
the least-bad alternative.
A final key consideration related to directness is selecting an appropriate

way to model prediction: to evaluate expected fitness, an individual must
predict how driving processes and fitness elements change in the future. This
issue is discussed in Section 5.5.

Changing fitness measures.—As individuals progress through life history
stages or make other changes in state, the relative importance of different
fitness elements may change. Therefore, different fitness measures may be
appropriate during different parts of an individual’s life cycle. For early
life stages, the most appropriate fitness measure may consider only survival
and growth to the next life stage; when reproductive stages are attained,
then growth may become unimportant and a fitness measure considering
reproductive output may be more appropriate. Thorpe et al. (1998) outlined
a model in which salmon change fitness measures as they progress through
life history states. Bull et al. (1996) developed a model, and supporting
experimental data, in which overwintering fish use survival until the end of
winter (during which they are largely dormant) as their fitness measure, but
only until the spring feeding season begins. The design of an IBM’s fitness
measures needs to consider whether, and how, fitness measures should change
with life history stage or other factors.

5.5 PREDICTION

The previous sections on modeling fitness and adaptation depend heavily
on the concept that fitness is a phenomenon of the future, so prediction is
necessary if decisions are to be made on the basis of how they affect fitness.
Modeling prediction by individuals in an IBM is particularly fascinating.
Prediction itself is a modeling task: organisms make predictions by applying
internal models. In designing how to represent prediction in an IBM we are
therefore trying to model the internal models that real organisms use. We
thus have to take the individuals’ perspective, which was one of the basic
modeling heuristics in Chapter 2.
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5.5.1 The Importance of Modeling Prediction

The concept of prediction is rarely discussed in ecological modeling, yet many
IBMs include some form of prediction and research on artificial complex
adaptive systems has shown that the ability to anticipate the outcome of
actions is critical for intelligent, lifelike behavior of individuals. For example,
Holland (1998) showed that the skill of digital agents in playing games like
checkers or chess is linked to their ability to anticipate the consequences of
alternative game moves. Even rudimentary abilities to anticipate the future
consequences of decisions confer a great fitness advantage, so we must assume
that even the simplest organisms have some predictive ability (Levin 1999,
p. 175). In fact, Zhivotovsky et al. (1996) described prediction of future
environmental conditions as key to the adaptive ability of organisms, and
it should be clear from the preceding section on fitness that prediction of
future internal conditions is also critical. Consider trying to maximize our
probability of survival considering only the immediate consequences of our
behavior: we would simply maximize our instantaneous survival probability
by locking the door and hiding under the bed. Intuitively, it is obvious to us
that hiding is not sustainable behavior—sooner or later we must come out
from under the bed and go to work to pay the grocery bill, or else we will
eventually starve. Understanding the importance of feeding instead of only
hiding requires consideration of future consequences of behavior, knowing
that starvation will soon be our greatest threat if we continue to only hide.
(Hunger is, in fact, a physiological mechanism resembling prediction: it
reminds animals, long before serious declines in energy reserves occur, that
future fitness requires eating.)
Holland (1995) discusses prediction via internal models that individuals

use to anticipate outcomes of their actions. According to Holland, “tacit”
internal models prescribe certain actions on the basis of simple implicit pre-
dictions. These implicit predictions are often so simple that they may not
be recognized as a form of prediction. Holland provides the example of a
bacterium that swims in a sugar gradient toward higher concentrations, un-
der the implicit prediction that increasing concentrations lead to more food.
More explicit are “overt” internal models in which the consequences of al-
ternative decisions are evaluated using the information the individual knows
about its habitat and itself.
Models of “tacit” prediction are common in IBMs, but rarely recognized as

such by the modelers. For example, in a number of models (e.g., Clark and
Rose 1997; Van Winkle et al. 1998), animals move to a different location if
they have experienced a consistent decline in fitness potential. This approach
to modeling habitat selection assumes that the animals implicitly predict
that (1) if there is a consistent decline in fitness potential, then conditions
are likely better at other locations (hence, fitness potential will be improved
by moving), and (2) if there is no consistent decline in conditions, then
conditions are not likely to be better at other locations (hence, there is no
reason to move).
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The approach to fitness-seeking traits we discuss in Section 5.3 requires
simulating how individuals predict future values of variables that represent
the processes driving fitness elements. Growth, for example, affects many
fitness elements so many fitness measures must include a prediction of future
growth, which may in turn require predicting the ecological and physiological
processes that control growth. All this prediction sounds daunting, but the
little experience we have indicates that even simple models of overt prediction
can produce useful, realistic behavior in IBMs.

5.5.2 Approaches for Modeling Prediction

Levin (1999; pages 111 and 195) discusses some of the issues in modeling pre-
diction by organisms: abstracting important signals from noisy input, rep-
resenting realistic limits on what information organisms have (Section 5.7),
and understanding the tradeoffs between costs and benefits of obtaining more
information. We have found little research on what models of prediction are
realistic biologically or useful in modeling fitness-seeking adaptation. The
dynamic state variable modeling literature (Houston and McNamara 1999;
Clark and Mangel 2000) generally avoids this issue by assuming that con-
ditions affecting fitness (habitat, competition, etc.) are static. There are,
however, a few IBMs that addressed prediction fairly explicitly.
Huse and Giske (1998; Section 6.9.1) developed a model of fish migration

in which fish were allowed to base movement decisions in part on predicted
seasonal conditions: fish were assumed to “know” the current day of the year
and to have inherited traits encoding knowledge allowing them to predict
environmental conditions from the date. In their model the prediction traits
were artificially evolved instead explicitly formulated, so we do not know the
algorithm the model fish used to predict, for example, spatial distributions
of temperature from the current date. Their study, however, is an important
exposition of the importance of prediction to adaptive behavior in IBMs.
The trout habitat selection modeling study by Railsback and Harvey

(2002; Section 6.4.2) indicates that a very simplistic model of how indi-
viduals predict future habitat conditions can produce useful and realistic
behavior. The model trout evaluate their fitness measure using the predic-
tion that habitat and competitive conditions over a time horizon of several
months are simply the same as those occurring at the present time. Not
surprisingly, however, this approach produces much less realistic adaptive
behavior when used with even longer time horizons (greater than one sea-
son) because the prediction method is not even roughly accurate over such
long times.
Stephens et al. (2002a) developed a fitness measure used by marmots in

a dispersal trait. The fitness measure estimates probable “lifetime fitness”,
essentially a prediction of the number of offspring (and surviving close rel-
atives) under each decision alternative. This prediction is based on age-
and sex-specific probabilities for a number of events such as the individual
obtaining dominant status in a territory, mortality during several future peri-
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ods, and number of offspring produced. Stephens et al. simply assumed that
individuals know these probabilities, which were estimated by the modelers
from field data.
Memory can be used as a basis for modeling prediction. An IBM could as-

sume that an individual retains a memory of recent conditions and projects
future conditions by extrapolating recent trends. Alternatively, predictions
could use the assumption that short-term conditions will revert toward re-
membered longer-term average conditions. Although we know of no in-
stances in which they have been applied and tested in an IBM, approaches
of this nature have been proposed and seem promising. For example, Hirvo-
nen et al. (1999) show how important memory can be in modeling prey choice
decisions of foraging individuals. One obvious concern is using time scales
for memory that are compatible with the prediction time scale: memory
of weather over the past two days may be a useful predictor of tomorrow’s
weather but would likely be a very poor predictor of next month’s weather.
Environmental cues appear to be a mechanism that some species use to

predict changes, and could readily be incorporated in IBMs. Changes in day
length and temperature are likely used by many species to anticipate sea-
sonal changes in weather and other conditions; the assumption by Huse and
Giske (1998; discussed above) that fish know the date is therefore reasonable.
Antonsson and Gudjonsson (2002) describe a more sophisticated example of
prediction using environmental cues. They provide field evidence that ju-
venile salmon, before migrating from river to ocean, use river temperature
variation as a cue to predict future thermal conditions in the ocean. Thus, it
is not always absurd for IBMs to assume that individuals can predict events
far away in both time and space.

5.5.3 Design Guidance for Prediction

As Holland (1995) points out, some kinds of prediction are actually com-
mon in models of individual behavior even though the modeler might not
recognize the method as predictive. This is especially true of tacit predic-
tion, traits in which the prediction underlying the algorithm is not explicit.
Tacit prediction may be quite appropriate in an IBM, and seems most likely
useful as part of indirect fitness-seeking traits (Section 5.3.2). However, our
first guidance concerning prediction is that modelers should be aware of
when they are using implicit prediction and carefully document the implied
predictions. An IBM’s developers and clients will be much better able to
understand and judge the appropriateness of predictive traits once all the
implicit assumptions are clearly stated.
Overt prediction is necessary in traits that use direct fitness-seeking to

model adaptive decision-making. In this approach, individuals base their
decision on expected future consequences to their fitness. There is currently
little experience in IBE to guide modeling of how individuals overtly predict
the conditions they will be exposed to. The ability to foresee consequences
of decisions can provide a tremendous fitness advantage, so we expect many
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adaptive traits of real organisms to be modeled well assuming fairly sophis-
ticated predictive abilities. We have not attempted to review the extensive
literature on mental models and prediction in human cognitive psychology.
Ecologists seeking alternative and innovative models of prediction might ben-
efit from examining this literature.
The most appropriate approach to modeling prediction depends on what

variable is being predicted and how uncertain that variable is. Seasonal
changes in weather are quite consistent from year to year, so assuming a
relatively accurate ability to predict seasonal weather may be reasonable
for many organisms. However, for many fitness measures it is necessary to
predict variables that are much less certain, for example the degree of compe-
tition with other individuals. It seems less reasonable to assume individuals
are able to predict such uncertain variables accurately; more approximate,
“rule of thumb” approaches may be (but are not necessarily!) more appropri-
ate. Similarly, different methods are likely to be appropriate for predictions
of different time horizons: methods that may be reasonable in the short-term
may be very inaccurate for long-term predictions.
Given the lack of research and experience in this field, our tendency would

be to start with a very simple model of prediction, test it, and increase the
sophistication of the prediction only as needed to reproduce the realistic
behaviors of interest. This design process should of course start by examining
the evidence concerning what the real organisms do, and follow the IBE
theory development cycle of Chapter 4.

5.6 INTERACTION

One of the characteristics setting IBMs apart from other population mod-
els is the ability to simulate interactions among individuals explicitly. The
concept of interaction refers to how individuals in an IBM communicate
with, or affect, other individuals. One way in which IBMs can resemble real
ecological systems is by assuming that interactions are the mechanism de-
termining what individuals “know” about each other and how information
travels through a population.
Interaction is a key concept in CAS. In fact, one of the first concerns with

classical modeling approaches addressed by the pioneers of CAS (especially
in economics) was the assumption that all individuals have perfect knowl-
edge of the variables driving their decisions. These pioneers realized that
in real systems information is passed via interactions that are often local
and uncertain (Waldrop 1992). Subsequently, representing interaction and
its effect on system behaviors have been a major theme of CAS research
(e.g., Nowak and Sigmund 1998; Axelrod et al. 2001; Cohen et al. 2001;
Gmytrasiewicz and Durfee 2001).
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5.6.1 Approaches for Modeling Interaction

We describe here three general ways that interaction can be modeled. These
are not necessarily alternative approaches with relative advantages and dis-
advantages. Instead, each is appropriate under some conditions.

Direct interaction.—Direct interactions involve an explicit encounter among
individuals in which information is exchanged or the individuals otherwise
affect each other. Communicating the location of food, contests for resources
or dominance, and predation events are examples of direct interactions. Di-
rect interaction may be either global (all individuals interact directly with all
over individuals) or local (individuals directly interact only with neighbor-
ing individuals). Global direct interaction is unlikely to be useful or realistic
except in very small populations. Direct interaction requires contact or sig-
nalling among individuals so that it may rarely be realistic to assume that
individuals have the ability to communicate with large numbers of others
over long distances simultaneously.
The ability to model interactions realistically as local instead of global

is often considered a defining characteristic of IBMs, particularly in plant
ecology (e.g., Huston et al. 1988). Local direct interaction can be useful in
IBMs with temporal and spatial resolution similar to those at which individ-
ual interactions actually take place. A good example is the IBM presented
in Chapter 20 of Camazine et al. (2001) to explain how dominance hierar-
chies in wasps emerge from direct contests among individuals; the dominance
model discussed in Section 6.2.4 is similar.

Mediated interactions.—Indirect interactions among individuals are often
modeled as being mediated by some resource. Instead of interacting directly
with each other, the model individuals indirectly affect others by producing
or consuming a common resource. (If the interaction is competition, then
direct and mediated interaction correspond to the classical concepts of in-
terference and exploitation competition.) Interactions that are direct and
local in the real world are often modeled usefully as mediated interactions.
The real mechanism of competition for food, for example, may be numer-
ous, short, direct contests among individual animals; but over longer time
scales the average outcome of these contests may be modeled well as indirect
competition for the food resource.
Several of the social insect systems examined by Camazine et al. (2001)

include mediated local communication among individuals, with pheromones
and building materials as the mediating resources. Army ants communi-
cate by creating and following pheromone trails; termites create pheromone-
scented soil pellets that stimulate other nearby termites to do likewise, lead-
ing to mound formation; and wall-building ants create structures by picking
up stones and dropping them near stones dropped by other ants. Mediated
interactions can be either local or global. The examples listed above are
local interactions, but in some models (especially non-spatial ones) all the
individuals may compete for a common resource pool (e.g., Uchmański 1999,
2000 a, b; Grimm and Uchmański 2002).
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Interaction fields.—A second alternative to modeling direct, local inter-
action is the assumption that each individual is affected by a local field of
interaction created by other individuals. This approach is similar to the
“independent-individual approximation” discussed by Auyang (1998) and
exemplified by an individual investor’s interaction with a stock market. Even
though stock prices are actually determined by many interactions among
many individual investors, the behavior of a single investor can be modeled
by assuming the investor interacts with the market as a whole. The interac-
tion field assumption can be a useful approach when (1) individuals really
do base decisions on the cumulative or average influence of neighboring indi-
viduals or (2) it provides a good approximation of multiple interactions that
occur at shorter time scales.
Several IBMs have used interaction fields with notable success. The “field

of neighborhood” approach to modeling competition for resources among
plants (Berger and Hildenbrandt 2000; Section 6.7.3) assumes each plant
stem has a circular “field of neighborhood”. The field’s radius and strength
of influence increases with plant size, and the growth and survival of each in-
dividual is affected by the total field of neighborhood exerted by all its neigh-
bors. Huth and Wissel (1992; Section 6.2.2) tested alternative assumptions
about interactions in their fish schooling IBM. They found that assuming
each individual fish interacts with (aligns its swimming with) the average of
its neighbors produced more realistic results than did the assumption that
each individual picks one neighbor to interact with.
Interaction fields must not be confused with the “mean field approxima-

tion” used in some analytical models. Mean field theory is borrowed from
physics and assumes that each individual perceives the mean influence of all
the other individuals. This approximation is used in analytical models to
avoid the need to represent individual-level interactions (Bolker and Pacala
1997; Dieckmann et al. 2000). With interaction fields, individuals are still
modeled but their local interaction with other individuals are approximated
by averaging the influence of neighbors instead of describing each interaction.

5.6.2 Design Guidance for Interaction

Interactions among individuals are a key part of many IBMs, so choosing
how to model interaction is important. One of the most important potential
advantages of IBMs is the ability to simulate the local, direct interactions
that often control the movement of individuals, materials, and information
through ecological systems. However, direct interactions can occur at scales
that are inconvenient or inappropriate for a particular IBM. For example,
direct competition among plants for soil nutrients can occur very slowly over
large but dispersed volumes of soil where roots of competing plants neighbor
each other. Consequently, integrative methods such as mediated interaction
and interaction fields are often useful when it is not essential to represent
direct interactions.
Answers to the following questions about the real system to be modeled
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should help make it clear which approach to modeling interaction is impor-
tant:

• What are the actual mechanisms of interaction or communication? Are
there mediating resources?

• Is it important to the IBM’s objectives to simulate interactions explic-
itly? Are the system behaviors addressed by the IBM believed to emerge
from direct interactions? If so, then it may be essential to represent
interaction as direct. If not, then it may be better to use mediated
interaction or interaction fields if these approaches are more efficient.

• Over what spatial and temporal scales do the real interactions occur?
How do these scales compare to the resolution of the IBM? If the real
interactions occur at much shorter times than the model’s time step,
or at much finer spatial resolution, then direct interaction will not be
feasible.

• If mediated interactions or interaction fields are appropriate, what is
the average effect of the real interactions over a model’s time step and
spatial resolution? What is a good way to represent, at the IBM’s
coarser resolutions, the real interactions?

5.7 SENSING

It is hard to imagine a very useful IBM that did not assume individuals
have some information about their environment or the other individuals.
Adaptation to changing conditions is impossible without some knowledge
of those conditions, and sensing is how real organisms obtain information
about their world. Any IBM that assumes individuals have some knowledge
about their world includes at least implicit assumptions about how and what
the individuals sense. We use a broad definition of the word “sense”: few
IBMs simulate the details of what can be detected via the physiological
senses. More often, we consider the general ability of individuals to obtain
information and what they “know” about their surroundings.

5.7.1 Modeling How Individuals Sense

The amount and accuracy of information individuals have is one of the im-
portant limitations on how well they can adapt and respond, and real or-
ganisms of course have limited abilities to sense and “know” their world.
Consequently, designing an IBM requires consideration of how well the in-
dividuals can obtain the information they need for adaptive traits. Typical
sensing-related questions that arise in designing IBMs include:

• What do individuals know about mortality risks and how they vary?
For example, does an animal “know” what habitat has high predation
risks or when predators are near?
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• What do individuals know about resource availability and how it varies
over space? Over what distances, and with what certainty?

• What do individuals know about themselves? Is it reasonable to assume
an organism knows, for example, its energy reserves or disease status?

Designing how an IBM addresses the kind of sensing issues listed above
requires asking three questions. First, what kinds of information does an in-
dividual have? What variables describing its environment or neighbors does
an individual have values for? Second, how much information of each kind
does the individual have? What range of distances, or how many neighbors,
does it have information on? Finally, how accurate is the information? Does
the individual have completely accurate values for the variables it knows?
Or do the values contain random uncertainty? Or systematic bias?
One approach to representing sensing or information-gathering processes

is to simulate, at least coarsely, the actual sensing mechanism. Often sim-
ulation of senses is simplified by using a boolean “yes-no” approach: an
individual either does or does not detect some signal. A number of the
social insect models presented by Camazine et al. (2001) model whether in-
sects sense pheromones from other individuals using a boolean approach.
The salmon migration model discussed in Sect. 5.2 assumes salmon either
do or do not detect the smell of their destination stream. For the salmon and
insect models, the sensing approaches are supported by convincing studies
of the real animals. A model of cowbirds (Harper et al. 2002) simulates
how birds obtain information about habitat visually as they fly over it, also
a believable representation of how real birds sense. Mechanistic simulation
of sensing allows an IBM to represent each individual’s knowledge as an
outcome of the individual’s experience.
Probably the most common way to model sensing is to simply assume that

the individuals “know” certain information: assume that an individual has
access to the value of selected variables describing their environment, them-
selves, or neighboring individuals. Knowledge of environment and neighbors
is usually limited to a specified spatial extent. For example, an individual
in one grid cell may be assumed to “know” food availability and competitor
density in its adjacent grid cells. This approach of assuming that individuals
know specific, limited information is often reasonable because actual sensing
processes typically happen at very short time scales compared to a model
time step, at least for animals. A bear IBM may assume an individual bear
spends each one-day time step in one grid cell, whereas a real bear may
spend part of that day exploring and sensing conditions in nearby areas. It
is unnecessary to model all the bear’s exploration within a day, so instead we
simply assume that, over a day’s time, it has gathered sufficient knowledge
about neighboring areas to “know” conditions there.
Stochastic techniques (Section 5.8) can be used to simulate uncertainty in

sensed information, and even how uncertainty varies with the state of the
environment or individual. Stochastic techniques can be useful for simulating
the effects of incomplete or erroneous information on adaptive processes,
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effects that real organisms must continually contend with.

5.7.2 Design Guidance for Sensing

How to model sensing and information gathering is likely to be an issue in
almost all IBMs. One of the key design questions is whether sensing needs to
be simulated explicitly and mechanistically, or whether it is more appropri-
ate to make simple assumptions about what individuals know. Mechanistic
representation of sensing is of course necessary if the sensing process itself is
expected to be an important cause of the patterns and behaviors the IBM
is intended to explain. Such was the case in some of the studies of commu-
nication and interaction among insects presented by Camazine et al. (2001).
Mechanistic simulation of sensing can also be useful if the sensing process
can be modeled at the same spatial and temporal resolution as the rest of
the IBM, as in the cowbird model of Harper et al. (2002).
If sensing is represented mechanistically, then the primary consideration

for designing the sensing trait will usually be the mechanisms actually used
by the organisms being modeled. The modeler can start by searching for
information on what individuals can detect, over what distances, with what
accuracy; and how these factors might vary with the individual’s state or
environment. The study by Spencer (2002) of predator detection by turtles
is the kind of literature a modeler can at least hope for. This study showed
that turtles could detect the odor of native, but not exotic, predators—a key
mechanism for explaining effects of exotic predators on turtle populations.
One of the most fascinating new areas of plant ecology is discovering the
mechanisms by which plants sense (and actively adapt to) conditions such
as light levels (Schmitt et al. 1995) and whether, and what, insects are
attacking (Schultz and Appel 2004). IBMs are potentially of great value
for understanding how these mechanisms affect population dynamics and
viability.
Often, however, it is best to avoid detailed representation of sensing and

instead use simple assumptions about what variables individuals know, over
what spatial extent. These assumptions should be based on whatever infor-
mation or understanding is available about what real individuals can sense
or know within the IBM’s spatial and temporal resolution.
Of utmost importance is making a good assumption about the distance

over which individuals can sense during a time step: underestimating this
distance can severely and unrealistically limit the ability of individuals to
adapt. For example, when simulating movement of animals, modelers often
automatically assume that individuals can only sense conditions in grid cells
adjacent to the their current location. However, if the real animals are
actually capable of exploring a much greater distance during a time step,
they can consider many more potential destinations than just adjacent grids.
Stream fish, for example, are often modeled using grid cells of one to several
square meters in size, but fish often explore 10s or 100s of meters per day,
so a daily time step fish IBM can safely assume fish know conditions over
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many grid cells (Railsback et al. 1999). Specifying the distances over which
individuals can sense can be one of the most important factors in an IBM’s
design.

5.8 STOCHASTICITY

By “stochasticity” we mean the use of random numbers and probabilities
to represent processes in an IBM. (“Random” numbers are almost always
pseudorandom numbers; Section 8.7.3) Unlike many of the other concepts
addressed in this chapter, stochasticity is widely used in other kinds of eco-
logical model. The basic issue addressed here is what processes in an IBM
should be modeled as stochastic.
One of the greatest misconceptions about IBMs is that they are inherently

stochastic. The ecological literature often confuses variability with stochas-
ticity, implicitly assuming that variability at the individual level is random.
Because IBMs represent variability, some ecologists mistakenly believe all
IBMs rely heavily on random processes. Camazine et al. (2001) classify
IBMs as “Monte Carlo models”; Law et al. (2003) equate an IBM with “a
stochastic process” while stating that birth and death events, and variation
among individuals, are all random. In contrast with this belief, the state
and behavior of an IBM’s individuals can be variable in many ways even
when few or no processes are modeled stochastically. In fact, one of the
primary reasons for using IBMs is to understand how variability arises from
deterministic processes (Huston et al. 1988). In this section we provide a
framework for deciding what parts of an IBM should, and should not, be
stochastic.

5.8.1 Stochasticity and Ignorance

Our colleague Glen Ropella has stated that “randomness is a way of injecting
ignorance into a model”. Representing a process as stochastic means that
we either are indeed ignorant about the process or that we choose to pretend
we are ignorant to avoid unnecessary detail. Consider, for example, how the
BEFORE model represents the way forest canopy gaps are closed (Section
6.8.3). If we knew the details of the spatial configuration of all the trees
around a gap, their age, crown geometry, etc., we could possibly predict
with some certainty whether a neighboring canopy tree grows over the gap
or whether a younger tree fills the gap by growing into it. Usually, however,
we do not have this detailed information (we are ignorant); and even if we
did have it, we may not need to represent all these details but only their
typical outcomes (we pretend to be ignorant). We can instead model canopy
closure stochastically, for example by assuming that the probability of the
gap being filled by a neighboring canopy tree is 0.7 and by a young tree
is 0.3. Random numbers can then be used to decide the fate of each gap
that opens during simulations: a random number is drawn from a uniform



g-r May 17, 2004

98 CHAPTER 5

distribution between zero and one and if this number is smaller than 0.7, the
gap is filled by neighboring canopy, otherwise by a younger tree. Of course,
for this stochastic approach to work well, we need some kind of empirical
basis for the probabilities.
Modelers thus choose to represent a process as stochastic for one of two

reasons. First is because too little is known about the process to model it
mechanistically. Some kind of empirical model is needed in such cases, and
if the process is highly variable a stochastic model can be appropriate. The
second reason is that, even if the process is well understood, it is relatively
unimportant and would require unnecessary effort to model mechanistically.
When the effort or computational demands of modeling a process mechanis-
tically are not justified by the process’s importance, it can be appropriate
instead to represent it as a stochastic process.

5.8.2 Uses of Stochasticity in IBMs

In this section we discuss three common uses of stochasticity in IBMs, and
potential alternatives to stochasticity for these three applications. The choice
between stochastic and alternative models can be viewed in the framework of
empirical vs. mechanistic approaches, with stochasticity being an empirical
approach.

Representing variability in input and driving variables.—Stochasticity can
be used to represent variable model inputs, especially for environmental
variables like weather. For example, Clark and Rose (1997) stochastically
synthesized time series of flow and temperature input to drive an IBM of
stream fish populations. A second common use of stochasticity to induce
variability is in creating the initial population of individuals at the start of
a simulation. The modeler can specify statistical distributions for the in-
dividuals’ state variables, with the IBM then using these distributions to
stochastically assign state variable values to the initial individuals. The ini-
tial weight of each individual, for example, can be drawn randomly from a
log-normal distribution with mean and variance specified as input. Stochas-
tic generation of variable inputs allows the modeler to generate replicate
simulations (by using different pseudorandom number sequences) that can
be used to examine the effect of input variability on model results.
One obvious alternative to using stochasticity to induce variability in in-

put is to neglect the variability. Instead of synthesizing stochastic weather
input, weather can be assumed constant or represented by monthly aver-
ages. A second alternative is to use observed data instead of a stochastic
model to represent variability in inputs. Instead of synthesizing stochastic
weather input, for example, a time series of weather observations can be
used as input. Using observed data has the advantage of including natural
patterns—trends, autocorrelation, periodic or rare events, etc.—that are not
captured by simple stochastic models but possibly are important to simu-
lation results. Different time series of observations can be used to generate
replicate simulations. Of course, adequate time series of observations are
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not always available.
Reproducing observed behaviors.—Many IBMs use stochastic processes to

reproduce observed behaviors that have been described probabilistically. In
the lynx model described in Section 6.4.1, a lynx’s decision of which neighbor-
ing patch to move into is a stochastic process with probabilities that depend
on the habitat characteristics of potential destinations. These probabilities
were selected to reproduce observed patterns of lynx movement. Markov
processes and random walk models (Turchin 1998) are other examples of
stochastic processes used to reproduce observed behaviors.
Stochastic methods designed to reproduce observed behaviors are an em-

pirical approach to modeling individual traits. These methods often fall
in the category of “indirect fitness-seeking” behaviors discussed in Section
5.4: the modeler assumes that if the model’s individuals use stochastic pro-
cesses to reproduce observed patterns of behavior, the individuals’ fitness
will generally be increased. The alternative to stochastic models of behavior
is, therefore, to attempt to model the mechanism underlying the observed
behavior.
The advantages of the stochastic approach are those of empirical model-

ing. If the stochastic model of behavior is well-supported by observations,
it is likely to be considered reliable within the range of conditions the obser-
vations were made in. Also, given sufficient observations, it can be easier to
develop a stochastic model than a mechanistic approach. However, as with
empirical approaches in general, stochastic models are subject to extrapola-
tion uncertainty: stochastic parameters that reproduce one set of conditions
may not be suitable for extrapolation to very different conditions. And, of
course, the stochastic approach does not help explain the behavior it models.
It is important to understand that even if some process observed in nature

can be described well using a random model, the process is not necessarily
random. Modelers can be too quick to assume that variable processes must
be stochastic. Highly deterministic processes can produce variable behavior
that fits random models well, but the process is still deterministic and model-
ing it as random will limit the IBM’s ability to reproduce important dynam-
ics. Tikhonov et al. (2001) present an example where a simple, mechanistic
model of fish school movement, combined with dynamic habitat conditions,
produced results that fit random and chaotic models well. Mechanistic traits
may be viable alternatives to stochastic traits even for reproducing behavior
that appears random.

Representing complex lower-level processes.—IBMs typically need to rep-
resent processes that have variable outcomes but are not important enough
to model in detail. Modelers can first consider whether it would be best to
simply ignore the variability; if not, then such processes can be modeled as
stochastic. Modeling mortality of individuals is a very common example. In
many models, the probability of mortality is a deterministic function of the
individual’s state or habitat, but whether or not the individual actually dies
at any time step is determined stochastically. (A random number is drawn; if
it is less than the mortality risk, then the individual “dies”.) In such IBMs,
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the modeler has determined that the probability of mortality needs to be
simulated explicitly as a mechanistic process, but that the actual mortality
event would be too complicated to simulate explicitly so it is represented
using a random number.
An alternative to representing such lower-level processes as stochastic is

to model them mechanistically. Continuing the mortality example, the alter-
native to stochastic representation of mortality events would be to explicitly
model the processes that kill each individual. In the case of predation, this
would require simulating where predators are, how they hunt, and why an
individual was attacked. In this example, it seems clear that representing
mortality events as stochastic is a very useful and appropriate approxima-
tion.

5.8.3 Design Issues and Guidance for Stochasticity

In determining how stochasticity should be used, the first question to con-
sider is whether the process being modeled really should be variable. Some-
times variability is considered necessary for realism, but too many kinds of
variability may make an IBM difficult to understand. Too many stochastic
inputs, for example, may make it difficult to analyze the more interesting
variability that arises from adaptive individual traits. As we discuss in Chap-
ter 9, it is often useful to explore how an IBM’s dynamics change as sources
of variability are added or removed.
If some process in an IBM does need to produce variable results, the

variability can be produced by deterministic or stochastic processes; often
a deterministic process with stochastic components is useful. Stochastic
processes can be useful for reproducing observed behavior, but the modeler
must realize that such processes have the limitations of empirical approaches:
susceptibility to extrapolation uncertainty and inability to explain (instead
of only describe) behavior.
Stochastic processes can be used as part of an adaptive trait: a sequence

of stochastic decisions can produce behavior that increases an individual’s
fitness if the probabilities are modeled appropriately. However, traits with
stronger random components are likely to produce behavior less able to
adapt rapidly to changing conditions. If an adaptive trait is stochastic, it
is especially important to test whether the trait produces realistic behavior.
(In Section 7.4 we discuss the use of probabilistic rules in more detail.)

5.9 COLLECTIVES

Many organisms form aggregations that have strong effects on individual
fitness and have behaviors and dynamics different than those of individuals.
Familiar examples include schools of fish, flocks of birds, packs of coyotes or
wolves, social groups of birds and marmots, and stands of trees—all of which
are included in IBMs examined in Chapter 6. Camazine et al. (2001; Chap-
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ter 8) describe a particularly dramatic example, aggregation of amoebae into
slime molds with fruiting bodies. Auyang (1998) used the term “collective”
for such aggregations. According to Auyang, defining characteristics of a
collective include that interactions among its individuals are strong, internal
cohesion is strong while external interactions are weak, and collectives have
characteristics and processes that can be understood independently of its in-
dividuals. Another defining characteristic of collectives in ecological systems
is that collectives exist for longer or shorter times than do the individuals
making up the collective. Collectives can be treated as an additional level
of organization between the individual and the population.

5.9.1 Representing Collectives

Collectives often must be considered in IBMs because the collective strongly
affects the environment and behavior of individuals. For example, large col-
lectives of animals such as schools or herds are assumed to reduce individual
predation risk yet may also reduce the availability of food. Belonging to
a collective may make food more available to predators that hunt coopera-
tively. Individuals belonging to a collective may behave very differently from
lone individuals, so different traits may be needed to model individuals in
vs. not in a collective.
Three general approaches can be used to represent collectives; they differ

in the extent to which the behavior of collectives emerges from traits of
individuals.

Collectives emerging from individual traits.—The fish schooling models
examined in Section 6.2.2 and 6.2.3, and models of slime mold and insect
behavior presented by Camazine et al. (2001), are examples of modeling
collectives as emerging from relatively simple traits of individuals. The IBM
specifies traits for individuals, and these traits give rise to individual behavior
that forms the collectives: model fish have rules telling them to stay near
and align with their neighbors, and the clusters that emerge behave very
much like fish schools. These models were developed specifically to explain
how the collectives are formed, which of course requires representing the
collective as emerging from the individuals. There are other benefits of this
approach—if relatively simple individual traits that explain the collective
behavior can be deduced: (1) emergence from individual traits is biologically
realistic; (2) models potentially can be very general, reproducing wide ranges
of behavior by the collectives in many conditions; and (3) the approach can
be easy to implement.
There are at least two potential limitations to modeling collectives as

emerging entirely from individual traits. First, of course, not all collec-
tives are produced by individual traits as simple as those that explain fish
schooling or slime mold formation. Clearly, collectives such as social groups
of birds and mammals emerge from complex individual behaviors that are
probably part genetic and part learned. It would be extremely difficult to
model these behaviors—and completely unnecessary for models with objec-
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tives other than explaining formation of the collectives.
A second limitation is that it is often necessary to explicitly represent

some characteristics of the collective, which requires modeling it as a specific
entity instead of having it exist only as an emergent phenomenon. Consider
mortality of schooling fish: “risk dilution”—the reduction in an individual’s
risk of being eaten that results from being in a large group—is presumed to
be a reason why fish evolved the traits causing them to school. To model
the effect of schooling on the mortality rate of a fish population, we must
represent in our IBM how an individual’s probability of being eaten varies
with the size of the school. This requires modeling the school as a specific
entity: that is the only way to know the school’s size. Individuals cannot
know the size of their school—they can only sense their nearest neighbors.

Collectives imposed by individual traits.—Collectives can also be modeled
by giving individuals traits that force them to reproduce the collective be-
haviors observed in the system being modeled. Individuals are given traits
telling them to belong to a collective and behave in a way that makes the
collective persist and function. This approach is useful when we want the
collectives to be formed by the individuals but we are not interested in un-
derstanding the individual traits that lead to collectives and their behavior:
the IBM is intended for problems other than explaining formation of collec-
tives, or the individual traits leading to collectives are too complex to model.
Such models can help us understand the consequences, but not the causes,
of collective behavior.
This approach can overcome the first limitation of modeling collectives as

emerging from individual traits but not the second limitation. Even when
we force the individuals to form collectives, we still often need to explicitly
represent the collective itself.

Explicit representation of collectives.—In this approach, collectives are
treated as explicit entities in the model, with state variables and traits of
their own. The coyote (Section 6.3.3) and lark (Section 6.6.3) IBMs are par-
ticularly clear examples of this approach: these models include both individ-
ual animals and collectives—coyote packs, lark flocks—and both individuals
and collectives have traits executed each time step. In the species represented
by these models, some things that are clearly important to individuals—
information such as group social hierarchy, events such as reproduction—can
only be understood at the collective level; but it would be very difficult to
model the complex behavior of the collectives as emerging from individual
traits. Instead, the modeler simply develops traits for the collectives.
Representing collectives explicitly does not mean that individuals are ig-

nored. Instead, IBMs that include collectives can also represent how indi-
vidual behaviors affect the collectives and how the state of an individual’s
collective affects individuals and their behavior. Even when the presence of
collectives is hardwired, key states and behaviors of collectives can emerge
from adaptive traits of individuals. For example, the IBMs we examine
in Section 6.3 were designed to study how individuals and collectives (so-
cial groups) interact to determine population dynamics. Individuals make
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decisions—especially, when to disperse—that affect the formation and per-
sistence of social groups, while these individual decisions are based in part
on the state of the social group. The persistence and stability of the pop-
ulation in turn depends on formation and persistence of its social groups.
The population can only be understood by modeling both individuals and
collectives and the links between all three levels.

5.9.2 Design Guidance for Collectives

Many modelers will face the question of whether and how collectives should
be represented in an IBM. Of course, if the purpose of an IBM is to un-
derstand how collectives arise, then the IBM should not impose collective
behavior but instead represent the individual traits from which collectives
emerge.
Many other IBMs are developed not to explain collectives but to study

other questions about species in which individuals form some kind of col-
lective. How do we decide whether, and how, the collectives need to be
represented in the IBM? First, does the presence and behavior of a collec-
tive have strong effects on the individuals? Do the state and behavior of
individuals depend on whether they are in a collective and on the state of
the collective? If so, then the IBM probably needs to include collectives.
Second, does the collective have behavior that strongly affects individuals
but cannot be predicted without explicitly representing the collective? If
the answer to this question is “yes”, then it is likely necessary to represent
collectives explicitly as a separate type of model entity with its own state
variables and traits.
When collectives are included explicitly as a type of entity in an IBM,

they can be represented by a combination of (1) collective-level traits and
(2) characteristics that emerge from behavior of its individuals. When some
key characteristics of the collectives—their size, when they go extinct or split
into new collectives, etc.—emerge from behavior of individuals, the IBM can
still link population-level phenomena to individuals.
How can we design traits of collectives? We can use the same general

approach as for individual traits: using literature and observations to pro-
pose alternative traits, then testing the alternatives in an IBM to see which
best reproduces observed population-level patterns. However, there is an
important theoretical difference between traits of individuals and traits of
collectives: while fitness-seeking is a powerful approach for designing indi-
vidual traits, we cannot use it as a basis for traits of collectives. Collectives
convey fitness to individuals, but we cannot assume that collectives them-
selves seek “fitness”—have traits acting to maximize the growth, persistence,
or reproductive rate of the collective itself. Without the theoretical basis of
fitness-seeking, we must instead depend on empirical information to design
traits of collectives. Consequently, collectives usually are given traits that
simply impose behaviors observed in the real system.



g-r May 17, 2004

104 CHAPTER 5

5.10 SCHEDULING

In time-dependent classical models, time is treated either as continuous, with
processes happening continuously at rates specified by differential equations;
or as discrete, with processes happening in jumps over time steps as specified
by difference equations. With IBMs, we are freed from the necessity of
assuming events occur continuously (few if any IBMs use this assumption)
or even discretely at regular time steps (although most IBMs do use this
assumption). Instead, we have to think about and design the most useful
way to represent time.

5.10.1 Scheduling: Designing a Model of Time

The real events that we represent in an IBM vary in the order in which
they occur and how much time each takes. The timing of events in an IBM
is most often modeled by assuming events are concurrent, all happening
together, during each time step. A plant IBM might assume a daily time
step and simulate a day’s energy production, growth, and grazing damage as
occurring concurrently each time step. All real changes within a time step are
represented as discrete events in the model, discrete jumps in state. When we
actually implement a model that assumes multiple events occur concurrently,
we must decide on the order in which concurrent events are actually executed:
the computer cannot execute multiple events concurrently, nor would we
want it to. The execution order can strongly affect model results because
the outcome of one event can affect simulation of the next event. The plant’s
daily energy production affects its daily growth calculation, and grazing
damage could alter energy production; so the IBM would produce different
results if the execution order of these events was changed.

Scheduling is the concept of modeling exactly how a model’s events are
represented in time. For most IBMs, scheduling is a matter of specifying the
exact order in which events occur and how event execution is related to sim-
ulated time. In many IBMs all simulated events occur in a pre-determined
order once per time step, and each time step represents a specific length of
time (an hour, a day, etc.). For some models, however, the timing of events
is not pre-determined and scheduling involves designing a process by which
entities within the model decide what events occur when.
The concept of an action is useful for defining a model’s scheduling; actions

are the building blocks of a schedule. An action has three parts. The first
part identifies a list of model entities and the second part identifies those
entities’ method (a specific trait or algorithm) that is executed by the action.
When an action is executed, the model goes through the list of entities and
executes the specified method for each entity. The third part of the action
specifies the order in which the list of entities is processed. Some example
actions are:
• Scheduling an IBM’s weather simulator to execute a method that up-
dates the current temperature. In this action, the list of model entities
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includes only one: the weather simulator. The method to be executed
is the temperature update. Because this action acts on only one entity,
no processing order needs to be specified.

• Scheduling all the habitat cells in an IBM to update their food produc-
tion. The action’s list of model entities is a list of all the habitat cells,
and the method executed by the action is the cells’ food production
method. Assuming food production is independent in each cell, the or-
der in which cells updates are processed is unimportant; the action can
simply pass sequentially through the list of cells.

• Scheduling the animals in an IBM to move and feed. In this case, if
animals move to find good feeding locations and they compete for food,
exactly how movement and feeding are defined as actions becomes a
more interesting and important issue. These events could be simulated
using one action, in which each animal executes a method that includes
first moving, then feeding. Or, two actions could be defined: first, each
animal moves; then, in the second action, each animal feeds. These
different action designs clearly could produce different results. And the
third part of the action—processing order—now becomes important.
An action processed from largest to smallest animal would represent a
size-based dominance hierarchy, whereas an action processing animals
in random order would assume no hierarchy (Section 6.5.3 provides an
example of how these two scheduling assumptions can affect an IBM).

After actions are specified, they must be scheduled : put at the desired spot
in a queue of actions waiting to be executed (or, equivalently, in a loop that
is cycled through; Figure 5.3). From this perspective, designing an IBM’s
scheduling is seen as deciding what methods of what model entities are put
together into actions, and deciding how the various actions are scheduled
with respect to each other.
Scheduling can be organized as a hierarchy of actions: an action (e.g.,

any of the three above examples) can itself be treated as a model entity
that appears in a higher-level action. An IBM could have three actions
that execute the three basic traits of all its individuals: move, feed, and
die (“die” simulating whether the individual lives or dies each time step).
A higher-level action called “animal actions” could have a list of entities—
the animals’ move, feed, and die actions—and the order in which they are
executed. Then the “animal actions” could be included with habitat update
actions and output-producing actions into the highest-level action. (This
approach is exactly how several agent-based modeling platforms organize
models and their software; Chapter 8.)
Actions need not be considered fixed once a model starts executing. It

can be possible, and very useful, to add or remove actions from a schedule
during execution.
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Discrete time actions

Continuous time (dynamic) actions

Event
executor

Figure 5.3 Timeline metaphor for scheduling. The large horizontal arrow repre-
sents time, with actions scheduled for later in time being further to the
right. Actions scheduled at regular time steps occur at regularly spaced
intervals, each interval being one time step. In this example, three ac-
tions are scheduled each time step, represented by the vertical arrows.
Dynamic actions, represented by the slanted arrows, can be scheduled
for any time—placed anywhere along the timeline. As simulated time
progresses, events march left along the timeline and are executed when
no other actions remain to their left.

5.10.2 Alternative Ways of Modeling Time and Concurrency

From the previous discussion, we see that the scheduling problem has three
main parts. First we must decide in general how our IBM will represent time:
with events happening concurrently at discrete time steps, with discrete
events happening in continuous time, or both. Next, as we design the model
and identify all the events (including those assumed to occur concurrently
each time step), we must decide how all the events that recur in the model
should be aggregated into specific actions. Finally, we must decide the order
in which concurrent actions are actually executed.

Discrete vs. continuous time: time steps vs. dynamic scheduling.—The
first major design decision for an IBM is selecting which (or both) of two
kinds of scheduling to use. Most IBMs have used only discrete time with
regular time steps. Discrete scheduling reduces a model’s complexity by pro-
viding a simple, common way to model time, similar to the use of square
grids to represent space. This approach keeps modelers from having to de-
termine exactly when each simulated event occurs; instead, all events are
assumed to happen once each time step. Time steps do not have to be of
constant size; it is easy, for example, to use alternating time steps represent-
ing daytime and night, with the number of hours represented by each step
varying over the year.
When time steps are used for scheduling, time proceeds in chunks and

the temporal relationship of events within a time step are ignored (see the
discussion of selecting temporal and spatial scales in Section 2.3). However,
some ecological processes can be represented more naturally using dynamic
scheduling, which assumes a continuous representation of time: each event
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has an exact time at which it is executed. Model time no longer proceeds in
time steps but from event to event: the computer simply executes the next
action in a queue that is ordered by time. Dynamic scheduling often works
well when actions are created and scheduled by the model entities themselves,
as simulation proceeds, instead of being predetermined and fixed.
Behavioral interactions seem like a natural application of dynamic schedul-

ing. Consider a model of competition for space, containing many small habi-
tat patches. Each patch is capable of supporting one or several individuals,
depending on the individuals’ sizes. Dominance contests determine whether
an intruder can stay in a patch and, if so, which individuals must leave. If
an individual moves into a patch containing other individuals, then a dom-
inance contest is dynamically scheduled to be executed immediately. If the
contest results in individuals moving into other occupied patches, then ad-
ditional contests are put on the dynamic schedule. Each initial movement
could therefore dynamically trigger a whole chain of contests and moves, with
contests from several chains being intermixed on the execution schedule.

Designing actions.—As an IBM is developed, the modeler identifies all
the different things that the model’s entities do. These things include not
just the traits producing behavior of the individual organisms, but also such
“overhead” activities as updating habitat and producing output. Deciding
how to aggregate all the traits and activities of a model’s entities into sched-
ule actions is a major part of the IBM’s design, one that can have strong
effects on results. Usually designing the first part of an action—the list of
model entities it affects—is straightforward. Time step actions usually act
over all the entities of the same type: all habitat units, or all individuals.
Dynamically scheduled actions may instead act on only one object: a single
individual. On the other hand, designing the second part of an action—
which of the entities’ traits or activities are executed by the action—is often
less straightforward.
Usually, the most interesting and troublesome issue in designing actions

is whether several traits of individuals should be lumped into one action or
executed as separate actions. If several traits are lumped in one action, then
the first individual will execute each of these traits, then the next individual
will execute each trait, and so on. On the other hand, if each of these traits
are separated into its own action, then all individuals execute the first trait,
then all individuals execute the second trait, etc. It is easy to see that these
two action designs could produce different model results.
In fact, synchronous vs. asynchronous updating, a well-known design issue

for IBMs and other bottom-up models (Ruxton 1996; Ruxton and Saravia
1998; Schönfisch and De Roos 1999), is a matter of how actions are designed.
Under synchronous updating, the model’s state is updated only once per time
step, after all individuals have had their effects. This is achieved by letting all
individuals sense the environment—including the state of other individuals—
as it was at the begin of the time step and by denoting the changes caused
by the individuals in a temporary image of the enviroment. Only after all
individuals have performed their traits, the state of the environment is—
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synchronously—updated by making the final state of the temporary image
the new state of the environment. For example, when modeling feeding, one
action tells all the individuals to execute their feeding trait, without updat-
ing the food availability. Then a second action causes the food availability
to be updated, subtracting what all the individuals consumed. With asyn-
chronous updating, the model’s state is updated after each individual feeds:
feeding and updating the food availability are combined in one action, so
each individual determines how much food it consumes and then subtracts
its consumption from what is available for the remaining individuals. There
are a variety of ways to implement asynchronous updating, differing in the
scheme used to select which model objects are updated when (e.g., Cornforth
et al. 2002).
Asynchronous updating appears to assume that actions are undertaken

one individual at a time (one individual feeds and reduces food availability;
then the next one feeds; etc.). However, when we keep in mind that this is
a way of modeling concurrent actions, it makes more sense to think of this
approach as representing a priority hierarchy. The order in which individuals
execute their actions reflects their priority for the resources being updated:
individuals that go first have access to all resources, while individuals that
go last get the leftovers (see the social spider model in Section 6.5.3). Syn-
chronous updating is more suited to representing situations in which the
actions of one individual has little effect on the others, or in which no hier-
archy among individuals is assumed. With synchronous updating, the order
in which individuals execute their actions has little effect on what resources
they have access to.

Scheduling concurrent actions.—The third major scheduling issue is de-
ciding how to schedule actions assumed to occur concurrently each time step,
i.e. to specify the order in which actions are executed. Most commonly, con-
currency is modeled using fixed scheduling, under which actions occur in the
same order each time step. The modeler specifies, as a very important part
of the model design, the ordering of all the actions executed each time step.

Randomized scheduling is an alternative that can be useful for avoiding
artifacts of fixed scheduling. Randomization can take place at different levels
within a schedule’s hierarchy of actions:

• A low-level action (e.g., one that tells fundamental entities in the model
such as habitat units and individuals what to do) can randomize the
order in which these entities are processed.

• Multiple traits of an IBM’s individuals can be included in one action,
but the order in which these traits are executed can be randomized
for each individual. The order of the traits changes from individual to
individual within a time step.

• A higher-level action can include several low-level actions for one group
of entities (e.g., the individuals), with the order in which these actions
are executed randomized each time step. The order in which the low-
level actions are executed changes each time step but is constant within
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a time step.

Typically, randomized scheduling is used for actions representing real
events that really happen in an unpredictable order, or when the modeler
wishes to avoid fixing the order of action execution. For example, actions
that each represent one kind of mortality could be executed in random order
because (1) there is no reason to believe any one kind of mortality would
precede another within a time step, but (2) using a fixed order biases the
frequency with which the different kinds of mortality occur. A number of
studies have shown that how actions are randomized can affect results of
simple agent-based models (e.g., Huberman and Glance 1993, Nowak et al.
1994, Cornforth et al. 2002), although it is not clear that such artifacts are
likely to be strong in IBMs rich in biological structure.

5.10.3 Design Guidance for Scheduling

Modelers must think about and document how they model time in an IBM,
in the same way that we must think about how to model space. For most
IBMs, the most important scheduling issue is how to group and order the
execution of actions that are modeled as happening concurrently each time
step. There is extensive literature and experience concerning scheduling in
the fields of discrete-event simulation, discrete mathematics, and communi-
cation systems. Readers are referred to sources such as Banks (2000) and
Fishman (2001) for additional guidance. Software platforms designed for
individual-based and discrete-event simulation (Section 8.4) provide tools to
make scheduling, and trying alternative schedule designs, easy. Following
are specific issues that most IBM developers will need to consider explicitly.

Discrete vs. continuous representation of time.—What actions should be
discretized over time, assuming they occur concurrently once each time step?
What other actions should be modeled over continuous time, using dynamic
scheduling to model exactly when they are executed? Fixed time steps
provide a common, simple way to represent processes that actually happen
concurrently over long and variable time periods. Processes that actually
occur nearly continuously (e.g., growth) are especially well represented by
fixed time steps, as are events the exact timing of which is unimportant.
Dynamic scheduling can be used to model how specific individuals perform

actions at specific times, usually within an overall time step framework.
Dynamically scheduled actions usually are only appropriate for modeling
processes that (1) occur relatively quickly compared to the model’s time
step, and (2) produce results highly dependent on their order of execution.
When dynamic scheduling is used, understanding causality in the model’s
results (Section 8.3.5) becomes an especially important issue in designing
the model’s software and analyzing the model: data on what actions were
actually executed when must be collected and analyzed to understand how
the results arose.

Designing and scheduling actions.—How should processes represented in
the IBM be organized into actions? What things that the individuals and
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other model entities do should be lumped together so that they are executed
together? And in what order should actions be executed, especially actions
assumed to occur concurrently each time step? There are no clear or gen-
eral answers to these questions, only a few common-sense guidelines. The
following sequence is often appropriate:

1. Actions updating the driving variables and environmental conditions
that individuals must adapt to. The events that individuals adapt to
must be executed before the adaptive traits are.

2. Actions executing the individuals’ adaptive traits. Individuals should
be given the opportunity to adapt to new conditions before those con-
ditions affect them.

3. Actions through which individuals are affected by environment and
each other, e.g., feeding or energy intake, growth, mortality.

4. Actions by which individuals affect the environment, e.g., by consuming
resources such as food.

5. Observer actions that report the model’s state to the user by updating
graphical displays and writing file output.

However, the details within such a general organization can be very im-
portant. When it is not clear what scheduling is most appropriate, the best
approach is to experiment with alternatives and see what effects they have.

5.11 OBSERVATION

By “observation” we refer to collecting the information from an IBM that
we need to test and use it. (Just to be clear, we are talking about observing
what goes on in the IBM, not collecting field observations for comparison to
model results.) From a software perspective (Section 8.3.3), observation is a
matter of producing the kinds of model output necessary to test the model
and conduct the analyses the model was built for.
Observation is usually trivial for simple models because they only produce

one type of output. For example, a Lottka-Volterra predator-prey popula-
tion model produces only time series of population values, one for prey and
one for predators. An IBM, however, produces many types of result: not
only population values, but also patterns of how individuals are distributed
in space, plus the state (e.g., size, condition, location, behavior) of each
individual. Our ability to test, analyze, and learn from an IBM depends
on which results we observe, yet for many IBMs it is unnecessary or even
impossible to output all the results. And specialized software is necessary
to observe some IBM results.
Because IBMs produce many kinds of results, we must think about and de-

sign methods for observing simulations. This problem often resembles a field
study design task more than a typical modeling task. We may need to think
about ecological study design issues such as the resolution and frequency of
observations, and we typically need observations at both the individual and
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population level. Ecologists are well aware that how we observe a system
can strongly affect our understanding of it, and this is as true of IBMs as it
is of natural systems.
There are at least three different perspectives for observing an IBM. Each

gives a different view of simulation results that can be useful for different
kinds of testing and analysis. The first perspective is the one typically used
in computer simulation, the omniscient perspective. One of the primary
benefits of using IBMs instead of studying natural systems is that we can
observe whatever we want to in an IBM, without error or uncertainty and
without altering the system. We can output summaries of population status,
spatial distributions of individuals and habitat, view individual behavior,
etc., at whatever temporal and spatial resolution we choose.
The second perspective is that of an individual in the simulation. We can

attach “probes” to model individuals that report the world as the individual
experiences it: what the individual senses about its habitat, its neighbors
or competitors, and itself. This perspective helps us understand why the
individuals behave as they do.
The third perspective is that of a “virtual ecologist”, a simulated observer

within the IBM that has the limitations of real observers in real ecosys-
tems (Berger et al. 1999; Grimm et al. 1999b; Tyre et al. 2001). A “virtual
ecologist” models the process of collecting data from an IBM, producing ob-
servations that can be compared to observations collected by real ecologists
in real ecosystems, or compared to omniscient observations from the same
IBM. One application of this technique is to understand the importance and
effects of bias and uncertainty in the data collection methods. Tyre et al.
used a virtual ecologist that subsampled an IBM’s habitat for the presence
of individuals, as a real ecologist would sample some but not all habitats
of a study system. A second application is to produce observations from
an IBM that are comparable to observations of a real system that were col-
lected using methods with a specific, known bias. Nott (1998) developed
an IBM to study how dynamics of a songbird population depend on habitat
fluctuations. Field data for testing the IBM consisted of counts of singing
male birds during the breeding season, from helicopter surveys. These field
data were known to poorly represent the total population because (1) the
survey technique sampled only some of the habitat; (2) only breeding-age
males were counted, not the entire population; and (3) the males do not
sing if habitat conditions are not suitable for mating. Nott simulated when
the breeding-age males would sing and a virtual ecologist that subsampled
habitat in the same way the real helicopter surveys did. The IBM was then
tested by comparing the virtual ecologist’s observations to the real survey
data.
Observation is covered only briefly here because Chapter 9 considers how

different kinds of observation are used in analyzing models, and Chapter 8
discusses software tools to implement observer capabilities.
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5.12 SUMMARY, CONCLUSIONS, AND CONCEPTUAL DE-

SIGN CHECKLIST

This chapter describes ten general concepts that help design, describe, and
understand IBMs. These concepts were identified mainly from the literature
on CAS, in which researchers search for ways to understand systems of in-
teracting, adaptive individuals. Our hope is that these concepts will evolve
into a general conceptual framework that serves some of the same purposes
that differential calculus typically serves for classical models: providing a
consistent way of thinking about models, a list of questions that guides the
design of models, and an efficient way to describe and communicate models.
These concepts are nowhere near as clearcut and tidy as calculus, which is
to be expected because IBMs are nowhere near as restricted in their ability
to address complexity as differential equation-based models are.
Many of the issues discussed in this chapter are different ways of address-

ing the question of how mechanistic different parts of an IBM should be. In
reality, everything that organisms are and do emerges from the interactions
among their genes, their neurons, and their environment. It is never prac-
tical or necessary to simulate such low-level emergence, so many behaviors
must be imposed at some level. The objective of this book is to develop
a general approach for addressing how individual behaviors and system dy-
namics emerge from lower-level traits. Therefore, we cannot say exactly
what dynamics should be emergent vs. imposed, how detailed and mecha-
nistic fitness measures should be, what processes should be represented as
stochastic, etc. Instead, we hope to help establish a framework that helps
modelers find appropriate answers to these questions for the systems and
patterns they study.
We also hope that these concepts encourage modelers to constantly think

about the real organisms and system they are modeling as they address
model design issues. A great advantage of IBMs is that we can look to the
real biology for answers to many modeling questions. Instead of mathemat-
ical tractability or data-fitting being primary modeling concerns, the ecol-
ogist’s understanding of what really happens in nature can be (along with
the problem the ecologist is trying to solve) a primary source of guidance in
deciding what approaches to use in an IBM.
The conceptual framework presented in this chapter is summarized in the

following checklist. We hope the checklist will have at least three major
benefits. First, it can organize the process of designing IBMs and make the
process more efficient. Thinking about how to address each of the concepts
in the checklist should help modelers produce better IBM designs in less
time. Each item in the checklist is an issue that will need to be considered
in model design. The checklist should help the modeler identify and consider
these important design decisions as early as possible, and explicitly.
A second benefit of the checklist is that its concepts can provide a com-

mon terminology and framework for communicating models. Documenting
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how each question in the checklist was answered can be an efficient way to
describe the most important characteristics of an IBM. This benefit is very
important because conventional ways of describing models (mainly, by listing
equations and parameter values) do not capture the essence of IBMs. De-
scribing what outcomes of an IBM emerge from what underlying processes
may, for example, be the single most important thing to understand about
an IBM.
Finally, reviewers of IBMs, or proposals to develop IBMs, can use the

checklist as an evaluation tool. Reviewers can evaluate modelers’ under-
standing of IBMs by checking how thoroughly these concepts have been
dealt with. Did the modeler recognize and explicitly address key concepts?
Are the proposed approaches for dealing with key concepts appropriate?
The checklist by itself cannot determine whether an IBM (or proposed IBM
design) is good or bad, but it provides a framework for evaluating how appro-
priate an IBM’s design is for the problems the IBM is intended to address.

5.12.1 Conceptual design checklist

Emergence

(1) Which processes in the IBM are modeled as emerging from a mecha-
nistic representation of adaptive traits of individuals? Do the system-level
phenomena the IBM is designed to explain emerge from individual traits, or
are they imposed by rules that force the model to produce a certain result?

Adaptation

(2) What adaptive traits do the model individuals have to improve their
potential fitness, in response to changes in themselves or their environment?

(3) Which adaptive traits are modeled as direct fitness-seeking, with in-
dividuals making decisions explicitly to improve their expected success at
passing genes on to future generations?

(4) Which adaptive traits are modeled as indirect fitness-seeking, in which
individuals make decisions to meet a specific objective that indirectly con-
tributes to future success at passing genes on?

Fitness

(5) For traits modeled as direct fitness-seeking, how complete is the fit-
ness measure used to evaluate decision alternatives? The fitness measure is
the individual’s internal model of how its expected fitness depends on which
alternative it chooses. Which elements of potential fitness— survival to re-
production, attainment of reproductive size or life stage, gonad production,
etc.—are represented in the fitness measure? Is the completeness of the fit-
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ness measure consistent with the IBM’s objectives?

(6) How direct is the fitness measure? What variables and mechanisms are
used to represent how an individual’s decision affects its future fitness? Is
the choice of variables and mechanisms consistent with the IBM’s objectives
and the biology of the system being modeled? Does the fitness measure have
a clear biological meaning? Does the fitness measure allow the individual to
make appropriate decisions even when none of the alternatives are good?

(7) How is the individual’s current state considered in modeling fitness con-
sequences of decisions?

(8) Should the fitness measure change with life stage, season, or other con-
ditions?

Prediction

(9) In estimating future fitness consequences of their decisions, how do in-
dividuals predict the future conditions (internal as well as environmental)
they will experience? Do the simulated prediction methods produce realistic
behavior while being biologically realistic? Are prediction methods appro-
priate for the time scales used to model fitness-seeking? Do the individual’s
predictions make use of memory? Of learning? Environmental cues?

(10) What tacit predictions are included in the IBM? What assumptions
are implicitly embedded in the tacit predictions?

Interaction

(11) What kinds of interaction among individuals are assumed? Do indi-
viduals interact directly with other individuals? (With all others or only
with neighbors?) Or are interactions mediated, e.g., through competition
for a shared resource? Or do individuals interact with a “field” of effects
produced by neighbors?

(12) What real interaction mechanisms, at what spatial and temporal scales,
were the IBM’s interaction design based on?

Sensing

(13) What variables (describing both their environment and themselves)
are individuals assumed to sense or “know” and consider in their adaptive
decisions?

(14) What sensing mechanisms are explicitly simulated? Does the IBM
represent the actual sensing process?



g-r May 17, 2004

A CONCEPTUAL FRAMEWORK FOR DESIGNING INDIVIDUAL-BASED MODELS 115

(15) If sensing is not simulated explicitly, what assumptions are made about
how individuals “know” each sensed variable? With what certainty or ac-
curacy are individuals assumed able to sense each variable? Over what
distances?

Stochasticity

(16) Are stochastic processes used to simulate variability in input or driving
variables? Is stochasticity preferable to using observed values? Is it clearly
desirable for these inputs or drivers to be variable?

(17) What traits use stochastic processes to reproduce behavior observed
in real organisms? Is this approach clearly recognized and used as an em-
pirical model?

(18) What variable low-level processes are represented empirically as stochas-
tic processes? Is the variability important to include in the IBM?

Collectives

(19) Are collectives represented in the IBM? Collectives are aggregations
of individuals (flocks, social groups, stands of plants) included in an IBM
because the state and behavior of an individual depends strongly on (a)
whether the individual is in a collective, and if so, (b) the state of the col-
lective.

(20) How are collectives represented? Do collectives occur only as phe-
nomena emerging from individual behavior, or are individuals given traits
that impose the formation of collectives? Or are collectives represented as
explicit entities with their own state variables and traits?

Scheduling

(21) How is time modeled in the IBM: using discrete time steps, contin-
uous time, or both? If both are used, is dynamic scheduling use for events
that happen quickly compared to the model’s time step and are highly de-
pendent on execution order?

(22) What model processes or events are grouped into actions that are ex-
ecuted together? Do these actions produce synchronous or asynchronous
updating of the model?

(23) How are actions modeled as happening concurrently actually executed?
What actions are on a fixed schedule, in what order? Are some actions
executed in random order? What basis is provided for these scheduling de-
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cisions?

Observation

(24) What kinds of model results must be observed to test the IBM and
meet its objectives?

(25) From what perspectives are observations of results taken: omniscient,
model individual, or virtual ecologist?
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Chapter Six

Examples

By operating the model the computer faithfully and faultlessly
demonstrates the implications of our assumptions and informa-
tion. It forces us to see the implications, true or false, wise or
foolish, of the assumptions we have made.

Daniel B. Botkin, 1977

6.1 INTRODUCTION

In the preceding chapters we deal with concepts and strategies for developing
IBMs and conducting IBE, but now it is time to look at some IBMs in
action. So many IBMs have been developed in recent years that we were
easily able to assemble a mosaic of case studies that illustrates our ideas of
how IBE is done and the kinds of things to be learned by doing IBE. This
chapter presents examples of IBMs that have already been developed and
used, which also shows us what the future should look like. The example
IBMs address a broad range of ecological systems and questions, but are not
intended to provide a representative overview of all existing IBMs. IBMs
have been reviewed from a methodological perspective by: Huston et al.
1988; Hogeweg and Hesper 1990; Breckling and Matthes 1991; DeAngelis
and Gross 1992; Ford and Sorrensen 1992; DeAngelis et al. 1994; Judson
1994; Breckling and Reuter 1996; Grimm 1999, Grimm et al. 1999b; and
Uchmański 2003. Reviews of IBMs in specific disciplines include: DeAngelis
et al. 1990; Shugart et al. 1992; Van Winkle et al. 1993; Dunning et al.
1995; Liu and Ashton 1995; Czárán 1998; Kreft et al. 2000; Wyszomirski et
al. 1999; Werner et al. 2001; and Huse et al. 2002a.
The main focus of this chapter is on ecology: illustrating the kinds of

questions typically addressed with IBMs and the kind of answers typically
obtained. However, we also examine many methodological issues. The ex-
amples illustrate the IBE framework of pattern-oriented modeling, theory
development, and modeling concepts that we laid out in chapters 2–5. None
of the examples can, by itself, provide a comprehensive case study of our en-
tire IBE framework because this framework did not exist when the example
models were developed. Fortunately, however, most elements of our theoret-
ical and conceptual framework of IBE were applied more or less intuitively
in the case studies we examine. We point out how each of the examples pro-
vides a good illustration of at least some part of the modeling cycle, the use
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of patterns to guide design and analysis of IBMs, or the development and
application of IBE theory. Together, the case studies provide many good
examples of all the topics addressed in previous chapters.
An especially important methodological objective is showing how the con-

cepts developed in Chapter 5 (emergence, adaptation, fitness, etc.; summa-
rized in the “Conceptual Design Checklist” of Section 5.11) can be used to
describe and evaluate IBMs. These concepts are a more rigorous and coher-
ent way to describe and think about the many essential characteristics of
IBMs that cannot be captured just by listing equations. The concepts help
us compare the essential characteristics of different IBMs so we can integrate
what we learn from each into a higher understanding and theory of IBMs in
general. And, although our objective in this chapter is not to critique the
IBMs we examine, we show that the Conceptual Design Checklist clearly is a
powerful way to identify conceptual weaknesses in IBMs. Especially, it helps
us identify assumptions that were left unstated or unjustified, and suggests
alternatives to the traits—models of key individual behaviors—included in
the IBMs. Therefore, at the end of some of the following sections we step
through the checklist to describe and compare the sections’ IBMs using the
concepts and terminology of Chapter 5. In later sections we simply use these
concepts and terms throughout our discussion of example IBMs.
We do not describe the example IBMs in full detail, instead focusing on

the problem each IBM addressed, the overall modeling strategy and model
structure, and elements of the model relevant to the issues raised in the
preceeding chapters. The following sections 6.2–6.9 each describe IBMs re-
lated to an ecological theme; within a theme some models are presented
in greater detail while others are considered only briefly. The themes are
in a sequence which loosely corresponds to increasing hierarchical levels of
ecological organization.

6.2 GROUP AND SOCIAL BEHAVIOR

The models in this first theme do not fall into the typical realm of ecology,
which studies systems at time scales greater than the life span of individ-
uals. Instead, these models address behavior (as do the IBMs presented
by Camazine et al. 2001). We nevertheless include these models because
they illustrate with particular clarity important issues of individual-based
modeling, including imposed versus emergent behavior, the use of currencies
and patterns for modeling, and the hypothesis-testing approach to develop-
ing theory. And, of course, it is important to examine how behavior can be
modeled because the fundamental axiom of IBE is that population dynamics
emerge from individual behavior (Chapter 4). The models presented here
are about flocking and schooling behaviors and the structure of societies in
primates.
Fish schools are an example of collectives (Section 5.9). Many animal

species form such collectives or large groups (flocks, herds, swarms, schools,



g-r May 17, 2004

EXAMPLES 119

etc.), which move and behave as coherent entities (Krause and Ruxton 2002).
Obviously, these collectives result from the behavior of the individuals, but
how? One possibility is that collectives are organized by some master indi-
vidual, or master plan. For example, fish schools typically move more or less
linearly, so one could assume that all the fish follow one or several leaders,
or that they all are directed by the same environmental cues, or that each
fish knows about how the school should move and adjusts its behavior to
cause the expected movement of the school. These approaches assume that
the school is either organized by a leader, or follows an environmental tem-
plate (Camazine et al. 2001), or that the behavior of the school is hard-wired
into the behavior of the individuals. However, empirical evidence indicates
that neither leaders nor environmental templates account for the existence
and behavior of the schools. And the assumption that schooling behavior is
hard-wired into the individuals is unrealistic because it requires unrealistic
assumptions about what an individual can sense: typically, an individual
will have only local information about the number, position, and velocity of
the individuals in its immediate neighborhood, but it will not know the size
of the entire school or how the school moves as a whole.
Fish schools and similar collectives are thus prototypes of self-organized

systems (Chapter 11 in Camazine et al. 2001). Their properties and behavior
emerge from the behavior of the individuals but are not directly coded into
the individual’s behavior. Each fish does not know or care about the prop-
erties of the school, but only about its own state and that of its immediate
neighbors. Nevertheless, the school emerges from this individual behavior.
On the other hand, the relationship between individual and school behavior
is not one-sided but mutual. The behavior of the individuals causes emer-
gence of the school, but the school determines the structure of the neighbor-
hood of the individual. The same mutual relationship between individual
behavior and system properties determines the structure and dynamics of
ecological systems, although in ecology this relationship usually is harder to
identify and understand because ecological systems are more complex and
diverse. Modeling self-organized collectives is thus a kind of test bed for the
methods for modeling ecological systems that we propose in chapters 2 to 5.

6.2.1 Reynold’s Boids

The “Boids” model of Reynolds (1987) is not only a very popular illustration
of emergence (numerous implementations of Boids are available on the Inter-
net), but also very useful: its algorithm has been used to generate animated
herds, flocks, and other effects in Hollywood movies. The Boids model is
typical of many agent-based models in that it does not attempt to repre-
sent any specific system, but its purpose is instead simply to demonstrate
that collectives resembling bird flocks or fish schools can emerge from simple
behavioral rules of individuals. The goal of Reynolds was to reproduce flock-
like behavior with as simple a model as possible. The model rules are based
on biologically reasonable assumptions, which reflect both general properties
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of flocks (collisions are very rare; most of the time, neighboring individuals
move in more or less the same direction, with more or less the same velocity)
and the perspective of the individual (see the modeling heuristic described
in Chapter 2: “Imagine you are inside the system.”).
In Boids, model individuals (“boids”) move in two-dimensional space by

following three general rules (Reynolds 1987):

1. Avoid collisions with neighboring boids and environmental obstacles
(“collision avoidance”).

2. Attempt to match velocity with neighboring boids (“velocity match-
ing”).

3. Attempt to stay close to neighboring boids (“flock centering”).

The two features making these rules biologically plausible are that they
specify individual behavior, not the behavior of the flock; and that they refer
to the local environment of an individual: only the nearby, easily perceived,
neighbors of an individual have an influence on its behavior.
To implement the three general rules, further assumptions have to be

made (see, for example, Huse et al. 2002b). An implementation of Boids
must specify how an individual determines which other boids are “neigh-
bors” to perceive and respond to; whether all neighbors have equal influence
or whether influence is weighted by distance; how velocity matching and flock
centering are implemented; how the three rules are prioritized and weighted
(e.g., by parameters describing the relative “strength” of each rule in deter-
mining the boid’s direction and speed); and what constraints are placed on
the boid’s velocity and acceleration.
Boids is a fascinating demonstation of the emergence and self-organization,

and such demonstrations are indispensible to inspire a new kind of thinking
about complex adaptive systems (Waldrop 1992). However, from a scientific
point of view, Boids is unsatisfactory for several reasons. Only one set of
theories, or model rules, of individual behavior is used, instead of contrasting
alternative theories to see which theories are best (Chapter 4). No patterns
of real flocks are specified as currencies by which one can assess the “quality”
of the model output (Chapter 3; see also Section 9.4.1). The model provides
only logical possibilities (“it may be that real flocks work like Boids”) but
not much evidence for whether Boids really does capture how real flocks
work. And, finally, what are realistic assumptions and parameter values for
the exact implementation of Boids’ three general rules? For example, one
could define a boid’s neighborhood to be so large that the individuals know
the centroid of the entire collective, which is unrealistic. Reynolds (1987)
notes that with such an extreme neighborhood the behavior of the flock
became unrealistic, but how is the range of perception that produces flock-
like behavior in Boids related to the range of perception of real individuals?
All of these limitations arise not because Boids was poorly conceived;

instead, they are a consequence of Boids being intended to demonstrate a
concept, not to represent a specific natural system. Boids has been one
of the most influential of all IBMs because it so clearly demonstrates how
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complex system behaviors can arise from simple, realistic traits of interacting
individuals. But in IBE, demonstrations are only the first step from which we
want to proceed and learn something about the real world— which is exactly
what our next example, the fish school model of Huth andWissel (1992, 1993,
1994; Huth 1992) does. Their fish school model is a pioneering work that
anticipated many elements of IBM design, pattern-oriented modeling, and
IBE theory development.

6.2.2 The Huth-Wissel Model of Fish Schools

The Huth-Wissel IBM of schooling behavior in fish is also described and
discussed in detail by Camazine et al. (2001; Chapter 11) as an example
of self-organization in biological systems. Here, we focus on the research
program, the modeling concepts and techniques underlying the model, and
on the way the model was analyzed.
The modeling project started with an extensive survey of the empirical

and theoretical literature on fish schools (Huth 1992). This survey had two
main objectives: to identify alternative theories about the behaviors of in-
dividual fish that produce schooling, and to identify patterns which could
be used as currencies for testing those theories upon implementation in an
IBM. The theories tested by Huth and Wissel assume that individuals can
sense only a limited neighborhood. As in a previous model (Aoki 1982), the
range of perception of a fish is divided into three circular zones, character-
ized by their radiuses r1, r2, and r3. If a fish senses another fish within its
repulsion zone—the distance r to the neighbor fish is smaller than r1—the
fish turns by up to 90˚ to avoid collision with the neighbor; fish turn to
swim parallel to neighbors sensed in the parallel zone (r1 < r < r2); and
fish swim toward neighbors sensed in the attraction zone (r2 < r < r3).
These three rules correspond to the three general rules of Boids: collision
avoidance, velocity matching, and flock centering. However, the behavioral
rules in the Huth-Wissel model (unlike Boids) are stochastic: the turning
angle and new velocity chosen by a fish each time step is drawn randomly
from a normal distrubtion, the mean of which is calculated from the three
navigation rules. Since the degree of stochasticity in individual navigation
behavior is unknown, the standard deviations of these two normal distribu-
tions are model parameters whose values must be calibrated by examining
their influence on properties of the school.
Huth and Wissel identified several patterns observed in real fish schools to

use as currencies in comparing alternative models of fish behavior. The main
currencies are quantitative patterns: polarization (p) and nearest neighbor
distance (NND; Figure 6.1). Polarization is defined as the average angle
of deviation between the swimming direction of each fish and the mean
direction of the entire school (Huth and Wissel 1992); p is 0˚ if all fish swim
in exactly the same direction, and p approaches 90˚ as there is more and
more variability in swimming direction. Values of p observed in real schools
are in the range of 10˚-20˚. The value of NND reflects the compactness of
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the school, being the average distance between a fish and its nearest neighbor.
In real fish schools, NND is typically about 1-2 times the average length of a
fish. In addition to these quantitative currencies, Huth and Wissel observed
the model fish graphically (e.g., Figure 6.1), allowing them to qualitatively
evaluate whether the IBM produced behavior that looks like real fish schools.

p=81°, NND=1.0 BL p=72°, NND=1.1 BL p=62°, NND=0.8 BL

p=51°, NND=1.0 BL p=41°, NND=0.6 BL p=30°, NND=0.9 BL

p=20°, NND=0.5 BL p=12°, NND=0.4 BL p=2°, NND=0.6 BL

Figure 6.1 Visualization of the two “currencies”, polarization (p) and nearest
neighbor distance (NND) used in the Huth-Wissel fish school model;
BL: body length. (After Huth 1992.)

In simulation experiments closely resembling the IBE theory development
cycle (Chapter 4), Huth and Wissel (1992) contrasted two theories of school-
ing behavior. One theory assumes that fish respond only to one neighbor
(the closest neighbor, or the neighbor most directly in front; Aoki 1982); the
second theory is that fish respond to the average orientation and swimming
speed of all their neighbors. It would be very difficult to test these two
theories convincingly using experiments on real fish; but Huth and Wissel,
by implementing both theories in their IBM and comparing results to their
quantitative (p and NDD) and qualitative currencies, showed that the aver-
aging theory was in all aspects more realistic than the one-neighbor theory.
In a second set of experiments, Huth and Wissel examined the sensitivity

and robustness of their results, using methods similar to those discussed in
Chapter 9. First, robustness to uncertainty in parameter values was analyzed
by varying all the IBM’s parameters over wide ranges. Most parameters were
found to have broad ranges over which their effect on school properties was
negligible. Second, robustness to the model’s structural uncertainty was
examined by simulating more complicated alternatives to some of the IBM’s
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simple, ad hoc assumptions. For example, the simplifying assumption that
the response to neighbor fish changes abruptly as r exceeds r1, r2, and r3
was replaced by smooth transitions between avoidance, parallel orientation,
and attraction. This analysis found none of the more detailed theories to
perform better than the simple ones (Figure 6.2).
The important general lesson to be learned from these simulation exper-

iments is that we should not be afraid to start an IBM with simplistic or
ad hoc theories for adaptive traits of individuals—as long as we then use
appropriate patterns and data as currencies for testing the theories. Huth
and Wissel convincingly showed that their theory for how individual fish
navigate by sensing neighbors is a simple yet robust model of fish schooling,
and they rejected the “single neighbor” theory as a viable alternative.
However, this whole theory-testing procedure could still be viewed as a

kind of sophisticated fitting process: the theories are adjusted until the
IBM’s results fit the observations. The problem then is, as with any sort of
fitting, that the fit could be good while the theories are still a completely
wrong depiction of how real fish make navigation decisions in schools. How
could Huth and Wissel make a strong case that their IBM has more to
offer than a good fit to a few observed patterns? First is by reviewing the
empirical literature on how schooling fish actually sense and interact with
neighbors (also summarized by Camazine et al. 2001), which shows that there
are physiological mechanisms corresponding to the IBM’s assumptions. Real
fish really do sense and interact with each other in different ways—avoiding,
aligning, and attracting—at different distances. Second, the case can be
strengthened considerably by looking for independent predictions of the IBM
which provide evidence that the model is structurally realistic (Chapter 3;
Section 9.9). If a model can reproduce a variety of patterns which were
not used at all in model design and parameterization, then we can be much
more confident that the model captures the essential structures of the real
system. Huth (1992) made independent predictions of the following observed
characteristics of real fish schools:

• Relationship between NND and size of the school: larger schools tend
to have smaller NND.

• Shape of the school: schools often are ellipsoidal; herring schools, for ex-
ample, have a ratio of 3:3.1:1 of length in swimming direction:width:height.

• Position preference: individual fish have no particular preference for a
certain position in a school.

• Leading position time: individual fish are at the front of a school for
very short times.

• Distance to first, second and third nearest neighbor: herring, for exam-
ple, have a relationship of these distances of 1:1.2:1.4.

• Relationship between NND and average volume per fish.
• Relative position of neighbors, quantified as the angle between swim-
ming directions of neighbors in both the horizontal and vertical dimen-
sions.
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Figure 6.2 (a) Polarization (p, in degrees) and (b) average nearest neighbor dis-
tance (NND, in body lengths) of simulated fish schools for ten versions
of the Huth-Wissel model. p = 0 ◦ corresponds to a school with all fish
oriented in the same direction. (After Huth 1992.)
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• Existence of sub-groups which show a strong correlation in behavior,
whereas members of different subgroups show only a weak correlation.

For most of these independent predictions, the match between the IBM’s
results and observation was convincing (Huth 1992). For the other predic-
tions there were either problems with interpreting the data or the observa-
tions were restricted to a certain experiment with a certain species so that it
was not clear that the observed behavior was general. Together, the indepen-
dent and the primary IBM predictions and the literature on real fish behavior
make an overwhelming case that the Huth-Wissel model captures—despite
its ad hoc nature and extreme simplicity—the essential individual behav-
iors giving rise to real fish schools. Note also that most of the independent
predictions concern what we refer to as ‘weak patterns’ (Chapter 3). These
patterns are not particularly striking and each by itself could probably be
reproduced by many model designs. The point of pattern-oriented modeling
is that attempting to reproduce all these seemingly weak patterns simul-
taneously is in fact a powerful way to find the best model structures and
theories. A further lesson is that the weak patterns found in different parts
of a system are often interconnected: once we find an appropriate theory for
key adaptive traits, many patterns emerge simultaneously because they are
all a consequence of the same traits.
The Huth-Wissel model shows with particular clarity that the success

of an IBM does not depend so much on formulating the model, as most
beginners believe, but on analyzing it. Because this IBM (in contrast to
Boids) addressed real systems, the modelers could pose alternative theories
and then test them against observed patterns. Through their simulation
analyses, Huth and Wissel were able to refine their theory for the individual
navigation decisions that produce emergent schooling behaviors and make a
strong case for its generality and usefulness. Next we look at a study that
adapted the general theory of Boids and the Huth-Wissel schooling model
to address a real ecological management problem.

6.2.3 The CluBoids Model of Huse Et Al.

In Chapter 4 we claimed that one advantage of the IBE theory development
cycle is that once an adaptive trait has been rigorously tested in an IBM,
it becomes part of the toolbox of IBE and can be used as a building block
for other IBMs addressing different systems or questions. Here we describe
an example of how the building blocks established by Boids and the Huth-
Wissel model were used to tackle a related question about fish schools.
The model is about the Norwegian spring-spawning herring stock (Huse

et al. 2002b), which typically overwinters at the same location year after
year. However, in the past 50 years there have been three abrupt changes
in overwintering location. According to the ‘adopted-migrant hypothesis’,
juveniles migrating for the first time learn the location of spawning and
overwintering areas by schooling with older individuals and return to these
areas in subsequent years (McQuinn 1997). There is an important pattern in
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the three sudden changes in overwintering location: they occurred in years
in which adult abundance was very low but recruitment of juveniles very
high. Therefore, Huse et al. hypothesized that in these years the relative
proportion of older individuals in the schools may have been so low that
they were no longer able to “steer” the school to their learned overwintering
areas. Instead, the school found new overwinter locations more or less at
random and returned to them in subsequent years.
To test this hypothesis, an established fish school model was needed. Huse

et al. decided to base their schooling simulation on Boids because of Boids’
familiarity (in fact, Huse et al. developed their software by just modifying one
of the many implementations of Boids) and simplicity. Huse et al. refer to
their model as “CluBoids” (herring belong to the genus Clupea). To test the
adopted-migrant hypothesis of why overwinter location changed when the
relative abundance of experienced migrants was very low, Boids was modified
so the modeler could make a small proportion of the fish (representing the
older fish who learned their overwintering location) move in a directed way
to a certain location while the other (juvenile) fish exhibit normal schooling
behavior without any specific direction. Then the modeler could see how the
tendency of the whole school to follow the “directed” fish depended on what
proportion of the whole school was “directed”. The graphical interfaces used
to control and observe behavior are shown in Figure 8.1.)
Schools of 150, 300 and 450 individuals were analyzed. To standardize

the initial conditions of the simulation experiments, the model was run until
the school circled, a behavior also occasionally observed in real fish schools.
While circling, the school has no net movement in any direction. Then, a
selected number of fish was chosen randomly and made to stop following
the Boids behavioral rules and instead move directly towards one specified
position. The behavior of the remaining fish, which still followed their nor-
mal Boids-based navigation rules, was then observed. Only when the entire
school followed the directed individuals was the behavior noted as a school
response. In most cases the school responded either completely or not at
all. The simulation experiment was repeated while varying the number of
directed fish (Figure 6.3).
The response of the CluBoids school to directed individuals showed a sharp

threshold: when fewer than 3% of fish were directed, the school never fol-
lowed, whereas when more than 7% of fish were directed the school always
followed. This threshold was the same for all three school sizes analysed. Fur-
ther simulation experiments showed that the threshold at which the school
followed the directed individuals varied with model parameters (especially
parameters determining which fish are sensed as neighbors and how rapidly
fish can move and accelerate), but the threshold-like response was robust to
parameter changes.
What can be learned from CluBoids? Is it just a Boids-like demonstration

model? Unlike Boids, CluBoids addresses a specific system and problem, so
it does have the potential to provide ecological understanding. Huse et al.
(2002b) only took CluBoids for one quick loop around the modeling cycle,
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Figure 6.3 Response of CluBoids schools to directed movement of some individ-
uals. Each plotted point represents five experiments in which the
CluBoids aggregated into a school, and then a certain percent of the in-
dividuals (indicated by the X axis) was directed to a specific location.
The Y axis indicates the fraction of experiments in which the entire
school followed the directed individuals. (After Huse et al. 2002b.)

testing the IBM against only one pattern: the observed tendency for herring
to change overwintering locations when the ratio of experienced to inexpe-
rienced migrants was very low. This first loop showed that the theory of
herring school migration behavior embodied in the IBM is promising and
suggests additional studies that could further validate the theory. At the in-
dividual level, the analysis could be strengthened by using a less-simplified,
more realistic model of schooling behavior, perhaps the Huth-Wissel model
parameterized for herring. Environmental considerations could be brought
into the IBM. First, studies could test the alternative hypothesis that envi-
ronmental change (e.g., in currents) causes the herring to change overwinter-
ing locations (a question addressed inconclusively by Corten 1999). Second,
environmental conditions could affect the schooling behavior; especially, if
herring migrate in darkness then schooling behaviors driven by vision will be
affected. At the system level, further studies could focus on testing the the-
ory that the herring schools usually are “steered” by experienced migrants:
are there unique characteristics of “steered” schools that could be produced
in IBMs and observed in real herring?
For IBE in general, the lesson from this example is that it is not necessary

to reinvent the wheel: established theories of how system behaviors emerge
from individual traits can be used as building blocks for new IBMs. The
ability to use established theory was especially important for the Norwegian
herring study because (like many ecological systems) it is extremely difficult
to collect data on the individual fish and even on the entire schools. It would
have been practically impossible to build an IBM of this system entirely
“from scratch”, yet Huse et al. were able to develop important understanding
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by applying established IBE theory. We expect to see many more building
blocks similar to the fish schooling theory emerge as the theory development
cycle of IBE is applied more routinely and consciously in the future.

6.2.4 Hemelrijk’s DomWorld Model

A defining characteristic of fish schools is that they are “anonymous”: indi-
viduals respond to the presence and activity of neighbors, but not to their
identity; in most cases the identity of neighbors is not even known. In con-
trast, living in social groups usually implies that group members know each
other individually or at least know the social rank of other members. There-
fore, modeling social behavior is more complex than modeling schooling
behavior because the internal models used by the individuals for decision-
making are more complex. Here we describe the IBM of primate social
groups of Hemelrijk (1999). The model addresses one important aspect of
sociality, hierarchy, which means that individuals vary in their “rank”, which
determines their access to limited resources. The gradient of the hierarchy
differs among species, or societies, so that Vehrencamp (1983) used the terms
‘despotic’ and ‘egalitarian’ to distinguish between societies with steep vs.
flat hierarchies. Macaques are often used to study social hierarchy because
some macaque species are despotic and some egalitarian. Thierry (1985,
1990) supposed that differences between despotic and egalitarian species are
a consequence of the higher intensity of aggression and nepotism in despotic
macaques. Hemelrijk (1999) studies an even more parsimonious version of
Thierry’s hypothesis: that differences between despotic and egalitarian so-
cieties might arise only from different intensities of aggression.
The rationale of Hemelrijk’s modeling approach is identical to that used

by Huth and Wissel (1992) for their fish school model: “patterns of inter-
actions at a group level arise from local interactions between individuals
and their environment. By interacting, individuals change each other and,
therein, their social environment. In turn, the developing social structure
feeds back to the individuals and shapes their interaction, etc.” (Hemelrijk
1999, p. 361). Hemelrijk thus assumes: (1) social structure is not imposed—
coded directly in individual traits—but emerges from simpler traits for how
individuals interact; and (2) several seemingly independent aspects of social
structure, which previously were assumed to result from independent mech-
anisms, are all interconnected consequences of the same traits (just as many
different characteristics of fish schools were explained by the same navigation
traits in the Huth-Wissel model).
The design of Hemelrijk’s model Dominance World (“DomWorld”) was

strongly influenced by the pioneering IBMs of Hogeweg and Hesper (1979;
1983). In Hemelrijk’s model, the world is folded as a torus so it has no
boundaries. The individuals, which are male or female, have a range of vi-
sion of 120˚ and a maximum distance to perceive other individuals of 50
spatial units (parameter MaxV iew). The individuals move and interact
with other individuals following a set of rules. Scheduling of the individuals
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actions is asynchronous: each individual is “activated” (its movement and
interaction actions are executed) and the world’s state updated before the
next individual is activated. To determine the order in which individuals
are activated, the individuals each draw a “waiting time” from a uniform
distribution. Individuals are activated in order of ascending waiting time;
however, individuals are activated again sooner if a dominance contest (de-
scribed below) occurs nearby.
Each individual behaves according to the following rules. How an in-

dividual interacts with a neighboring individual depends on how close the
neighbor is.

• If another individual is detected very close (within the “personal space”),
the activated individual decides whether it will start a dominance con-
test, which it may win or lose (according to rules described below). The
individual that wins a contest moves towards its opponent by one dis-
tance unit and randomly turns by 45˚ to the right or left to reduce the
chance of repeated interactions between the same partners. The loser
responds by fleeing.

• If another individual is detected within the near distance (but beyond
the “personal space”), the activated individual just continues its move-
ment.

• If another individual is detected at a far distance (within MaxV iew)
the activated individual moves towards this neighbor.

• If no other individuals are within MaxV iew, the individuals turn by
90˚ to the left or right to search for others.

The core of the model is the dominance interactions. Each individual has
a variable (Dom) representing its dominance, the capacity to win a contest.
When (according to the above rules) an activated individual must decide
whether to start a dominance contest with an individual in its personal
space, it executes the following additional rules.

• The activated individual first predicts the outcome of the contest by
executing an internal simulation of the interaction: knowing the Dom
values of itself and the potential opponent, it calculates its relative dom-
inance as Domi

Domi+Domj
, with i and j denoting the activated individual

and its opponent. This relative dominance is then interpreted as a
probability of winning the contest. A random number is drawn and if
it is smaller than the probability of winning, the activated individual
predicts it would win and therefore starts a real contest.

• The outcome of the real contest is determined in the same way as in
the individual’s simulation. However, a new random number is drawn
for the real contest—so an individual that decides to initiate a contest
may lose it.

• Experiments on many animal species, including primates, have demon-
strated that the effects of winning and losing are self-reinforcing (hence
the stereotypes of “winners” and “losers”). Consequently, the Dom
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value of the winner is increased and that of the loser decreased:

Domi,new = Domi +
(
wi − Domi

Domi +Domj

)
StepDom

Domj,new = Domj −
(
wi − Domi

Domi +Domj

)
StepDom

where wi equals 1.0 if the activated individual won and equals 0.0 if the
opponent won.

The parameter StepDom respresents the intensity of aggression: “In line
with the larger rank differences in despotic rather than egalitarian societies,
high values imply a large change in Dom value . . . and, thus, indicate that
single interactions may strongly influence the future outcome of conflicts.
Conversely, low StepDom values represent low impact” (Hemelrijk 1999, p.
363). In the simulation experiments, ‘fierce’ and ‘mild’ species are distin-
guished by their StepDom values: 0.8 and 1.0 for fierce females and males,
respectively; 0.1 and 0.2 for the mild species. The higher values for the males
reflect their physiologically superior fighting abilities. At the beginning of
the simulations, all individuals of the same sex have the same Dom value.
Simulation experiments with StepDom values representing fierce species

did indeed produce a broader distribution of Dom values than did exper-
iments with StepDom representing mild species (Figure 6.4). This result
means that the intensity of aggression by itself can explain the emergence of
egalitarian vs. despotic hierarchies in the IBM: when StepDom was high, the
society diverged more strongly into winners and losers. A counter-intuitive
secondary result was that ranks overlap more between the sexes in fierce
than in mild species, so that males are dominant over fewer females in fierce
species (illustrated especially by the dominant female at the end of the sim-
ulation in Figure 6.4b).
The most interesting feature of DomWorld is the emergent patterns that

have a striking similarity to observations of despotic vs. egalitarian macaque
species: simulations of fierce species produced larger differences in rank be-
tween contestants, less spatial cohesion, and therefore, fewer dominance con-
tests and more rank-correlated behaviour. Because these patterns were not
used for developing or parameterizing the model, they can be considered
independent predictions indicating that the model captures key structures
and processes of a real system. Other patterns produced by DomWorld are
partially supported by observations.
DomWorld shows that not only ecology, but also disciplines focusing on

behavior—ethology, behavioral ecology, sociobiology—are likely to gain im-
portant new insights from IBE. The classical methods of behavioral ecology,
which focus on single, isolated traits, may not be able to explain the emer-
gence of group-level behavior as a consequence of one, or several interact-
ing, individual traits. The DomWorld IBM and its analysis by Hemelrijk
(1999) closely follows our IBE program to show how complex system-level
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Figure 6.4 Differentiation of Dom-values for mild (a) and fierce (b) model species
(male: grey; female: black). (Modified after Hemelrijk 1999; data
courtesy of C. Hemelrijk.)
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phenomena—dominance hierarchies—can arise from relatively simple indi-
vidual traits. Further articles about DomWorld and related models include
Hemelrijk (2000a, b; 2002).

6.2.5 Summary and Lessons: Group and Social Behavior

What can we learn in general from these example IBMs addressing group
and social behavior? First, these IBMs show that IBE can be a powerful
way to develop theory for individual behaviors, especially behaviors that
produce strong system-level patterns. Even simple IBMs can provide a richer
environment for testing and falsifying alternative theories of behavior than
we can often obtain in the laboratory or field. Of course, IBE is most
powerful when it links patterns observed in the laboratory or field with
individual-based simulation to develop and test theory for individual traits.
It is noteworthy that none of the four IBMs presented in this theme was

designed for a specific species or ecological situation. Rather, they are more
or less generic. Boids loosely represents flocking birds, but has also be used
(by ecologists and movie animators) for schooling fish, flocking bats, and
stampeding wildebeest; CluBoids was motivated by observations of specific
herring stocks, but contains no herring-specific details; the Huth-Wissel IBM
is a generic model of fish school behavior and uses patterns from differ-
ent species to validate the model; and DomWorld includes no species- or
situation-specific elements, though it is designed to reproduce differences
between egalitarian and despotic species of macaque.
Thus, these IBMs clearly show that the generality of an IBM is determined

by the generality of the patterns it is designed to reproduce. Flocking and
schooling behavior and social hierarchies maintained by dominance contests
are common phenomena observed in many different species. Certainly, there
are differences among species and situations in these phenomena, but the
IBMs presented here focus on what is general, not on what is specific. On
the other hand, these IBMs are not so general that they cannot be tested
anymore: their ‘points of departure’ (Grimm 1994) are patterns that a model
either does or does not reproduce, not general logical questions that do not
clearly suggest testable hypotheses.
Another lesson from the models presented here is the power of the IBE

theory development cycle: DomWorld is fascinating, but less convincing
than the fish schooling model of Huth and Wissel because the theory de-
velopment cycle was not applied to DomWorld (at least in Hemelrijk 1999).
Huth and Wissel’s tests of alternative theories and parameter values pro-
vided important insights. With DomWorld, the relative significance of the
different aspects of the model remains unclear and we do not know how ro-
bust the study’s conclusions are to changes in parameter values and model
design. The way in which dominance interactions are modeled is fascinating
but nevertheless completely ad hoc. Hemelrijk (1999) solved her research
problem very well without needing to contrast alternative theories for the
dominance interactions of social animals, but her analyses leave us itching
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to learn more about how the IBM could be refined and how well it could
represent real macaque societies (see Fitness, below). Of course, DomWorld
is the first model of its kind and we expect that much will be learned from
models inspired by it.
Another important issue illustrated by these case studies is communi-

cation of IBMs to the scientific community. An important measure of a
model’s credibility and success is whether they give rise to ‘offspring’: do
other researchers reimplement and modify the model to perform their own
experiments and address new questions? Boids has been amazingly success-
ful in this way, as a quick search of the internet will show. The Huth-Wissel
model has likewise been successful, being reimplemented and modified by,
e.g., Reuter and Breckling (1994), Inada and Kawachi (2002), and Kunz and
Hemelrijk (2003; for a review of schooling models, see Parrish et al. 2002).
This re-use was possible because the model is completely and unambigu-
ously described in Huth and Wissel (1992). DomWorld is, like most IBMs
in ecology, more complex and cannot be fully described in a journal article.
Chapter 10 discusses ways we can deal with this communication problem.
Finally, we apply the Conceptual Design Checklist of Chapter 5 to the

four models of this theme. This checklist is intended as a framework for
describing key characteristics of IBMs, especially those characteristics that
set IBMs apart from classical models and are not well captured in equations.
We apply the checklist only to highlights of each IBM, not in a complete
fashion.

Emergence.—All four models are good examples of what should be a uni-
versal characteristic of IBMs: that the system-level properties of interest
(the patterns that the IBMs were built to explain) emerge from decision-
making traits of the individual instead of being imposed by individual-level
rules that force the properties to appear. What makes these four models all
good examples of emergence is that each is sharply focused on one particular
kind of system behavior and contains no individual behaviors except those
from which the system behaviors of interest emerge.
Boids has become a classic illustration of emergence. The flocking behav-

ior of a system of boids meets the criteria for emergence stated in Section 5.2:
flocking behavior is a system-level behavior, not just the sum of individual
properties, and flocking behavior is of a different type (a spatial pattern)
than individual properties (individuals cannot have spatial patterns, only
locations). Most importantly, while we might anticipate some kind of flock-
ing behavior from the three rules individual boids use to navigate, many
characteristics of the flock’s behavior cannot be predicted just by looking at
the individual-level rules. In fact, the flock’s emergent behavior depends on
the number of boids and the characteristics of the space as well as on the
traits of the boids. These same conclusions apply to fish schooling model of
Huth and Wissel, which differs from Boids mainly in the details of individual
traits for navigation.
The CluBoids model allows the modeler to strongly impose a key behavior

of some individuals: moving, when directed by the modeler, straight to a
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specified location. However, the system-level behavior of interest— whether
the school does vs. does not follow the directed individuals— remains an
emergent property.
Similarly, DomWorld was specifically designed so that the system-level

behaviors of interest (social hierarchy patterns) emerge from individual de-
cisions and interactions. DomWorld also provides an example rule that might
be suspected of “imposing” important system outcomes: individuals execute
their interaction behavior more often if other dominance contests occur in
their neighborhood (see Scheduling below). It would be interesting to test
how strongly this rule affects outcomes such as the emergence of cooperation
documented by Hemelrijk (2000a, b).

Adaptive traits.—The three schooling and flocking models are excellent ex-
amples of adaptive traits modeled as indirect fitness-seeking. The “adaptive
traits” of these IBMs, as defined in Section 5.3, are the rules individuals use
to decide which direction, and with what speed, to move. These rules con-
stitute an adaptive trait in the sense that they are a model of an important
decision-making behavior that contributes to individual fitness. The rules
for movement are clearly not direct fitness-seeking, in which the individual
makes a decision by considering its estimated probability of passing genes on
to future generations. Instead, these adaptive traits are designed to explain
and reproduce an observed behavior: forming flocks or schools. Flocking
and schooling is widespread among many animals, so we assume this behav-
ior has some fitness benefit to individuals (e.g., reducing predation risks or
providing navigation to overwintering and spawning areas). By modeling
how individuals form schools or flocks, we reproduce observed behavior that
has indirect fitness benefits.
In the DomWorld model, the key adaptive behavior of individuals—the de-

cision of whether to initiate a dominance interaction with another individual—
is made explicitly to increase the individual’s dominance. The model’s au-
thor does not provide an explicit reason for assuming individuals make deci-
sions with the objective of increasing their dominance, but most reasonable is
an implicit assumption that more dominant individuals have higher expected
fitness. Therefore, this adaptive trait can be considered direct fitness-seeking.

Fitness.—The concept of fitness applies to DomWorld, which uses direct
fitness-seeking to some degree. In the conceptual framework we develop in
Chapter 5, the fitness measure used by individuals in DomWorld is their
prediction of whether they would win or lose a potential dominance contest.
Individuals decide whether to start a dominance contest by considering only
whether they expect to win or lose the contest.
This assumption is certainly reasonable for a minimal model to explain

how social hierarchies arise, but thinking about the assumption within the
fitness context suggests some alternative assumptions that could be inter-
esting to consider. First, whether or not an individual expects to win a
contest is not a direct measure of how the individual’s Dom state variable
changes as a result of the contest. The change in Dom depends also on
the difference in Dom values between the two contestants—beating a more
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dominant opponent provides a greater increase in Dom. This dependence
suggests an alternative fitness measure: the change in an individual’s Dom
value expected from a contest. Perhaps individuals should avoid contests
unless they expect an increase in Dom above some threshold value. Further,
what if an individual’s expected fitness—its likelihood of passing genes on to
future generations—is not a linear function of the individual’s dominance?
Perhaps only individuals with top Dom values get to reproduce—how would
DomWorld’s results be different if it assumed individuals made their deci-
sions considering such nonlinearities? (Or, what if the relation betweenDom
and reproductive potential also emerges from individual interactions?) Such
alternative fitness measures would be interesting to compare if DomWorld
was developed further to explain more details of particular species’ social
structure.

Prediction.—Boids and the fish school models do not include prediction:
individuals make decisions only in reaction to their current environment. In
contrast, DomWorld is one of the few IBMs that represent explicit predic-
tion: individuals predict the outcome of a potential dominance contest when
deciding whether to initiate the contest. Prediction is modeled by assum-
ing individuals have an internal model of dominance contests that exactly
matches the “real” contests—except that both the internal model and the
real contest have a strong stochastic element (discussed below) that causes
predictions to sometimes be wrong.

Interaction.—Interaction is an especially important concept for flocking
and schooling models and for DomWorld. Direct interaction among individ-
uals—dominance contests—is obviously a key characteristic of DomWorld.
The individuals in Boids, CluBoids, and the Huth-Wissel fish school model
all interact with a “field” of effect produced by their neighboring individuals.
Boids was an important early illustration of how strong system-level patterns
can emerge from local interactions among individuals. Huth and Wissel used
their IBM to test alternative theories for interaction, showing that the “field”
theory is better than the assumption that each individual interacts with only
their nearest neighbor.

Sensing.—The flocking and schooling IBMs assume that individuals adjust
their speed and direction to match that of their neighbors, and (in Boids)
to avoid obstacles. Therefore, these models must assume that individuals
can detect neighbors, identifying the other individuals within a specified
sensing range. These models must also assume individuals “know” the speed
and velocity of each neighbor, and where obstacles are. The individuals
in DomWorld are also assumed able to identify other individuals within a
sensing range; and individuals can detect, without error, the Dom value of
neighbors that they could initiate a contest with.
None of these models simulates sensing processes explicitly; individuals

are simply assumed to “know” the characteristics of neighbors without error.
However, the validity of fish schooling models has been greatly strengthened
by other research (summarized by Camazine et al. 2001) that elucidates
the physiological mechanisms real fish use to sense each other at various
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distances; this research shows that Huth and Wissel’s assumptions about
sensing are very reasonable. In fact, Huth and Wissel (1994) showed that
the model could be made to reproduce schooling characteristics of different
fish species simply by altering the parameters representing sensing ability.

Stochasticity.—Boids and the fish schooling models provide an interesting
contrast concerning stochasticity. The schooling model of Huth and Wis-
sel includes a stochastic component in the decision fish make about which
direction to swim, presumably to represent the imperfect ability of fish to
determine and execute the “best” swimming behavior. In contrast, Boids
and CluBoids have no stochastic component, yet still typically display con-
siderable variability in velocity among individuals. How important it is to
introduce stochastic “noise” into the navigation decision, for various model
applications, is an unresolved question.
DomWorld uses a strong stochastic component in both the internal model

of dominance contests that individuals use to predict contest outcomes, and
in the “real” contests. Presumably, the stochasticity in the real contests is in-
tended to represent important factors that (a) could cause a more-dominant
individual to lose a contest, yet (b) are either unpredictable or unimportant
to simulate explicitly. It is not clear what the stochasticity in the inter-
nal model used to predict contest outcomes is intended to represent. This
stochasticity could represent uncertainty in the individual’s ability to sense a
potential opponent’s Dom value (or in its knowledge of its own Dom value);
however, the way in which random numbers are used in the prediction more
closely resembles error in the individual’s ability to predict contest outcomes
when Dom values are known. This question is interesting because the high
degree of stochasticity in the predicted and real contest outcomes undoubt-
edly has a strong effect on DomWorld’s system behavior.
DomWorld also uses stochasticity to decide which direction individuals

turn when they change direction. Undoubtly, these decisions are stochastic
to introduce a desirable level of variability in movement while avoiding the
enormous additional complexity that would be needed to model how real
animals make movement decisions.
All of these models illustrate perhaps the most common use of stochasticity

in IBMs: to initialize some of the individuals’ state variables (e.g., location,
direction, speed). In DomWorld, the individuals’ initial value of Dom was
intentionally not randomized; this decision was made to ensure that the
social hierarchy emerged only from interactions.

Collectives.—Boids and the fish schooling IBM of Huth and Wissel are
examples (along with others described by Camazine et al. 2001) of IBMs de-
signed to explain how collectives emerge from adaptive traits of individuals.
The collective of course is the flock or school: these are entities arising in
the model that have strong internal interactions and cohesion, and charac-
teristics (e.g., size, density, shape) that can be understood independently of
its individuals.
CluBoids is a rare example of another representation of collectives: using

emergent collectives in an IBM designed for a real ecological management
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problem. CluBoids was not designed to explain fish schooling, but to under-
stand how emergent schooling might affect herring migration. While other
IBMs in this chapter (especially, Section 6.3) include collectives, none of
the others except CluBoids use emergent collectives to address some other
problem.

Scheduling.—The flocking and schooling models illustrate how scheduling
details may or may not be important. These models simulate a contin-
uous process—movement and adjustment of movement velocity—by using
discrete time steps. The exact model results therefore depend on the exact
order in which decisions and movement occur each time step. CluBoids,
for example, used one action executing over all individuals: each individual
checks its neighbors, calculates its movement, and then moves; so the next
individual’s movement decision can depend on how its neighbor just moved
(asynchronous updating ; Section 5.10). Then, after the movement action has
been executed for each individual, the graphical outputs are updated so the
observer can see the new state of the model. To make these IBMs completely
reproducible, their authors need to exactly describe their scheduling (which
the authors did not all do).
DomWorld uses less typical scheduling (although this model’s scheduling

was also not thoroughly described by its author) because its dominance in-
teractions are discrete events, not a continuous process. The model defines
an action as one individual’s full cycle of detecting neighbors, moving, decid-
ing whether to initiate a dominance contest, and executing the contest. The
order in which individuals execute this action is randomized. The schedule
is also dynamic in one way: the next action for an individual is bumped up
in the queue of actions awaiting execution if a dominance contest occurs in
the individual’s neighborhood (which was assumed to make it more likely
that the individual will be encountering another individual soon).

Observation.—For Boids, CluBoids, and the Huth-Wissel model, the sys-
tem characteristics of primary interest were spatial patterns of individual
locations and movement. Therefore, it was absolutely essential to observe
these patterns via graphical displays. The primary outputs of interest for
DomWorld were distributions of Dom values among individuals, which are
best observed from file output. DomWorld therefore could be (and appar-
ently was) implemented without graphical output. However, spatial pro-
cesses are critical to DomWorld and the model could be understood and
tested more thoroughly if the locations of individuals were easily observable.

6.3 POPULATION DYNAMICS OF SOCIAL ANIMALS

In the preceeding theme we looked at IBMs addressing problems and time
scales for which demographic processes—birth, death, immigration and emig-
ration—play no role. Now we turn to IBMs with full population dynamics:
individuals not only behave but reproduce, die, and move among local popu-
lations and the population’s demographics change over time. These changes
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can include such striking phenomena as outbreaks, cycles, extinction, re-
colonisation, and formation of spatial patterns. But why, to model these
demographic phenomena, use IBMs instead of classical models, which repre-
sent population dynamics directly? The answer is that classical population
models are of little use in either of two situations: (1) if we lack the long and
variable time series of site-specific census data needed to fit the parameters
of a classical model; or (2) if individual behavior is so complex and impor-
tant that the assumptions of classical models—especially, that demographic
rates are constant or dependent only on population density—are obviously
inappropriate.
Animals that live in groups with a social hierarchy are examples of the

second (and often the first) of these two situations in which classical models
are of little use. Group living often involves behaviors, such as territoriality
and reproductive suppression by alpha animals, that strongly affect popu-
lation dynamics. Obviously, individuals of such species are different from
each other, interact locally, and base their behavior on complex decisions,
so IBMs seem natural for studying their population dynamics. This theme
examines three IBMs that represent populations made up of social groups
having dynamics determined by individual behavior.

6.3.1 The Woodhoopoe Model of Neuert Et Al.

This IBM addresses the effects of behavior on population dynamics of the
green woodhoopoe (Phoeniculus purpureus), a territorial and group-living
bird with reproductive supression and cooperative breeding (du Plessis 1992;
Stacey and Koenig 1990). The modeling project addressed two problems.
First, how do subdominant individuals decide whether they should under-
take a scouting foray in hopes of finding a vacant territory where they can
assume the alpha position and reproduce? On such forays, predation risk
is much higher than in the home territory, but there is a chance that the
subdominant individuals detect free alpha positions somewhere else. Sec-
ond, how do spatial population dynamics depend on this individual scouting
behavior? The need to link behavior with population dynamics makes IBMs
an obvious approach; in fact we use this model in Section 1.2 as an example
of how IBMs can help us understand how population dynamics arise from
individual traits.
In the IBM that Neuert et al. (1995) developed, individual birds are char-

acterized by their sex, age, the territory in which they live, and their social
rank within the territory. Space is divided into 30 territories arranged in
a linear sequence (representing a long, narrow, riparian forest), and time
divided into steps of one month. Within the territories, individuals die ac-
cording to constant mortality probabilities, the alpha couple reproduces, and
the surviving juveniles are assigned the lowest ranks (separate rankings and
hierarchies apply to males and females). If a bird dies, all less-dominant
birds in the territory move up the hierarchy by one position. Because only
the most-dominant alpha couple reproduces, subdominants have a strong
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incentive to become alpha, which they can do in three ways. (1) Waiting
until death of all the more-dominant individuals moves them up to the al-
pha position. This strategy is especially viable in small groups (some have
only three or four birds). (2) Detecting and occupying a free alpha position
in adjacent neighbor territories (“free” means that the alpha has died and
there is no subdominant of the same sex in the territory). (3) Undertaking
scouting forays in search of free alpha positions in distant territories. The
first two ways to become alpha involve merely waiting, but the third requires
a decision to undertake a different behavior.
How to model this adaptive behavior—deciding whether to undertake

scouting forays—clearly is key to the IBM’s success. To devise a theory
for this behavior, Neuert et al. used the modeling heuristic: imagine that
you are inside the system (Section 2.2). If you are a subdominant wood-
hoopoe, what information do you have and how do you use it to decide
whether to go on scouting forays? Neuert et al. assumed that the wood-
hoopoes know their age and rank, and consequently use a simple decision
trait: the older the bird and the lower its rank, the higher its prospensity to
undertake scouting forays. This heuristic theory was contrasted with “null
theories” where the prospensity to undertake forays was constant and inde-
pendent of age and rank, or completely random. As shown in Figure 1.1,
only the heuristic theory was able to reproduce the group size distribution
observed in the long-term field study of du Plessis (1992).
At this stage the modeling project stopped studying theories for the scout-

ing behavior, simply because its resources were too limited. However, the
IBM clearly presents opportunities for more analysis of this theory. For ex-
ample, there is an opportunity to make and test independent predictions of
the theory: the model was designed and parameterized for a riparian for-
est, with territories in a one-dimensional chain. Field observations were also
available for a two-dimensional space (a savanna), where mean group size
was significantly higher (du Plessis 1992). Could the simple heuristic the-
ory for scouting behavior explain how this difference in group size emerges
only from differences in spatial structure, or would additional factors such as
predation pressure or food availability need to be added to the IBM? Simi-
larly, more elaborate alternatives could have been posed and tested against
the original heuristic theory, as we discuss under Fitness in Section 6.3.5.
Finally, the theory’s assumptions about what individuals sense could have
been tested: do birds really know the age and rank of themselves and others?
How would the theory, and model dynamics, change if birds actually know
less, or more? What if the birds could sense and respond to variation in
predation risk when deciding whether to undertake forays?
All of these potential analyses could have been very interesting, and they

illustrate how an IBM, once built, can be used as a laboratory for endless ex-
perimentation. However, they would have required considerable additional
resources, especially field observations providing patterns capable of falsi-
fying competing theories (Section 3.3.3), and in some cases could make the
IBM considerably more complex. With its original heuristic theory for scout-
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ing decisions validated at least by its ability to reproduce an observed group
size distribution, the IBM was judged to be sufficiently valid to address for
the project’s second ecological problem: understanding how spatial popula-
tion dynamics depend on scouting behavior. This second problem does not
require quantitative predictions, but an understanding of the relationship
between individual- and population-level behavior. Scouting forays are ob-
viously important for the fitness of individual birds, but are they important
for the population’s distribution and persistence?
One of the most powerful and fascinating characteristics of IBMs is that

these “what are the consequences of behavior X” questions are easy to an-
swer. In our virtual population, we perform an experiment where behavior
X is simply turned off—something we cannot do with real organisms (Sec-
tion 9.4.5). Neuert et al. examined the effects of scouting forays by simply
turning off the ability of woodhoopoes to make forays, so birds can dis-
perse only into adjacent territories. The consequence is that the territories
lose their spatial coherence, i.e. the population becomes fragmented by gaps
of unoccupied territories (Figure 6.5a). Further experiments showed that
restoring even the smallest prospensity to undertake scouting forays restores
the population’s long-term spatial coherence (Figure 6.5b). To understand
this result, consider the fate of a single, isolated group: the mean lifetime of
such a group is very limited—it goes extinct within about 10 years. Scout-
ing birds recolonise territories where local extinction occurred, and only if at
least about 15 territories are linked via scouting birds is the entire population
able to persist for longer times. The woodhoopoe population is thus a clas-
sic example of a metapopulation with local extinctions and recolonisations
(Hanski 1999).
The simulation experiment shows that individual behavior is crucial for

metapopulation persistence. Without long-distance forays, recolonisation
is too local and slow to keep up with the rate at which empty territories
are produced by local extinctions. It is striking to see in Figure 6.5 that
this effect is more a qualitative than quantitative phenomenon: even the
smallest number of “spatial correlators”, i.e. birds that link the fate of remote
territories, is sufficient to produce an unfragmented, coherent population and
long-term persistence.
There are several general lessons about IBE from the woodhoopoe exam-

ple. First, of course, it is a clear example of how we use IBMs to address the
fundamental ecological problem of understanding how population dynamics
emerge from traits of individuals (Levin 1999). We use IBMs to test theory
for individual traits, then use the validated theory in simulation experiments
to understand population dynamics. A second lesson is that a structurally
realistic population model can be developed even if there is no time series
of census data to fit the model to. Instead of being based on information
encoded in a census time series, the IBM is based on the variety of informa-
tion we have about the population’s spatial structure (with group territories
as the spatial units), the traits of individuals (with scouting decisions being
the decisive behavior), and the subpopulation structure (the distribution of
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Figure 6.5 Dependence of spatial coherence on dispersal behavior in the wood-
hoopoe model of Neuert et al. (1995). Each pixel column shows occu-
pancy of 100 linearly arranged territories in one year: empty territories
are black and lighter shading indicates higher occupancy. Panel (a)
displays a simulation with no long-distance scouting forays; the popu-
lation becomes fragmented and goes extinct over time. In panel (b) the
individuals’ prospensity for long-distance forays is only 2% of that in
the full model; the population contracts in spatial extent but does not
become extensively fragmented. Panel (c) displays the full model: the
population retains its initial spatial characteristics. (Figure produced
by H. Hildenbrandt.)
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group sizes).
Finally, this example illustrates a key point about the modeling cycle

(Section 2.3): the critical importance of knowing when to stop elaborating
and testing a model and start using it to solve problems. There were many
ways to further test and refine the IBM’s theory for how birds decide whether
to scout for free territories, and it would have been easy for the project to
get bogged down in finding the “best” or most “realistic” rules for individual
behavior. But in this case, the modelers realized that solving their ultimate
problem did not require more than the simple heuristic theory and that their
resources were best spent, after validating the theory against the available
pattern, by moving on to address their population-level problems.

6.3.2 The Marmot Model of Dorndorf Et Al.

The alpine marmot (Marmota marmota) is also a group-living, territorial
mammal. The most striking behavior of this species is that it hibernates
about half of the year. The long-term field study (15 years) underlying
the marmot model (Arnold and Dittami 1997; Frey-Roos 1998) addressed
questions of behavioral ecology, in particular the reasons for group living.
But the data set from this study is so rich (687 marmots were marked in-
dividually and 98 were radio-tracked during dispersal) that Dorndorf (1999;
Grimm et al. 2003) decided to develop an individual-based population model.
(Stephens et al. [2002a, b] independently developed a similar IBM, based on
the same data set but addressing different questions.)
The main question to be answered by the model was how group living

affects the population’s viability, i.e. its ability to persist for long times
(e.g., 100 years) with high probability (e.g., 99%). A comparison to other
marmot species suggests that group living is an adaptation to long, cold win-
ters: solitary-living marmots live in much more benign environments than
the alpine marmot. Group living thus seems to somehow buffer the environ-
ment’s harshness. In the model, environmental harshness is quantified as the
length of a winter because long winters increase the risk that an individual’s
fat reserves are not sufficient to survive hibernation until spring. The IBM
represents environmental variation by drawing each winter’s length from a
normal distribution with a specified mean and variance.
The marmot IBM is very similar to the woodhoopoe model, although the

spatial structure and individual behavior are more complex. The marmots
have state variables for sex, age, life stage (adult, yearling, juvenile), rank
(alpha or subdominant), and territory in which they live. Territories within
500 m of each other form a cluster because subdominant individuals can sense
free alpha positions in territories up to 500 m away. Subdominants can try to
occupy such free alpha positions without having to undertake long-distance
dispersal, which subjects them to high risk. The entire population consists
of several clusters, which are linked by those individuals that do undertake
long-distance dispersal.
Marmots often stay in their home territory for some years, but their repro-
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duction is suppressed by the alpha individuals. Leaving the home territory
corresponds to the scouting forays of the woodhoopoes, with the important
difference that the dispersers do not return: either they find an alpha posi-
tion somewhere else or they die the next winter because they cannot survive
winters solitarily. Dispersing marmots can either detect and occupy a free
alpha position, or they can try to evict an alpha individual—about 15% of
changes in alpha position are due to the eviction, not death, of the alpha
individual.
The most important difference between the marmot and woodhoopoe

IBMs is in the trait individuals use to decide whether to leave the home
territory. The extensive marmot field data allowed the modelers to develop
an empirical, stochastic model for this trait. From the data, age-specific
probabilities of leaving could be estimated; for example, 21% of 2-year-olds
leave each year and 99% of 5-year-olds leave, so 2-year-olds were assumed
to have a dispersal probability of 0.21, etc. Moreover, the benefits of group
living, an issue ignored in the woodhoopoe model, could be extracted from
the field data. For example, the probability P of winter mortality for an
alpha individual was determined, via logistic regression, to be:

P = [1 + exp (6.82− 0.286A− 0.028WS + 0.395SUBY )]−1 (6.1)

where A is the alpha’s age, WS is winter length, and SUBY the number
of subdominants (including yearlings) hibernating in the group. (Similar
equations were developed for yearlings and juveniles.) This equation states
that winter mortality risk increases with the length of winter and with age;
but decreases with the number of marmots in the group, a positive effect of
group living on survival. The mechanism for this benefit of group living is
energetic: the balance between heat production and loss in the hibernaculum
improves with the number of individuals.
Once assembled, the marmot IBM was applied to the problem of how

group living affects population persistence by comparing its predictions of
mean time to extinction to theory. The theory of stochastic population
dynamics predicts that if “demographic noise” (variation in abundance due
to random variation in demographic processes, i.e. birth, death, immigration
and emigration) prevails, the mean time to extinction increases exponentially
with the capacity of the habitat (Lande 1993; Wissel et al. 1994; Figure
6.6a). Therefore, extinction of the marmot poplation due to demographic
noise is very unlikely beyond a threshold of, say, 15 territories. If, however,
environmental variation has strong effects on abundance, the increase in
mean time to extinction with habitat capacity is much slower, in the extreme
only logarithmic (Figure 6.6a).
In the marmot IBM, group living buffers the population from environmen-

tal variation so effectively that population fluctuations are almost entirely
determined by demographic noise. The relation between mean time to ex-
tinction and habitat capacity observed from the IBM shows that the popu-
lation does not “perceive” the harshness of the winter and the variation in
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Figure 6.6 Relation between mean time to extinction (a measure of persistence)
of small populations and habitat capacity. (a) Theory predicts an ex-
ponential increase in persistence if the population is affected by demo-
graphic noise but not environmental noise (upper curve); if environ-
mental noise has strong effects, the increase in persistence with habitat
capacity is much less (lower curve). (b) Results of the marmot model
of Dorndorf (1999) and Grimm et al. (2003). In the full model, group
living affects winter survival as described in Equation 6.1; when this
effect is deactivated persistence increased little with habitat capacity.
(After Grimm et al. 2003.)



g-r May 17, 2004

EXAMPLES 145

winter length (Figure 6.6b). And, with further simulation experiments, it is
easily shown that the positive effect of group living on survival is responsible
for this buffering: if the effect of group size is removed from the equations
for overwinter mortality risk, the extinction-habitat relation resembles the
theoretical curve for strong environmental variation (Figure 6.6b). The high
persistence of alpine marmot populations thus appears to emerge from the
winter group-living behavior of the individuals.
As with the woodhoopoe model, the main validation criterion for the

marmot model was reproducing an observed group size distribution (Figure
6.7). Additional evidence of the model’s credibility was provided by the
observation that the simulated census time series were within the variation
of the observed time series. Because of the buffering effect of group living,
the correlation between winter length and population size was weak for both
the observed and the simulated time series.
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Figure 6.7 Comparison of observed and predicted (mean over 500 simulations)
group size distributions in the marmot IBM. (After Grimm et al. 2003.)

One lesson from the marmot example is that IBMs can be useful for conser-
vation biology and population viability analysis (PVA; as defined by Soulé
1986). It has been argued that simple models are best for PVA because
more detailed and complex models are too uncertain due to error propaga-
tion (Beissinger and Westphal 1998). However, simple models (e.g., matrix
models with constant fecundities and mortalities) cannot capture the crit-
ical, but spatially and temporally variable, effects of individual behaviors
like group living on population persistence. Because such effects are impor-
tant for many species, IBMs are important tools for conservation biology
(Burgman et al. 1993; Bart 1995; Matsinos et al. 2000).
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A second lesson is that we cannot equate “emergence” with “instability”.
In this IBM marmot population dynamics emerge from individual behav-
ior, and the benefit of group living on overwinter survival even provides a
positive feedback to population growth: more marmots makes overwinter
survival higher, which makes more marmots. Emergence, and especially
positive feedbacks, are often assumed to always make models unpredictable
or even chaotic—and often they do. However, in this case the simulated pop-
ulation was more persistent with respect to environmental variability with
the positive feedback than without it.

6.3.3 The Canid Model of Pitt Et Al.

Now we look at a third group of animals that live in groups, are territorial,
and have a social hierarchy with reproductive suppression: canids (wolves
and coyotes). Vucetich and Creel (1999) and Pitt et al. (2003) have con-
cluded that analytical or matrix models with fixed demographic rates are
not sufficient to support management (either preservation or suppression) of
these species. Pitt et al. (2003) developed an IBM for coyotes that is generic
enough to apply to other canid species. We examine the model because it is a
good illustration that IBMs, even for animals with complex social behavior,
can be usefully realistic without being extremely complex. In fact, this IBM
is quite simple. The model is intended to support management decisions,
but the version described here addresses no particular question; the point is
to show that the model captures essential characteristics of real coyote pop-
ulations. This example also shows how a software platform specifically for
IBMs helps describe models efficiently and unambigously, as well as making
them easier to implement.
Like the woodhoopoe and marmot IBMs, the coyote model characterizes

individuals by sex, age, social status (alpha, beta, pup), and the group
(pack) they belong to. The model considers packs but not territories, and is
not spatially explicit. The number of packs is fixed at 100, but population
abundance varies because the number of coyotes in each pack (“pack size”)
changes over time.
Also like the other IBMs in this theme, the coyote IBM’s most important

rules are for individuals leaving the group and mortality. Coyotes between
one-half and two years old have a probability of leaving their pack (either
by choice or involuntarily) that is proportional to the square of pack size,
so pack size influences dispersal behavior. Coyotes two years or more of
age do not leave their pack. Coyotes that leave their pack enter a pool
of “transients”. The mortality probability of adults was assumed to be a
nonlinear function of age, and that of pups to be constant. Mortality of
transients was assumed to increase with the total number of transients. The
number of offspring produced is assumed to decrease with pack size. All
of these rules and their parameters were based on extensive observations of
coyote packs and individuals.
The Pitt et al. model was implemented using the Swarm software library
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for agent-based simulation models, which provides tools not only for imple-
menting IBMs in software but also for organizing and describing IBMs in
standard ways (Section 8.4.3). The basic organizational structure of a Swarm
model is a “swarm”, a list of objects and a schedule of actions (or behav-
iors; Section 5.9) the objects execute. Swarm’s standard organization and
terminology helps describe the model efficiently and unambigously, which is
important for the communication of the model to the scientific community
(Chapter 10). Pitt et al. describe the schedule of actions in their model as
follows. The model uses a monthly time step, and each action is executed
once per time step.

Pack actions (executed by all packs):

• Check whether both an alpha male and an alpha female are present.
• If both alphas exist, and it is April, produce offspring: create pups, the
number of which is stochastic but also depends on pack size, and add
them to the pack.

• Check whether either alpha is replaced:

• If it is December, and there is a contender (another adult of the
same sex in the pack), both the male and female alpha coyotes are
at risk of being replaced.

• Replacement is a stochastic function with the probability of being
replaced increasing with the alpha’s age.

• If replacement occurs, the alpha becomes a transient and the con-
tender becomes the new alpha.

• Update the dispersal probability of each member according to its age
and pack size.

• Force death of pups less then 2 months old if the pack has no adults.

Pack member actions (executed by all individual coyotes that belong to a
pack):

• If the age of two months is attained, leave the den.
• If the age of six months is attained, change from pup to beta adult.
• Update the age-dependent mortality probability and determine whether
death occurs.

• If individual is a beta less than two years old, determine whether it
leaves the pack, according to its dispersal probability.

Transient coyote actions (executed by all individuals not belonging to
packs):

• Update individual’s mortality probability, depending on the total num-
ber of transients.

• Determine whether death occurs.

Pack alpha replacement actions (executed by packs that lack an alpha
individual):
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• If there are beta individuals of the appropriate sex in the pack, promote
the oldest beta to alpha.

• Otherwise, select a transient of the appropriate sex and promote it to
alpha.

• If there are no available transients, select a beta from another pack.

This way of describing a model can be very clear, concise, and unambigu-
ous. The woodhoopoe and marmot models use similar model rules (“If . . . ”)
but their rules and scheduling are harder to extract from the publications
because the rules are described in an ad hoc way.
What we also see from this description of its schedule is that the coyote

IBM is very simple conceptually: the packs and individuals do simple things
and apply simple rules. The “complexity” is more in implementing and
analyzing the IBM, not in its assumptions (true also for the woodhoopoe
and marmot models). In some ways, IBMs can be more simple conceptually
than analytical models: anyone can understand and discuss the coyote IBM’s
assumptions, whereas differential equation models include terms that can be
unintuitive, difficult to relate to everyday observations, and even hard to
understand without sufficient background in mathematics.
Pitt et al. looked at five output variables to validate their model: mean

pack size, proportion of transients, average offspring survival rate, average
litter size, and proportion of females breeding. These variables, which to-
gether provide a “fingerprint” of coyote populations, were compared to data
from several field studies of different coyote populations, without any de-
tailed calibration of the IBM’s parameters. Considering the simplicity of
the model, the match of observed and predicted values is surprisingly good
(Table 6.1). Further, a simple sensitivity analysis indicated that this vali-
dation success is relatively robust to parameter uncertainty. These analyses
indicate that the model is valid enough for addressing many management
problems, its intended purpose.
Among the conclusions drawn by Pitt et al. (2003) from the IBM is that

transient coyotes have an unexpectedly important buffering effect on popula-
tion dynamics: when abundance increases, the density-dependent mortality
of transients damps population growth; yet transients help packs maintain
their breeding potential by replacing lost alpha individuals. Given this IBM’s
initial success, it is being followed up with a spatially explicit version that
incorporates such additional factors as spatial variation in food supply (F.
Knowlton, pers. communication), expected to make the IBM applicable to
even more management problems.

6.3.4 Summary and Lessons: Population Dynamics of Social Species

Readers have no doubt noted that the woodhoopoe, marmot, and coyote
IBMs are quite similar. All have similar basic model structures: individuals
that belong to small social groups, dominance hierarchies within groups,
and links among groups provided by dispersal of individuals. In each model
the key adaptive trait of individuals is their rule for when to leave their
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group and disperse in hopes of reproducing. Even the list of individual state
variables is similar among models: sex, age, dominance status, and group.
Why are these three models so similar, despite addressing different animal

societies and ecological problems? Because they are also examples of the
main points of chapters 2 and 3: that by focusing clearly on specific systems
and study problems, and using specific patterns that capture the system’s
essence to guide model design, we can develop IBMs that include only the
most essential structures and processes. For example, social hierarchies are
essential to all three IBMs but none of them contain the dominance contests
that are the core of DomWorld, the hierarchy model we examined in Section
6.2.5. The IBMs in this theme instead just assume the presence of hierarchies
because the problems they address concern the consequences of hierarchies;
DomWorld studied the causes of hierarchies.
One reason we chose the three IBMs in this theme is that they demonstrate

both a strong and a—currently—weak point of IBMs and IBE. The strong
point is that in all three cases we gained insights which would have been hard
to be achieve without IBMs. Spatial coherence of metapopulations, the abil-
ity to buffer environmental harshness and variability, and internal structure
of populations (e.g., group size, proportion of transients)—all these proper-
ties of populations emerge from the adaptive behavior of the individuals. In
contrast to many classical models, these IBMs could be validated, not by fit-
ting them to census data, but by comparing their various kinds of results to
observed patterns of the population’s structure. The models provided theo-
retical insights but were also realistic enough to tackle applied problems. In
contrast to the belief that IBMs are always “complex”, all three IBMs are
conceptually simple: their rules for individual behavior are few, simple, and
more intuitive than many classical models. The complexity arises from the
interactions among individuals, which produce many kinds of output—group
size distributions, individual behaviors, spatial patterns, etc.—in addition to
just abundance. But this complexity did not prevent successful testing and
analysis of the IBMs.
The weak point illustrated in this theme is not a critique of any particular

model but an indicator of how new and uncoordinated IBE still is. Although
the three IBMs we examined (and many other IBMs of social species, e.g.,
Lankaster et al. 1991; Verboom et al. 1991; Letcher et al. 1998; Schiegg et
al. 2002) are similar in many ways, they were each designed from scratch,
described using ad hoc and often incomplete terminology, and implemented
in many different software platforms (Section 8.4). The woohoopoe model
was programmed in Pascal, the marmot model in C++, and the coyote
model using Swarm. As a consequence, it is much harder for us, the “clients”
of these IBMs, to understand them completely, compare them, or attempt
to reproduce them. One of the most important things ecologists can do
to help IBE mature rapidly is to adopt common modeling concepts and
terminology (Chapter 5), and share software platforms that implement the
common concepts and model designs easily and unambiguously (Chapter 8).
These three IBMs help us see the potential benefits of the IBE theory
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development cycle (Chapter 4). The IBMs all used theory for how an indi-
vidual decides to leave a home group in search of the opportunity to attain
alpha status elsewhere. Alternative theories were tested—at a very basic
level—only in the woodhoopoe model; the other two models used empirical
rules. The “problem” was the same in all three cases, and certainly is a
generic problem of group-living and territorial species: should I stay home,
which has certain costs and benefits to my potential fitness, or should I
leave, which has different costs and benefits? It seems quite likely that the
concepts of fitness-seeking we discuss in Section 5.4 could be used to pose
general theories for this dispersal decision, and that the theories could be
tested using the IBMs and field observations presented in this section. We
are unlikely to find one single theory which is applicable in all cases. But
what we should be able to add to the toolbox of IBE theory (Chapter 4)
is a family of closely related approaches that are easily adapted to specific
IBMs.
A final point illustrated by the models of this theme is how IBMs can in-

deed help integrate behavioral and population ecology. Clearly, behavioral
traits were key to the emergent population dynamics. But the woodhoopoe
IBM was used, along with observations of the population’s group size struc-
ture, to test and compare alternative theories for this behavioral trait. Not
only do IBMs let us explore the population consequences of behavior, they
provide a rich environment for testing theories of behavior.
Now, we apply the Conceptual Design Checklist as a more formalized way

to describe and compare highlights of the three IBMs of population dynamics
of social animals.

Emergence.—In all three of the IBMs, characteristics of both the social
groups (e.g., the number of individuals in each group; their extinction and
re-establishment) and the total population (total abundance, persistence)
emerge from individual traits for dispersal. However, these IBMs also illus-
trate how some system-level behaviors can be imposed by the rules for what
individuals do, a common and often desirable characteristic of many IBMs.
For example, in the marmot IBM the fraction of individuals dispersing, by
age class, is imposed by the stochastic trait for dispersal: the modelers gave
2-year-olds a 21% probability of dispersing, so we can safely expect the IBM
to predict that about 21% of age 2 marmots will disperse. Likewise, the mor-
tality rates for some kinds of individuals (e.g., non-dispersing woodhoopoes)
are fixed by the individual traits instead of emerging.

Adaptive traits and behavior.—There is an important, but perhaps subtle,
difference between the woodhoopoe IBM and the other two in the key adap-
tive trait for deciding when to disperse. In the marmot and coyote IBMs,
the dispersal behavior is modeled empirically, using stochastic rules with
dispersal probabilities developed from observations of real animals. These
rules are indirect adaptation: the traits simply cause the individuals to re-
produce observed behaviors. This means the IBM should do a good job
of representing dispersal behaviors as long as the populations being mod-
eled are well-represented by the empirical probabilities; but also means that
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these IBMs cannot be used to study the dispersal behavior’s causes, only its
consequences.
The woodhoopoe dispersal trait is only partially stochastic: the proba-

bility of dispersing increases with the individual’s age and its distance from
the top of its group’s hierarchy. This woodhoopoe trait makes sense only
as a fitness-based decision (discussed further in the following paragraph): as
individuals get older, or if they fail to approach the top of their hierarchy,
their probability of reproducing before dying becomes lower and lower so
dispersing becomes a better and better alternative. Consequently, we can
think of the woodhoopoe’s dispersal trait as direct fitness-seeking. Because
the woodhoopoe model uses at least a partially mechanistic trait for dis-
persal, it can be (and indeed was) used to study how individuals make the
dispersal decision.

Fitness.—The concept of fitness applies to the only direct fitness-seeking
trait of the three IBMs: the woodhoopoe’s decision of how often to under-
take scouting forays. The fitness basis of this trait was not explicitly stated
by the model’s authors but we can easily infer it. This trait addresses two
fitness elements. First is survival to reproduction, the apparent basis for
the trait’s assumption that birds become more likely to disperse as they get
older. As the birds get older, their probability of surviving until they can
reproduce decreases so they are more inclined to undertake the alternative
strategy of dispersing. The second fitness element is attaining social status
for reproduction: with reproductive suppression, the probability of repro-
ducing within the natal group is lower for woodhoopoes of lower rank. This
element apparently underlies the trait’s assumption that birds with lower
rank are more likely to disperse. The woodhoopoe dispersal trait is a very
indirect fitness measure. Even though it apparently considers how survival
and social status affect potential fitness, the trait includes no direct esti-
mate of how age and rank affects an individual’s expected probability of
reproducing.
Thinking about the dispersal trait as fitness-based certainly suggests some

alternative approaches that would more completely and directly estimate
(perhaps using empirical information as well as theory) how an individual’s
expectation of achieving alpha status and reproducing depends on its current
age, its social rank, perhaps other characteristics of its group and habitat,
and how often it scouts for new territories (Stephens et al. 2002a in fact
develop such a direct fitness-seeking dispersal trait for marmots). At its
most complete (and complex), a fitness measure for this trait might consider
kin selection: an individual can pass many of its own genes on by helping
ensure the survival of related individuals. If individual woodhoopoe stay in
their natal group, they may help raise the (probably closely related) offspring
of the alpha pair; so kin selection could be an important component of the
individual’s potential fitness. Of course, testing these more complete and
direct fitness measures requires observed patterns of individual and group
behavior capable of distinguishing, via simulation experiments, which of the
alternative measures are useful in what situations.



g-r May 17, 2004

152 CHAPTER 6

Prediction.—Explicit prediction is almost completely absent from these
three IBMs, which is not surprising given their reliance on empirical traits.
However, they use a subtle tacit prediction as the basis for dispersal: dis-
persal depends on individuals tacitly predicting that undertaking scouting
forays or abandoning the natal social group increases their probability of
reproducing.

Interaction.—These three models have the same type of interaction—
social hierarchies—as a fundamental characteristic. The hierarchies are an
indirect kind of interaction: alpha individuals interact with the other individ-
uals by suppressing their ability to reproduce. Dominance is not simulated
as direct interaction as it was in DomWorld. Instead, dominance in the pop-
ulation IBMs of social species is treated as an interaction field produced by
the alpha individuals: the mere presence of an alpha prevents other indi-
viduals in the group from reproducing. What is the real mechanism behind
this assumed interaction field? Social interactions at short time scales (of
the type that DomWorld was designed to investigate) are widely observed
and commonly believed to give rise to social hierarchies, even if the exact
mechanisms determining and maintaining the hierarchy and reproductive
suppression are not known.
Overwinter survival of the marmot individuals is also modeled as an inter-

action field among members of the hibernating group: the presence of mar-
mots increases the survival probability the others. In this case the mecha-
nism of interaction is clear: the rate at which each individual expends energy
is lower when more marmots hibernate together.
The marmot IBM includes one direct interaction: a subdominant marmot

can attempt to evict the alpha individual of another territory, a one-on-one
contest. In real marmots this contest for the alpha position presumably in-
volves aggressive interaction, but the IBM represents it simply as a stochastic
event.
The coyote IBM has several interesting kinds of interaction fields. The as-

sumption that young coyotes are much more likely to leave their natal packs
when pack size is high can be interpreted as representing social interactions
or competition that make larger packs less desirable for (or more likely to
eject) a young member. A second interaction field is the strong effect that
adults have on survival of pups: if all the adults leave a pack or die, the
pups are assumed to die. Presumably, the mechanism represented by this
interaction is parental care: the pups, up to an age of two months, depend
completely on adults for their survival. Third, the transient adults have a
mortality probability that depends on the total number of transients—by
joining the pool of transients, an individual changes the mortality risk of
the other transients. The mechanisms behind this interaction stated by Pitt
et al. are that transients (1) compete for resources and (2) often fight when
they encounter each other, which is more likely when density is higher.

Sensing.—The three IBMs in this theme are quite similar in how they
represent sensing—what information individuals have and how they obtain
it. The woodhoopoes are assumed to “know” their own age and rank in their
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local group’s hierarchy; whether an alpha position is free in a neighboring
territory; and, when on a scouting foray, which territories have free alpha
positions. In the marmot IBM, individuals are assumed to know their own
age and status (alpha or not); whether there is a free territory within 500
m; and, when dispersing, which territories they pass are free. Similarly, the
coyote IBM assumes individuals know their own age and social status and
their pack’s size. In addition, coyote individuals have traits that depend on
the month, so coyotes are assumed to sense the time of year. The IBMs
are also similar in not representing sensing mechanisms explicitly; instead,
individuals are simply assumed to “know” these variables.

Stochasticity.—One of the most obvious features of these three IBMs is
their extensive use of stochastic processes in individual traits (and, in the
coyote model, pack traits). Many key traits are modeled as partially stochas-
tic: whether a particular behavior is executed is determined by drawing a
random number, but the probability of executing the behavior depends on
characteristics of the individual or its environment. Important examples
include (1) the decision by woodhoopoes of whether to undertake scouting
forays, which is stochastic with the probability depending on individual age
and rank; (2) the number of pups produced by a coyote pack, a stochastic
function of pack size; (3) whether marmots leave their group, a stochastic
function of their age; and (4) mortality in all the IBMs being a stochastic
event with probabilities depending on variables such as age and social status.
These stochastic processes clearly are used because they are a simple way

to reproduce observed rates. But why were stochastic processes used instead
of imposing the rates directly? For example, why assume that each 2-year-old
marmot has a 21% probability of dispersing, instead of simply selecting 21%
of the marmots and making them disperse? Why not make the number of
coyote pups produced each year a deterministic instead of stochastic function
of pack size?
Although the authors did not always say why these traits were made

stochastic, there are several likely reasons. First is simply so events like re-
production, dispersal, and mortality appear clearly as individual traits, not
as being controlled by some model-dwelling demon with no counterpart in
nature (e.g., so each marmot decides for itself whether to disperse, instead of
some greater being selecting the marmots to disperse). Second, stochastic-
ity is used to make traits variable without having to simulate the fine-scale
(and, for these IBMs, unimportant) mechanisms causing the variability. In
the marmot IBM, it was critical to include variability in demographic pro-
cesses because one of the model’s purposes was to examine relative effects
of demographic and environmental variability on population persistence.
The marmot IBM illustrates another common use of stochasticity: repre-

senting environmental variability. Winter length, the driving environmental
variable, is drawn randomly from a statistical distribution estimated from
observed data. There are two reasons for doing so instead of simply us-
ing the historic record of observed winter lengths: the stochastic approach
allows simulations to be much longer than the historic record, and allows
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replicate simulations with different, but still realistic, sequences of winter
lengths. Both of these capabilities are essential for the model’s problem of
explaining the population’s high probability of persisting over long periods.

Collectives.—The social groups in these IBMs are clear examples of collec-
tives, but a different kind of collective than those in the schooling and flock-
ing IBMs examined in Section 6.2. In this theme, collectives—woodhoopoe
and marmot social groups, coyote packs—are explicitly represented as enti-
ties in the model. The collectives are “hardwired” and have their own state
variables: location, number of members, etc.
The coyote model is a particularly interesting example because several

important model processes are traits of the collective, not of individuals.
Beta individuals can replace their pack’s alpha individual, but there is no
individual trait for this process; instead, the pack has rules for when its
alphas are replaced. Likewise, transient individuals can take over as a pack’s
alpha, but the pack selects a transient instead of the transients having traits
for joining a pack. The pack is also assumed to have sense information: to
determine whether reproduction takes place, the pack is assumed to know
the month and whether it has an alpha male and female. To determine
whether and how one of its alphas is replaced, the pack must know whether
it contains a contending beta and which beta is oldest; and, potentially,
which transient individuals are potential alphas; and (if no internal betas
or transients are available) which other packs have betas available to fill a
vacant alpha position. And, if the pack senses that it no longer has any
adults, its pups are assumed to die. Clearly, canid packs are just groups
of individuals and have only the sensing abilities and behaviors of their
individuals; but the model’s pack traits are quite reasonable and appropriate.
The IBM implicitly assumes that social interactions within and among packs,
at time scales much shorter than its monthly step, produce behaviors that
are best represented as characteristics of the pack itself. For the problems
this IBM was intended to address, there is no need to explicitly represent the
detailed interactions that give rise to these pack characteristics. While Pitt
et al. (2003) do not attempt to explain the real mechanisms and individual
behaviors represented by the packs’ traits, they make a strong case that
these pack traits reproduce important behaviors observed in real coyotes.

Scheduling.—All three of the IBMs modeled time using conventional dis-
crete time steps—monthly for woodhoopoe and coyotes, and yearly for mar-
mots. However, only for the coyote IBM do we know from the published
model descriptions how events were organized into specific actions and how
these actions were scheduled each time step. From the description in Sec-
tion 6.3.4 we can see the list of actions executed by each pack, then each
pack member, each transient, and, finally, each pack lacking an alpha indi-
vidual. Even so, this description is not a complete depiction of the model’s
scheduling; we do not know the order in which the packs and individuals are
processed when their actions are executed.

Observation.—The primary outputs of interest for all three IBMs are pop-
ulation dynamics of social groups and the entire population. These results
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are easily observed via output files reporting such variables as number of
individuals in each group. However, spatial patterns of group size and per-
sistence are intermediate results important for testing and understanding the
dynamics of the woodhoopoe and marmot models. Normally, when spatial
patterns are important it is essential to provide graphical observation tools,
which was the case with the woodhoopoe and marmot model.

6.4 MOVEMENT: DISPERSAL AND HABITAT SELECTION

The key behavior of the social species described in the preceeding theme was
dispersal, the individual’s decision: shall I stay or shall I leave? Movement
is a key adaptive behavior of almost all species. Mobile individuals can try
to improve their fitness by finding new locations where their survival and
reproductive success are better; but even most sessile species have at least
one life stage that can move. Even if individuals have little control over their
motion, their dispersal traits (transport mechanisms, timing) often include
adaptive individual behavior as well as evolutionarily adapted genetic traits.
We distinguish two kinds of movement. Dispersal is usually considered

a one-time movement to a new, permanent location; seeds disperse from
parent plants, or animals disperse from their natal territory in search of their
own territory. Habitat selection is a continual process of mobile individuals
choosing what location to occupy while fitness benefits vary over space and
time due to processes such as weather, food production and consumption,
presence of competitors and predators, and the individual’s size and life
history state.
When traditional population ecology has considered movement of individ-

uals, it has focused on the system-level outcome of movement, for example
on the rates of dispersal or colonisation among habitat patches in metapop-
ulations. Dispersal has usually not been treated as a phenomenon emerging
from the adaptive behavior of individuals, but instead models simply as-
sume a dispersal rate, or empirical models of movement (such as the several
varieties of “random walk”) are fit to data (Turchin 1998). The main rea-
sons for this “imposed” treatment of dispersal are the following perceived
problems. (1) Multiple time scales: movement occurs over days, hours, or
even minutes, but classical population theory usually addresses demographic
change over many generations. (2) Data requirements: even if we want to
include the details of individual movement, where would we get sufficient
data to do so? (3) Complexity: if all the details of individual behavior are
important, how can we ever understand system-level properties of ecological
systems? Certainly we must simplify to learn anything. (4) Generality:
even if we could understand individual movement and its effects in some
cases, everything we learn would be situation-specific with no chance of pro-
ducing general insights. These problems are, of course, exactly why we use
IBMs. The examples in this theme illustrate that in IBE we can deal with
these problems and build useful, and sometimes quite general, models of how
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habitat variability and individual behavior interact to explain movement and
its population-level consequences.

6.4.1 The Lynx Dispersal Model of Schadt Et Al.

This example illustrates how, despite sparse data, individual-based disper-
sal models can be developed, parameterized, and applied to real ecological
management problems. The IBM addresses the Eurasian lynx (Lynx lynx ).
In the first half of the 20th century, the lynx completely disappeared from
all of Central Europe west of the Slovakian Carpathians due to persecu-
tion and the destruction and fragmentation of its habitat (Breitenmoser et
al. 2000). However, both land use and public attitudes towards large car-
nivores changed in the second half of the 20th century, allowing the slow
recovery of lynx in several European countries. In Germany, natural immi-
gration occurs in the Bavarian Forest, lynx are being reintroduced to the
Harz Forest (Wölfl et al. 2001), and reintroduction to other locations has
been vigorously debated (Schadt 2002; Schadt et al. 2002a, b). The question
is: can viable populations of lynx be reestablished in Germany? To answer
this question we need to know where lynx habitat is, the connectivity among
habitat patches, and the viability of both the local populations and the entire
German metapopulation.
Schadt and coworkers addressed these problems in a series of papers. First,

the suitability of the German landscape for lynx was assessed by developing
a habitat model (Schadt et al. 2002b). This model distinguishes between
breeding, dispersal, matrix, and barrier habitat. In total, 59 patches of
breeding habitat—forested areas larger than 100 km2, the average home
range size of lynx—were identified; 11 of these patches were larger than
1,000 km2 and thus considered potential “sources” of dispersing individuals.
Then a dispersal model was constructed (Kramer-Schadtet al. in press) and
virtual lynx were released from the source patches. They dispersed through
the model landscape until they arrived at another breeding habitat patch.
Finally, habitat and dispersal models were combined in a model of the pop-
ulation dynamics which predicted the viability and colonisation success in
the different patches, to support reintroduction decisions (Schadt 2002).
Here we only examine the dispersal model. Conceptually, the model is very

simple: spatial patterns of lynx dispersal and the rate at which lynx suc-
cessfully move among breeding patches emerge from the spatial distribution
of habitat types and the individuals’ adaptive traits for dispersal. Behaviors
such as reproduction and even interaction among individuals were consid-
ered unnecessary. In fact, dispersal rules are the only individual trait in the
IBM. Individuals decide (1) how far to move (s, the number of 1 km2 grid
cells to step through) each 1-day time step, and (2) which grid cell to move
into next.
Individuals decide how far to move each day by drawing a value of s

randomly from the probability distribution P (s):
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P (s) = φ
(
1− s− 1

smax − 1

)x

with smax the maximum number of steps, φ a normalisation factor, and the
exponent x determining the shape of the probability distribution: low values
of x correspond to linear distributions (days with few vs. many movement
steps occur with similar probability) whereas higher x makes days with few
steps much more likely. This rule was made stochastic to reproduce the
day-to-day variability in distance moved observed in real lynx.
For the second part of the dispersal trait, two theories for how lynx choose

their next grid cell were compared. Both of these theories are partially
stochastic, but differ from the simplest “random walk” models by assuming
that individuals have distinct preferences for specific habitat types. Habitat
was depicted simply by categorizing each cell as one of three types: dispersal
(habitat similar to that in which lynx have been observed), barrier (urban
areas and water bodies lynx are assumed unable to cross), and matrix (other
areas, mostly agricultural land). Both theories assume that lynx can always
sense the habitat type of the nine grid cells surrounding and including their
current cell.
Under the Habitat Dependent Walk (HDW) theory, lynx prefer dispersal

habitat to matrix habitat. The individual’s probability of moving into any
adjacent cell is equal for all cells of dispersal habitat, lower for cells of matrix
habitat, and zero for barrier habitat. The parameter Pmatrix controls the
relative probability of entering dispersal vs. matrix habitat; it can be varied
so the probability of entering matrix habitat ranges from zero to equal that
of entering dispersal habitat.
In the alternative Correlated Habitat Dependent Walk (CHDW) theory,

a correlation factor PC for maintaining the same direction within a day is
included. PC is the probability that the next cell is in the same movement
direction as the previous movement; alternatively, a random direction is
chosen. (However, staying in dispersal habitat has stronger effect on choice of
cell than does correlation in movement direction.) This theory’s assumption
that lynx tend to maintain a consistent direction through dispersal habitat
can be interpreted as a tacit prediction: lynx predict that, when they are in
desirable habitat, continuing in the same direction will likely keep them in
desirable habitat.
The traits for dispersal also include an interesting component representing

the lynx’s spatial memory: if a model lynx moves for Pmaxmat consecutive
steps in matrix habitat, it is assumed to turn around and return to the cell
where it left dispersal habitat. Without this rule, a lynx surrounded by
matrix cells has little probability of finding dispersal habitat again. This
rule can also be interpreted as tacit prediction: a lynx predicts, after be-
ing in undesirable matrix habitat for many steps, that it is more likely to
find desirable dispersal habitat if it retraces its movement instead of con-
tinuing randomly. The parameter Pmaxmat can be interpreted as describing
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the lynx’s memory-related capability to return to dispersal habitat after an
excursion into matrix habitat. A typical value assigned to Pmaxmat was 9
cells, but values up to 40 were tested.
Why are the lynx IBM’s traits for dispersal stochastic instead of assuming

individuals automatically move into the “best” cell? As with previous IBMs
we have examined, the reasons for using stochasticity are not all stated by
the authors but we can make good guesses. One reason is that the lynx are
very often choosing among equally good cells: if six of the nine available
cells are dispersal habitat, there is no other basis for choosing among the six
so the decision must be made randomly. A second potential reason for using
stochasticity is to represent uncertainty in a lynx’s ability to sense the type
of the habitat lying in each direction: a lynx dispersing through unknown
landscapes could wander into worse habitat because it does not know that
better habitat is available in the opposite direction. Finally, stochasticity in
the dispersal trait can reflect uncertainty in the categorization of habitat.
A 1-km2 square of habitat may be categorized (using remote sensing and
geographic modeling; Schadt et al. 2002b) as matrix habitat while still having
some characteristics making it desirable to lynx—perhaps a meadow that
attracts roe deer or a water source.
The conceptual basis of the dispersal trait is another interesting question:

does it represent direct fitness-seeking, with individuals moving at least in
part to improve their fitness? Or is the trait indirect fitness-seeking, de-
signed only to reproduce observed dispersal? While some components of
the trait appear loosely based on fitness-seeking (individuals prefer the dis-
persal habitat type, which presumably provides lower risks and more food
than matrix and barrier habitat; and individuals turn around and return to
dispersal habitat if they get “stuck” in matrix habitat), the primary con-
sideration in designing the trait appears to have been reproducing observed
dispersal behavior. In fact, the categorization of habitat as “dispersal” and
“matrix” habitat was based on observed behavior: Kramer-Schadt et al. (in
press) defined dispersal habitat as the habitat types that real lynx prefer
and matrix habitat as types that lynx tend to avoid.
The dispersal trait, including the two alternative theories for choosing

which cell to enter next, clearly is very dependent on several key parameters.
To compare the two theories and to calibrate parameters, the IBM was
applied to habitat of the Swiss Jura Mountains, where telemetry data from
six dispersing lynx were available (Figure 6.8). Model lynx were released at
exactly the same locations as the real lynx and followed for exactly the same
number of days the real lynx were observed.
At first glance, parameterizing this landscape-scale model using teleme-

try data from only 6 individuals (a total of 303 location observations) seems
hopeless. But Kramer-Schadt et al. (in press) followed a pattern-oriented ap-
proach, identifying multiple patterns in the data and using them to “filter”
model results (Section 9.8). None of the following four patterns is particu-
larly “strong”, i.e. has high power to distinguish among alternative model
structures or parameterizations; but used together, these seemingly weak
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Figure 6.8 Dispersal paths of six subadult lynx in the Swiss Jura Mountains. The
time lapse between location observations varies up to 20 days. Light
grey grids are dispersal habitat, dark grey are barriers. (After Schadt
2002.)

patterns were able to reduce the uncertainty in model structure and param-
eters. The patterns, and the criteria for accepting model results as fulfilling
the patterns, are:

• Habitat preference: At least 81% of movement steps must be in dispersal
habitat.

• Average daily distance moved: Average daily distance the IBM individ-
uals move must be within the range (mean ± SD: 41.7 ± 26.5 km/day)
of distances moved by real lynx.

• Avoided area: No individuals must cross the densely populated area be-
tween the Jura Mountains and the Alps, which was completely avoided
by real lynx.

• Daily distance distribution: The statistical distribution of distances
moved during a day must match the observed distribution, within a
specified tolerance range.

All the parameters were varied over wide ranges, leading to 840 param-
eterizations of the HDW model and 8400 parameterizations of the CHDW
model. For each parameterization, the model was run 100 times and the
average prediction compared to the patterns. For the HDW model, the per-
centage of parameterizations fulfilling the patterns 1-4 was: 76, 45, 58 and
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26%; but only 11% of all parameterizations fulfilled all criteria simultane-
ously; the CHDW model was slightly more robust to parameter values, with
18% of parameterizations reproducing all four patterns.
Interestingly, this parameterization exercise reduced the “good” range

only of Pmatrix, the parameter to which results were most sensitive. Pa-
rameterizations fulfilling all four criteria occurred over the full range of the
other parameters, indicating that interactions among parameters are impor-
tant. Another interesting result was that in the “good” parameter sets, smax

was correlated with x, producing high probabilities of moving short distances
yet rare events of moving long distances. This could reflect a behavior of
dispersing lynx observed by Breitenmoser et al. (2000): staying close to a
prey carcass for up to a week and then moving far the next day.
Kramer-Schadt et al. (in press) also analyzed the IBM by comparing re-

sults to additional empirical data. The values of smax in the good parame-
terizations (28 to 62 km per day) reflects data known for the Iberian lynx (E.
Revilla, unpublished analysis) and Eurasian lynx in Poland (Jedrzejewski et
al. 2002). Likewise, Pmaxmat was restricted to 5 (SD± 4) cells, corresponding
to observations of the Iberian lynx (E. Revilla unpublished analysis).
While none of these validation analyses is particularly powerful, the com-

bined evidence makes a strong case that the IBM model captures the essence
of observed lynx dispersal. The analysis also showed that the two alterna-
tive dispersal theories did not differ significantly in their power to reproduce
the observed patterns. Because the CHDW theory did not substantially
outperform the HDW theory, we can infer that habitat dependency is the
more important factor for describing movement of the lynx; correlation in
movement directions is compatible with the data, but not necessary to ex-
plain it. In the subsequent applications of the model, both versions were
used (actually, the CHDW rule was used, but it is equivalent to HDW for
parameterizations with PC equal to zero). In applying the dispersal model
to German landscapes, Kramer-Schadt et al. (in press) used 100 parameter
sets randomly chosen from the parameter sets identified as “good” in the
pattern-oriented filtering analysis.
Perhaps the most important lesson of the lynx model is that IBMs can

help us address large-scale dispersal problems using two kinds of data that
are often available: coarse, but spatially extensive, remotely sensed data on
habitat; and high-resolution tracking data for relatively few individuals over
relatively short time periods. The tracking data allow us to test traits for
dispersal of individuals in the IBM, and then we can apply those traits to
individuals moving through the huge expanses we can represent with satellite
data. The habitat data may be coarse (perhaps in spatial resolution, but
especially in the number and resolution of the habitat variables—the lynx
IBM’s habitat model was built from an existing database with seven values
for one variable: land use), but using it as Schadt et al. did allows us to
model problems of how dispersal is affected by spatial patterns in habitat.
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6.4.2 Habitat Selection Theory in the Trout Model of Railsback
Et Al.

The trout IBM of Railsback and Harvey (2001, 2002) was designed to predict
how populations (and communities of several trout species) respond to river
management: if we change a river’s temporal patterns of flow, temperature,
or turbidity; or its channel shape or food production, how will populations
respond? A wealth of literature and observation indicates that habitat se-
lection is the primary way stream fish adapt to change. Stream habitat is
highly heterogenous over short distances, and fish can rapidly find and move
to better habitat when it is available. Therefore, the trout IBM was designed
so that population dynamics emerge from the trait individuals use to select
habitat in a diverse, dynamic world.
The primary model design problem was therefore to find a good trait for

how trout select habitat from day to day as conditions change (Railsback et
al. 1999). The literature (reviewed by Railsback and Harvey 2002) makes it
clear that trout adapt their habitat selection in response to changes in both
food intake and mortality risk; and that food intake and mortality risk are
strongly affected by (1) habitat variables (depth, velocity, temperature, tur-
bidity, predator types and density, and availability of cover for feeding and
hiding—all of which can be affected by river management); (2) competi-
tive conditions (larger fish exclude smaller fish from habitat); and (3) the
individual’s state (size, energy reserves, and life stage). Habitat selection
in fish has often been modeled empirically, assuming that the habitat types
most often used by fish offer the most benefits. However, among the many
problems with the empirical approach (Garshelis 2000; Railsback et al. 2003)
is the virtual impossibility of developing empirical models that consider all
these habitat, competitive, and individual variables. Therefore, Railsback et
al. (2003) turned to theoretical approaches.
Habitat selection by trout and other salmonids has been studied exten-

sively in behavioral ecology. Railsback et al. adopted the general approach
of direct fitness-seeking: assume that individuals sense the fitness benefits of
the habitat near their current location and then select the location offering
highest benefits. The problem then was to find a useful fitness measure, the
internal model that individuals use to evaluate the fitness benefits of habi-
tat. Fitness measures used in previous studies were clearly inadequate for
the IBM: assuming individuals simply maximize their growth rate ignores
the importance of risk on habitat selection. One widely used measure that
considers growth and risk—assuming individuals minimize the ratio of risk
to growth—is based on assumptions that are clearly violated in the IBM,
especially that all habitat offers positive growth (Gilliam and Fraser 1987).
Instead, Railsback et al. (1999) developed the “state-based, predictive” fit-
ness measure described in Section 7.4.3. In summary, the IBM assumes
individuals select the habitat that provides the highest predicted survival
of both starvation and predation over a future time horizon, by using the
following steps.
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• Identify the potential destination alternatives: the habitat cells within a
specified distance limit (200 times the fish’s length) within which trout
are assumed able to sense growth and risk conditions.

• Sense growth and risk in the potential destination cells. Sensing is
assumed to be error-free.

• For each potential destination, explicitly predict the probability of sur-
viving risks other than starvation over a future time horizon (90 days
proved to be a good time horizon). This prediction is based on the
simple and useful—though obviously wrong—assumption that current
mortality risks would persist over the time horizon.

• For each potential destination, explicitly predict the probability of sur-
viving starvation over the time horizon. This prediction is based on the
assumption (also wrong yet useful) that the current growth rate would
persist over the time horizon. First, the fish predicts its “condition”—its
weight relative to the weight of a healthy fish of the same length—at the
end of the time horizon; this prediction depends on growth rate (which
may be negative), and the fish’s current length and condition. Then
the risk of starvation over the entire time horizon is estimated from the
starting and predicted final condition.

• If the fish is a juvenile, it also predicts how close to reproductive ma-
turity it would come, over the future time horizon, in each potential
destination. Reproductive maturity is defined as reaching the minimum
length needed to spawn, so it is represented in the fitness measure as
the fraction of spawning length that would be obtained at the end of
the time horizon, assuming the current growth rate persists.

• For each destination cell, calculate the full fitness measure (referred to as
“expected reproductive maturity”, or EM): multiply the expected sur-
vival of non-starvation risks by the expected survival of starvation and
by the reproductive maturity term. Move to the cell with the highest
EM.

Underlying this habitat selection theory are the IBM’s submodels rep-
resenting how growth, and survival of several specific kinds of mortality,
depend on habitat, competition, and the individual’s state.
The assumption that fish can accurately sense growth and risk conditions

at distances up to 200 times their length is based on literature indicating that
stream fish, at time scales much less than IBM’s daily time step, thoroughly
explore and become familiar with surrounding habitat.
Trout interact with each other via competition for food and cover. The

IBM assumes trout have a sized-based hierarchy within each habitat cell; this
assumption is supported by field observations that such hierarchies (some-
times territory-based, but not always) exist and are maintained by aggressive
interactions. Because these interactions occur at time scales much less than
the IBM’s time step, they are represented in the IBM as an interaction field:
the food and cover available to an individual are reduced by the amounts
consumed by larger individuals in the same cell.
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The size-based hierarchy is maintained by the IBM’s scheduling. Each
daily time step, the habitat cells are updated with their current depth, ve-
locity, temperature, and turbidity (other habitat variables are constant).
Then, each fish executes its habitat selection trait. But habitat selection
is executed in order from largest trout to smallest, and as each fish selects
its cell the food and cover it uses are “depleted” and made unavailable to
the following, smaller fish that use the cell (a kind of asynchronous updat-
ing). In subsequent schedule actions the fish execute their daily growth, then
mortality, then reproduction.
To test and demonstrate the trout IBM’s habitat selection theory, es-

pecially its potential to produce a wide variety of complex and realistic
emergent behaviors, Railsback and Harvey (2002) conducted the analysis
described in Section 4.6 as an example of the IBE theory cycle. Subse-
quent analyses (Railsback et al. 2002) showed that a number of realistic
population-level dynamics emerge from the IBM’s habitat selection theory;
and the IBM has since been applied to a number of river management and
theoretical issues.
Perhaps the most important lesson from the trout IBM is that we can

indeed find general theory for the most important adaptive traits of individ-
uals, including habitat selection. Traits based on fitness-seeking adaptation
are an important alternative to empirical models of behavior: once developed
and tested, they can be applied to new sites and problems with confidence.
This lesson is also illustrated by the work of Goss-Custard et al. (2001, 2002,
2003, 2004), Stillman et al. (2002, 2003), and West et al. (2002) on win-
ter mortality of shorebirds. Their study has many similarities in history,
approach, and results to the trout modeling project (Section 4.6).
The trout IBM is a good illustration of some of the goals of IBE theory

discussed in Section 4.3, because theory for the habitat selection problem
has also been addressed extensively using other ecological approaches. Im-
plementing alternative habitat selection theories in the IBM (Section 4.6)
produced many testable predictions, quickly showing that some widely used
theories (that animals select habitat to maximize growth, or to minimize the
ratio of risk to growth) are clearly inadequate in realistic settings. The IBM
makes it easy to test the generality of theories, for example by simulating
a variety of fish communities and habitats. And the trout IBM clearly is
useful for applied ecology as well as the theoretical issue addressed here. In
fact, this IBM is an example of how the need to solve an applied problem
forcing us to confront the weaknesses of conventional theory.
Finally, the trout IBM is another illustration of how a model’s structure

is determined by the patterns we use to define the essential characteristics
of the system we are modeling. Chapter 3 emphasizes how we can use pat-
terns to limit the complexity of a model; in this case, designing the IBM to
explain observed patterns of habitat selection resulted in an IBM with more
structure than preceding IBMs (i.e., Clark and Rose 1997; Van Winkle et
al. 1998). For example, many IBMs of population dynamics treat mortality
very simply, often (as in the IBMs examined in Section 6.3) as a simple func-
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tion of age and perhaps social status, with no consideration of what actually
causes mortality. The trout IBM, however, needed to explain small-scale
habitat selection which partly depends on specific mortality risks that vary
sharply with characteristics of both habitat and individuals. Large trout
are vulnerable to terrestrial predators, one reason they avoid quiet, shallow
habitat where they are easily seen from the air; small trout are more vul-
nerable to predation by large trout and can avoid this risk by using shallow
habitat. Reproducing this key pattern of how habitat selection changes with
fish size therefore requires that the IBM represent not one but two types of
predation risk and how these risks vary with depth and velocity.

6.4.3 Dispersal Success in Spatially Explicit Population Models

The term “spatially explicit population model” (SEPM) has become associ-
ated with a class of population models designed to “incorporate the habitat
complexity of real-world landscapes” (Dunning et al. 1995). SEPMs are often
applied to wildlife management, especially for animals that maintain home
ranges in specific kinds of habitat. The management problems often con-
cern the effects of habitat alteration on population viability, so the models
must somehow represent habitat and its effects on the managed species. And
SEPMs are most often, but not always, individual-based. The lynx dispersal
model discussed in Section 6.4.1 became part of the SEPM of Schadt (2002);
other examples are Franklin et al. (2000; owls), Letcher et al. (1998; wood-
peckers), Liu et al. (1995; sparrows), McKelvey et al. (1993; owls), Turner
et al. (1994; bison and elk), and Wiegand et al. (2003; bear); Topping et al.
(2003a) developed a generic SEPM (ALMaSS), which was applied to, e.g.
voles (Topping et al. 2003b), skylark, roe deer, carabid beetles, badgers, and
spiders (see overview in Topping and Jepsen 2002).
SEPMs are not all identical, but most represent space as a grid of cells with

an extent and resolution (cell size) relevant to the species, time scale, and
problem addressed (Section 7.3.1). Habitat complexity is often represented
by categorizing each cell as belonging to one of a few discrete types, as
in the lynx model. Most SEPMs assume habitat is static over time, but
temporal variability can be included. Habitat data are often developed from
remote sensing data analyzed via geographic information systems (GIS),
but artificial landscapes have also been used to address theoretical issues
(With 1997; Wiegand et al. 1999). Individual-based SEPMs have typically
been relatively simple, depending mainly on stochastic traits to reproduce
observed behaviors empirically. These SEPMs have made little use of direct
fitness-seeking, and sometimes even lack basic characteristics of IBMs such as
resource dynamics, interaction among individuals, or variation in individual
state variables such as size or energy reserves.
Dispersal is a key issue in many SEPMs, especially the problem of “dis-

persal success”: how many individuals succeed in dispersing from their natal
territory and establishing themselves in a new territory before dying? And
dispersal success has been the topic of a well-known fracas about uncer-
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tainty in SEPMs vs. simpler models. The widely cited study by Ruckelshaus
et al. (1997) analyzed a very simple, hypothetical SEPM that simulated what
fraction of dispersers (moving randomly through a grid landscape) found a
patch of suitable habitat before dying. They reported how dispersal suc-
cess changed when error in the mortality parameter (probability of dying
per movement step) was simulated, in model runs with mortality overes-
timated by 2, 8, 16, 24, and 32%. Dispersal success was reported to be
extremely sensitive, dropping dramatically with even 2% change in mor-
tality. This extreme sensitivity cast severe doubts on the credibility and
usefulness of SEPMs because dispersal mortality is notoriously difficult to
observe and quantify. Advocates of simpler, analytical models found their
concerns about IBMs confirmed and even IBM users (including ourselves)
accepted these results, as surprising (and, upon reflection, obviously wrong)
as they were.
When Mooij and DeAngelis (1999) finally attempted to reproduce the

model and results of Ruckelshaus et al. (1997), they did not find high sen-
sitivity of dispersal success to mortality probability. With help from the
original authors (see Ruckelshaus et al. 1999), Mooij and DeAngelis deter-
mined that Ruckelshaus et al. (1997) had in fact simulated 2–32% errors
in the per-step survival probability (survival being one minus the mortal-
ity probability). This range in survival corresponds to errors in mortality
probability of 665–10,635%, which are unrealistically large. (For example,
reducing daily survival probability by 2% from 0.999 to 0.979 reduces the
probability of surviving for a month from 97% to only 53%.) When Mooij
and DeAngelis simulated 2–32% error in mortality probability, they found
dispersal success not to be particularly sensitive and in fact found some ev-
idence that SEPMs could be less sensitive to this parameter than simpler
models.
Subsequently, Mooij and DeAngelis (2003) more directly examined the

differences between simple SEPMs and even simpler, non-spatial models of
dispersal success in vulnerability to parameter uncertainty. They determined
uncertainty due to estimating parameters from a realistically sparse data set,
for three models: (1) a model including neither time nor space, (2) a model
including time but not space, and (3) a SEPM that used hypothetical spatial
data. Each model has more parameters than the previous but uses more
information from the data set to fit the parameter values. This analysis found
that parameter uncertainty did not clearly increase with the complexity of
the model, and in fact the SEPM had lowest parameter uncertainty. Mooij
and DeAngelis concluded that the information provided by spatial data can
more than make up for the uncertainty resulting from the need for additional
parameters.
The interesting point of this story is how willing the ecological community

was to accept the surprising and highly controversial results of Ruckelshaus
et al. (1997) until Mooij and DeAngelis finally tried to reproduce them.
This kind of misunderstanding certainly hurts ecology as a whole and eco-
logical managers as they struggle for ways to make difficult decisions; and
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would be less likely if IBMs and their software were more transparent and
communicated more thoroughly. In Chapter 10, we address this problem of
communicating IBMs so they can be easier to understand and reproduce.
It should also be noted that the basic message of Ruckelshaus et al.—that

results of SEPMs may be very sensitive to dispersal mortality—is not nec-
essarily wrong. Dispersal is a key process in many spatially distributed and
metapopulations, and small changes in the time and risk involved in disper-
sal may indeed determine persistence or extinction of such populations. But
this is an ecological problem that we can address with IBE, not an inherent
limitation of “too complex” models. And we must remember why we are
usually interested in dispersal success: because we are trying to understand
how habitat loss and fragmentation affect population viability. Attempting
to solve this problem without spatial information on habitat (especially now
that such data are often easily obtained and analyzed) seems unlikely to be
the most productive approach.

6.4.4 Summary and Lessons: Dispersal and Habitat Selection

Movement—both occasional long-distance dispersal and routine habitat selec-
tion—clearly is an important individual behavior that can strongly affect
population dynamics (Lima and Zollner 1996; Turchin 1998), so it is a nat-
ural subject for IBE. Movement is especially important for one of the most
common types of problem in ecology and ecological management: under-
standing how habitat change affects populations. The problem with move-
ment is that it is even harder to observe and describe quantitatively than
demography is: to quantify movement we must not just count individuals,
we must identify each individual and track its location over time. Also, when
we are studying movement it is much harder to pretend that individuals are
unaffected by their habitat, and organism-habitat relations are often very
complex.
So how can we model individual movement? Traditionally, SEPMs espe-

cially have relied on stochastic traits designed to reproduce empirical ob-
servations. This approach requires some spatial data on important habi-
tat characteristics (often, habitat is simply categorizing as “suitable” vs.
“unsuitable”); some simple, perhaps only intuitive assumptions about how
individuals move among patches; and at least a few observed patterns for
parameterization and validation. The IBMs that have been built this way
are relatively simple and easy to parameterize (at least conceptually; the
actual work may be tedious), and are certainly much more useful than non-
spatial models for understanding relations between habitat and population
dynamics.
However, SEPMs (and, consequently, IBMs in general) have been dogged

by controversy arising from the deeply ingrained notion that ecological mod-
els are always “numbers-driven” (Hengeveld and Walter 1999). Theoretical
ecology has so focused on numbers—abundance, biomass, production, nu-
trient and energy fluxes, diversity indexes, etc.—that when we think about
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modeling we think about predicting the precise numerical value of some state
variable. And when we think about building and parameterizing models, we
think only about fitting parameters to data and naturally think of spatial
IBMs as “data-hungry” (Ruckelshaus et al. 1997; Beissinger and Westphal
1998).
One way to avoid getting bogged down in numbers-driven controversy

is, as we advocate throughout the book, to remain focused on predicting
and understanding patterns, not just numbers. Once a model is able to
reproduce a set of patterns, and perhaps even shown to successfully predict
other independent patterns, we can be confident that we have done the best
we can in modeling complex systems: capturing the essence—at least to
some degree—of the system’s properties and dynamics. At this point, but
not sooner (Section 9.3), we can fit parameter values to data and turn to
quantitative predictions if needed to solve the problem we are modeling.
And even then, it is best to treat predictions not as absolute, but as relative
(Burgman and Possingham 2000; Grimm et al. 2004), for example by ranking
different management options (Turner et al. 1995). If this ranking is robust
to changes in model structure and parameters (Section 9.7), we can base
management decisions on it. (Or the model and our analysis of it may show
that the system is instead sensitive and unpredictable, also an important
outcome of modeling.)
But the trout IBM illustrates a second way to avoid the limitations of

numbers-driven modeling: basing our IBMs on well-tested theory and biolog-
ical knowledge in addition to data. We can make IBMs that are “knowledge-
hungry” instead of “data-hungry”. For many species there is a wealth of
information and even existing models of how habitat affects individuals;
combining this information with simple assumptions about how individu-
als interact with each other and how they make decisions to increase their
potential fitness shows great promise for producing general models of move-
ment and other important behaviors. How can we make these models? The
IBM design concepts from Chapter 5 are a useful guide.

Emergence.—We need to think of movement and habitat selection as nei-
ther a fixed, inherent trait of a species, nor (at the other extreme) as merely
random. Instead, we can think of movement as an emergent property of at
least four processes (Railsback et al. 2003): (1) the mechanisms by which
habitat affects an individual’s fitness, (2) the kinds of habitat that are avail-
able and how it is arranged spatially, (3) the ways that individuals interact
and compete with each other, and (4) the population’s abundance and struc-
ture. Information on any of these processes therefore should help explain
movement.

Adaptation.—Dispersal and habitat selection are, for very many species,
extremely important to fitness. This has two implications. First, it is highly
unlikely that natural selection would equip organisms with movement behav-
iors as simplistic as the models we often use. Second, direct fitness-seeking
should be a productive way to represent movement traits.

Fitness.—If we want to understand why individuals select or avoid dif-
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ferent kinds of habitat, it is very helpful to look at how habitat affects the
fitness elements shown in Figure 5.2. For example, how does an individual’s
probability of surviving and achieving reproductive status depend on what
habitat it uses? Even the simplest mechanistic models of how habitat affects
processes like energy intake and mortality risk can be assembled into useful
measures of expected fitness.

Prediction.—What is reasonable to assume individuals can predict about
temporal dynamics of habitat? In evaluating fitness benefits of alternative
habitats, can individuals consider future seasonal changes, or changes due to
resource depletion or increased competition? What can individuals predict
about the consequences to themselves (mortality, growth, fecundity, etc.) of
choosing one habitat or another?

Interaction.—Competition for food and other resources, often mediated
by territoriality or dominance hierarchies, is a kind of interaction especially
likely to affect movement decisions.

Sensing.—One of the most important assumptions involved in modeling
movement is how much information individuals “sense” about the habitat
alternatives available to them, and this assumption should depend on the
IBM’s spatial and temporal scales and on the individual’s mobility. Es-
pecially important is representing how well individuals can explore habitat
or sense gradients; many animals have remarkable abilities to sense food,
predators, or habitat types at long distances.

Stochasticity.—The degree to which movement decisions are stochastic
should also depend on the IBM’s spatial and temporal scales, and on the
individuals’ sensing abilities. The trout and lynx IBMs provide a very useful
contrast. In the lynx IBM, individuals move rapidly (sometimes many steps
per day) through coarse (1-km) grids, and the model lynx can only sense
what is in the adjacent grids; so it seems reasonable to assume the lynx
have little ability to explore and choose among the alternatives. Further,
the grids are categorized into only three types, so lynx often must choose
among alternatives that are equally beneficial. Therefore, it makes sense
that the trait for lynx movement is highly stochastic. In the trout model,
the individuals make choices over relatively short distances (which they could
traverse within a few seconds or minutes) but long time scales (a day); and
real trout are known to continually explore their surroundings. Therefore,
assuming the trout move stochastically would greatly underestimate their
real ability; the assumption that they sense and select the best cell is much
more reasonable.

6.5 REGULATION OF HYPOTHETICAL POPULATIONS

So far in this chapter we have looked at models designed to understand what
real organisms do, but there is much more we can do with IBMs. In this
theme and the next we present IBMs developed more in the tradition of
classical ecological theory instead of addressing specific systems. We start
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with IBMs that address the central issue of classical population models, pop-
ulation regulation: what keeps the size of a population from getting higher
or lower than it does? The question addressed with these IBMs is: how
significant is individual variability, and the modes of resource partitioning
that give rise to individual variability, for regulation? Can individual vari-
ability be ignored, as in classical models, or is it a key element of regulation?
And, most importantly, do IBMs including individual variability lead to the
same results as classical models or do they raise serious doubts about the
understanding of population dynamics and regulation delivered by classical
models?
To make the theoretical IBMs of regulation comparable to classical mod-

els, many design elements of classical models were also used for these IBMs:
the species modeled are generic and hypothetical; space is ignored so that
interaction (competition for resources) is global, not local; trophic interac-
tions with other species are ignored; and the environment—except resource
production—is assumed to be constant.

6.5.1 The BLomnicki Model of Unequal Resource Partitioning

In the first study of the significance of individual variability for population
regulation, Adam OLomnicki (1978; see also Section 1.4) focussed on unequal
resource partitioning. In a population of N individuals, the food intake y(x)
of an individual of rank x, with x = 1, 2, · · · , N , was assumed to be:

y(x) = a
(
1− a

V

)x

. (6.2)

The parameter a is the maximum food intake of an individual and V the
total amount of food available, assuming that V > a. The equation describes
both unequal food partitioning among individuals of different rank and the
increase in this inequality when food is scarce. The rate of food production
per time step (one generation) is assumed to be constant.
This assumption that the inequality among individuals depends on the

amount of food available is an important development of the classical con-
cepts of scramble and contest competition (Begon et al. 1990). Traditionally,
the type of competition (scramble, or equal food partitioning, vs. contest,
with unequal partitioning) has been imposed as an inherent property of the
system. In OLomnicki’s model, as food level decreases competition changes
from scramble to higher and higher degrees of contest.
Although his depiction of food partitioning includes the concept of dis-

crete individuals, OLomnicki did not model individuals. Instead, he simply
calculated (using two coupled difference equations) the number of individ-
uals, N , which receive enough food to reproduce and the amount of food
consumed by the entire population.
The main result of the model is that unequal resource partitioning “stabi-

lizes” population dynamics: both food level and population size inevitably
reach equilibrium values. However, OLomnicki’s main conclusion was that
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unequal resource partitioning provides an explanation of emigration that is
compatible with the concept of fitness seeking: individuals that do not re-
ceive enough resources in their home habitat still have a chance to reproduce
if they decide to undertake the risk of emigration.
OLomnicki’s model inspired a new way of thinking about regulation and

its significance to other processes such as emigration. However, because he
chose a classical difference equation framework to formulate his model, we
cannot do what we like to do with IBMs: look “into” the population at lower
levels or relate it to real populations. The model does not help us address
such questions as: How does population structure change in the course of
time? Is Equation 6.2 a reasonable depiction of resource partitioning? What
is the mechanism stabilizing the population? Certainly, monopolization of
food during periods of low availability ensures that not all individuals starve
simultaneously, but why does this mechanism stabilize population dynamics?

6.5.2 Uchmański’s Models of Regulation and Individual Variabil-
ity

Janusz Uchmański, another pioneer in the Polish school of individual-based
modeling, was inspired by OLomnicki’s work but, instead of simply assum-
ing Equation 6.2, Uchmański tried to find empirical evidence for the mode
and causes of unequal resource partitioning. Is competition among individ-
uals “symmetric”, with the resources obtained by individuals proportional
to their size; or “asymmetric”, with larger individuals having disproportion-
ate advantage over smaller individuals (Weiner 1990)? In his review of this
question, Uchmański (1985) collected data on weight or size distributions
as indirect indicators of the mode of competition, assuming that symmetric
competition leads to more or less symmetric distributions whereas asym-
metric competition leads to distributions skewed so most individuals are
very small and only a few are very large. The general pattern detected by
Uchmański is that at low resource levels, or high densities, weight and size
distributions tend to be skewed, which indicates that under conditions of re-
source scarcity competition tends to be more asymmetric. This pattern may
be less general than assumed by Uchmański (Latto 1992), but it certainly
exists for many species and ecological situations.
Uchmański then developed an IBM to further explore how resource parti-

tioning and the mode of competition affects population regulation (Uchmański
1985; 1999; 2000a, b). These models are a good example of how the patterns
we want to explain affect the model’s design (Chapter 3). Uchmański’s ideas
concerned how resource partitioning affects weight distributions as well as
population regulation so, unlike OLomnicki, he had to structure his IBM to
produce weight distributions of its organisms. Individuals are treated as
discrete entities characterized by weight and age. The model describes a
population with non-overlapping generations. The initial weight w0 of each
individual is drawn from a normal distribution, the mean and variance of
which vary within a given range. Then, all individuals grow according to a
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simplified energy balance (bioenergetics) equation (e.g., Reiss 1989):

dw(t)
dt

= a1wb1 (t)− a2wb2 (t) . (6.3)

The first term describes the assimilation (food intake) rate and the second
term the respiration rate. It is assumed that under changing food levels V ,
the parameters b1, a2, and b2 are constant, but the coefficient a1, which
controls assimilation, can vary with V and the initial weight w0 as discussed
below.
At the end of each generation, individuals reproduce only if they reach a

threshold final weight. The number of offspring is proportional to the final
weight. Food production is, as in OLomnicki’s model, assumed to be constant.
Instead of solving Equation 6.3 numerically over time within each genera-
tion, Uchmański assumed that the resource level V is constant during each
generation. Thus, he could directly calculate each individual’s asymptotic
final weight wend:

wend =
(
a1
a2

) 1
b2−b1

.

The initial weight w0 enters this equation through its effect on the as-
similation parameter a1. Uchmański (1999) explored the effects of unequal
resource partitioning on population regulation by comparing different sub-
models for a1:

a1 = a1 (w0, V ) .

With a “null model” that assumes individuals are identical (i.e., w0 and
therefore food intake is the same for all individuals), the population in-
creases in size exponentially and then goes extinct due to overexploitation of
resources. Adding random mortality produced cycles of high and low abun-
dance, but the cycles grow in amplitude so that extinction results after three
or four cycles. Longer persistence was produced only by introducing indi-
vidual variation in energy intake. Uchmański tested several submodels for
a1 (Uchmański 1999; 2000a, b), some producing quite long extinction times
but all producing wide and growing abundance oscillations that eventually
lead to extinction.
The results of Uchmański’s IBM did not confirm OLomnicki’s result that

unequal resource partitioning led to population regulation towards an equi-
librium. Uchmański’s models did not produce equilibria but strong oscilla-
tions, with considerable risk of extinction during each cycle. And, unlike
OLomnicki’s findings, the relationship between population persistence and in-
dividual variability in initial weight was not monotonic. Instead, there was
a range of intermediate variability which maximized persistence.
Uchmański’s models are inspiring thought experiments that demonstrate

the potential significance of individual variability to population regulation.
However, their assumption of constant within-generation resource levels—
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so regulation only happens between generations—is a severe limitation. Re-
source depletion can occur in less than a generation, and within-generation
regulation could produce different dynamics. Therefore, Grimm and Uchmański
(2002) studied an IBM that is identical to the base version of Uchmański’s
model except that it simulates growth, resource depletion, and population
regulation over sub-generation time steps. The following changes were made:

• An individual’s assimilation rate each time step is limited by a maximum
intake, and decreases as total food availability decreases. When food
availability is high, all individuals have a near-maximum assimilation
rate, but as food availability decreases, the assimilation rate of smaller
individual drops more quickly than that of larger individuals.

• Food production, individual growth, and food availability are calculated
as in the original model, except at time steps shorter than one genera-
tion.

• Starvation is introduced as a mechanism for within-generation regula-
tion. If an individual’s weight drops to a specified percent of its previous
maximum weight, it dies of starvation and is removed from the popula-
tion before the next time step.

Within a generation, the model produces weight distributions that change
as we expect with the abundance of individuals and availability of food. If
initial food level is high and abundance low, all individuals grow rapidly and
reproduce (Figure 6.9a). If the initial food level is lower, there is a wider
distribution of individual weights because smaller individuals get much less
food and, therefore, grow more slowly than larger ones (Figure 6.9b). The
most interesting case is when both initial food level and abundance are high.
Food levels drop quickly at the beginning of the generation, so many smaller
individuals starve (Figure 6.9c). This mortality reduces consumption so
much that the remaining individuals—those with an initial advantage in
weight—can continue growing.
When we look at this IBM’s population dynamics over many generations,

we see a wider range of behavior than the earlier models of Uchmański.
When food production and vulnerability to starvation are both relatively low
(individuals die only after losing 15% of their previous maximum weight),
the population shows diverging oscillations as in Uchmański’s earlier models
(Figure 6.10a). Starvation plays a role only during peaks in abundance. If
food production is doubled (Figure 6.10b), the oscillations are smaller in
amplitude so the population can persist for longer times. If, in addition,
starvation is more rapid (after weight loss of only 5%) the population is
regulated between rather narrow limits and persists for long times (Figure
6.10c). Finally, if the range of initial variability in weight is slightly reduced
in such a way that slightly increases the total food consumption, starva-
tion occurs in almost all generations and abundance is very steady (Figure
6.10d). Grimm and Uchmański (2002) also found that if the time between
generations is too short, starvation is unable to regulate the population well
and cycles again become large enough to cause frequent extinction.
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Figure 6.9 Individual growth (fine lines) and resource availability (bold line) within
one generation. The dashed line denotes the threshold weight needed
at the end of the generation (t = 2000) to reproduce. See text for
further explanations. (After Grimm and Uchmański 2002.)

The IBM demonstrates that populations can be regulated by processes oc-
curring at different time scales: in this case, reproduction rate at the genera-
tional time scale and starvation over shorter times. The relative importance
of these two processes depends, in this model, on how vulnerable individuals
are to starvation and how long generations are. And the two processes are
linked by the current food level, which reflects both short-term consumption
by the living individuals and consumption in previous generations.
The dynamics produced by the model of Grimm and Uchmański differ

in one important aspect from classical models with non-overlapping gener-
ations: if regulation is too strong, classical models can show chaotic fluc-
tuations (“deterministic chaos”; May 1976). Grimm and Uchmański note
that their model never produced dynamics resembling chaos. One of the
preconditions of chaos in classical models turns out to be largely an arti-
fact of model design: to produce chaotic dynamics, a model must not only
have strong regulation but also a time delay between current population size
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Figure 6.10 Typical time series of the number of individuals that survive until the
end of the generation but do not necessarily reproduce (lower, bold
lines), and dynamics of the resource, V, sampled at the beginning of
each generation (upper lines). The vertical bars indicate the num-
ber of individuals that died of starvation. The scenarios are (a) the
reference parameter set; (b) doubled resource production; (c) as (b)
but individuals tolerate only 5% instead of 15% loss of their previous
maximum weight before they starve; and (d) as (c) but with the range
of individual variability in assimilation rate slightly reduced. (After
Grimm and Uchmański 2002.)
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and its effect on regulation. So chaos potentially can arise in models that
use a full generation as the time step, but is unlikely to arise in models
that consider within-generation regulation via mechanisms such as resource
competition and starvation.

6.5.3 The Social Spider Model of Ulbrich Et Al.

This IBM by Ulbrich et al. (1996) is inspired by the Uchmański models,
but addresses a real species: a social spider occurring in Namibia. The
species—Stegodyphus dumicola—occurs in colonies of several to hundreds of
individuals (Seibt and Wickler 1988). Colony members share common nests
and build large webs to trap both small insects that can be consumed by
one individual and large insects that are shared. Colony members differ
considerably in size even if they are of the same cohort and sex.
The IBM addresses essentially the same questions addressed by Uchmański:

how does an individual-level mechanism—the mode of competition for food—
affect individual variation in size and the colony’s persistence?

S. dumicola has an annual life cycle with non-overlapping generations.
Females only mature if they gain a threshold weight (120 mg), so that
individual variability in growth induces variability in the timing of repro-
duction and, in turn, variability in the weight of the following generation’s
individuals—individuals born earlier are bigger than those born later. The
IBM uses a daily time step to capture these dynamics. Food availability each
day is assumed partially random, but increases with the number of spiders
because each helps maintain the web.
The daily food resource is divided among the individuals either in contest

or scramble mode. In contest mode, the largest spider takes its full daily
need, then the second largest spider takes its need, etc. until no food is
left. Scramble mode is similar except that the order in which spiders feed
is randomized each day. The IBM then simulates, very simply, growth and
reproduction from food intake.
Experiments with the spider IBM (Ulbrich et al. 1996; Ulbrich and Hen-

schel 1999) confirmed the basic results of Uchmański’s models. Contest
competition lead to high individual variation in weight, whereas variation
was small with scramble competition (Figure 6.11). When food was scarce,
none of the spiders reached maturity with scramble competition but contest
competition allowed some individuals—and the colony—to survive. Conse-
quently, the mean lifetime of colonies with contest competition is consider-
ably higher.

6.5.4 Summary and Lessons: Regulation of Hypothetical Popula-
tions

Readers have undoubtedly sensed that the models in this theme have a very
different feel than the previous example IBMs. In fact, we have not even
attempted to fit these models into our IBE framework—the theory cycle,
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Figure 6.11 Growth trajectories for five randomly selected individuals (in each
generation) for a low overall food level in the spider IBM of Ulbrich
et al. (1996). (a) A colony with contest competition. (b) A colony
with scramble competition; the colony was extinct after one generation
because no females reached maturity. (After Ulbrich et al. 1996.)
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pattern-oriented modeling, and design concepts. Why? The IBMs examined
earlier in this chapter are what Grimm (1999) termed “pragmatic” models:
IBMs motivated by the need to solve specific problems of specific ecological
systems. In contrast, the IBMs in this theme address are “paradigmatic”—
motivated by the desire to explore and compare general paradigms of pop-
ulation ecology. What regulates populations? How do modes of resource
partitioning affect individual variation and, consequently, population cycles
and persistence? While some pragmatic models clearly could be used to
address such paradigmatic questions (e.g., the marmot and trout models
of sections 6.3.2 and 6.4.2), they rarely have been (Grimm 1999). There-
fore, the IBMs of this theme were built specifically to address paradigmatic
questions of the kind typically addressed with classical models.
One problem with paradigmatic IBMs is that they inherit many of the

limitations of classical ecology along with its questions. Because the IBMs
of OLomnicki (1978), Uchmański (1985, 1999), and Grimm and Uchmański
(2002) address general ideas but not specific systems, the models cannot be
tested and validated. The models ignore space and thus assume that com-
petition is global, so it is not at all clear whether the regulation mechanisms
occurring in these IBMs are significant in real systems where resource com-
petition is local and spatially variable. Likewise, environmental effects are
completely neglected. And the IBMs include no adaptive behavior: compe-
tition and resource consumption are tightly imposed by system-level rules
instead of emerging from decisions made by individuals. Therefore, we can
learn about the consequences of different kinds of resource partitioning but
not about the mechanisms that might produce them. So these IBMs, like
classical approaches to the same problems, may be general in the sense that
they address problems of general interest and do not focus on any particular
system, but the extent to which their results apply to real ecological systems
remains an open question.
But these paradigmatic IBMs are still useful. They point us to questions

and processes that may indeed be important in modeling specific systems.
The clearest lesson from these IBMs of population regulation is that popu-
lation dynamics and individual-level resource partitioning are tightly linked.
We now know that addressing population regulation in an IBM requires
careful representation of resource partitioning; and that when testing and
comparing alternative traits for competition and resource partitioning in an
IBM, it is important to look at their effects on population regulation and per-
sistence. As the spider IBM of Ulbrich et al. (1996) shows, such generalities
may indeed be important in specific populations.

6.6 COMPARISON TO CLASSICAL MODELS

From the very start, the pioneers of individual-based modeling saw the pri-
mary benefit of IBMs as providing the ability to address questions that
cannot be addressed by classical models (Section 1.4). Yet the temptation
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to compare IBMs and classical models by applying both to the same problem
is often strong (Section 10.4.1). In this theme we look at several attempts
to make this comparison to see what was learned by the exercise.
Why compare these two kinds of models that are so different? Several

objectives are apparent from the literature. First is “validation”: if some
important result is produced by both individual-based and classical model-
ing, then perhaps we should have more confidence in the result. A second
objective is testing classical models, because classical models are often very
difficult to test against real systems. This difficulty is partly due to the data
needed to parameterize and test population-level models, but also because
classical models often make assumptions that are obviously violated in many
real systems (e.g., global interactions; negligible environmental variability).
Testing a classical model against output from a simple IBM allows the mod-
eler to control the degree to which the classical model’s assumptions are met.
The third reason is simply to forget about real systems and understand the
differences between the two types of model. What is it that we lose and
gain when we switch from the individual-based to the classical descriptions
of a system? Are the differences in model results fundamental, or does the
individual-based description only add some details which could perhaps be
captured by modifying classical models (Chapter 11)?
The example studies we look at here address all three of these objectives

but focus mainly on the third, comparing how the two types of model behave.
The first two examples take the classical modeling perspective, using simple
IBMs specifically designed for comparison to a particular classical model.
The third example takes the opposite perspective, starting with a full-fledged
IBM and looking at how it can be simplified toward a more classical model
without changing its key characteristics.
At first glance, it may seem trivial to compare two kinds of population

models, but most IBMs differ from classical models in so many ways that
a truly direct comparison is impossible. Instead, comparison studies have
usually created one or several models that add the elements of IBMs (space,
discrete individuals, etc.) in a very simple way to a reference classical model.
The models of Donalson and Nisbet (1999) and Law et al. (2003), which we
examine here, follow this protocol. Our third example, the study by Fahse
et al. (1998), is the only one we know of which starts with an IBM not
developed for the purpose of model comparison and tries to understand its
relationship to simpler mathematical models.

6.6.1 The Predator-Prey Models of Donalson and Nisbet

The goal of the models of Donalson and Nisbet (1999) is to explore the
significance of two major limitations of the classical Lotka-Volterra (LV)
predator–prey model: first, the LV model assumes that interactions have the
same effects on all individuals, as if the individuals are well-mixed so interac-
tions are global, not local. However, this assumption is clearly questionable
in large systems because individuals interact only with their neighbors, a
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small part of the population; and because spatial variation in environment
and density affect interactions (de Roos et al. 1991). Second, the LV model
uses constant birth and death rate parameters, while in reality birth and
death are discrete events and fecundity varies among individuals. For large
numbers of individuals there may be little error due to using a rate-based
description of demographics, but for small numbers variability among in-
dividuals (or over space and time) can produce demographics that deviate
considerably from rate-based descriptions.
Donalson and Nisbet compared three models: the LV model, a stochas-

tic birth-death (SBD) model, and a spatially explicit IBM. The baseline
model for comparison is the density-independent LV model (e.g., Wissel
1989; Roughgarden 1998), which has the well-known property of neutral
stability: both predator and prey abundance show cyclic fluctuations that
have a mean determined by the equilibrium solution of the model’s two equa-
tions and an amplitude determined by the initial abundances. The model’s
key parameters are the per-capita rate constants for the three demographic
processes: growth of the prey population, death of predators, and predation
(death of prey, which also causes birth of new predators).
The SBD model was designed to represent the same processes as the LV

model while adding temporal variability in demographic processes. This
model represents individuals, but only in the sense that birth and death are
discrete events so population size is an integer (see also Stephan and Wissel
1999). Stochasticity is used to represent temporal variability in the three
demographic processes. Instead of modeling these processes as population-
level rates (at the LV model’s extreme of simplicity), and instead of mod-
eling (at the opposite extreme) the detailed processes controlling individual
reproduction and mortality, the SBD model represents birth, death, and
predation as stochastic events. These events are modeled using exponential
distributions parameterized to produce the same average rates of prey birth,
predator death, and predation as the baseline LV model. The SBD model
uses a continuous depiction of time (instead of discrete time steps) and dy-
namic scheduling: random draws from the three exponential distributions
determine the time until the next event of prey birth, predator death, and
predation (Renshaw 1991). Then, only the event with the shortest waiting
time is scheduled for execution at the current time plus its waiting time.
After each such event is executed, the population sizes are updated and the
three exponential distributions re-parameterized.
The third model is individual-based, but was designed specifically for com-

parison to the LV model instead of being intended to represent a real popu-
lation. Nor does the IBM meet several criteria established in Chapter 1 for
being fully “individual-based”: it considers neither life cycles nor resource
dynamics, and there is no variability among individuals except in their loca-
tion. The IBM differs from the SBD model only by adding spatial variability
in demographic processes, which also requires representing the population
as discrete and unique individuals. Individuals are represented in space by
two vectors: position and velocity. Individuals move in a straight line until



g-r May 17, 2004

180 CHAPTER 6

they hit a boundary of the square space, then they are given a new random
direction.
Like the SBD model, the IBM is event-driven; but because individuals

have an identity now, the waiting time to the next event is calculated in-
dependently for each individual. The time to giving birth next (for prey
individuals) or death (for predators) are stochastically determined for each
individual via random draws from exponential distributions parameterized
to reproduce the population-average rates of the LV model. Interactions
are explicit predator-prey encounters. Predators are assumed to sense and
capture prey that come within a specified distance; as a result the prey dies
and the predator reproduces. Offspring of predator and prey are released
randomly in the neighbourhood of their parents. Scheduling is again dy-
namic in continuous time: each individual determines the time at which its
next events (birth, death, predation) will occur, and puts those events on a
dynamic schedule to await execution. Understanding spatial effects is fun-
damental to the study’s objectives, so the IBM’s observation requirements
included displaying predator and prey locations over time.
The three models are formulated in a consistent manner to make com-

parison as direct as possible: the rate parameters of the LV model are re-
interpreted as probabilities in the SBD model, and the same probabilities are
used in the IBM, which only adds individuality and the spatially explicit, lo-
cal encounter behavior of individuals. This consistent design leads to similar
dynamics in all three models: the well-known predator-prey cycles.
Donalson and Nisbet’s study is an excellent example of using carefully de-

signed simulation experiments to analyze models, as we discuss in Chapter
9. The main “currency” they used for comparing the models was persis-
tence (i.e., mean time to extinction), and they looked at how persistence
varies with system size (area). In the LV model, persistence is infinite be-
cause extinction cannot occur. In the SBD model, persistence was found to
increase linearly with system size. The reason for this is that, like the LV
model it imitates, the relative magnitude of the cycle amplitude is constant
and independent of system size. Therefore, the mean difference between the
cycles’ low point and zero increases as system size increases (a point also
made by Stephan and Wissel 1999). The SBD model’s stochasticity causes
variability around the mean low point in the cycles, so the farther this mean
low is above zero the higher the mean time to extinction.
For small system size, the spatial IBM was found to behave similarly to

the SBD model. Spatial effects are small in small systems, and individuals
interact with all other individuals, meeting the assumptions of the non-
spatial models. Surprisingly, at medium system sizes the IBM population
was found to be less persistent than the SBD model but at large system sizes
more persistent. Spatial effects thus destabilized the system at medium sizes,
but stabilized it at larger sizes.
To understand these spatial effects, Donalson and Nisbet used a variety

of techniques: visualization, statistics, and simulation experiments which
focus on the stabilizing effects of spatial patterns. Here, we only describe
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the visualisation and the simulation experiments. In Figure 6.12 a series of
spatial distributions of predator and prey is presented for three consecutive
predator-prey cycles. In cycle 1 the spatial distribution seems only slightly
non-random, and cycles 2 and 3 show the rapid emergence of spatial “waves”
of high abundance. In cycle 3 there is almost complete spatial separation
between predator and prey, as high densities of predators eliminate prey
from large areas. Further experiments showed that the non-random spatial
distributions such as those in cycles 2 and 3 were stabilizing: they caused
subsequent cycles to have lower amplitudes.

Figure 6.12 Time series and spatial patterns of prey and predator produced by
the IBM of Donalson and Nisbet (1999). The spatial plots show the
prey and predator spatial distribution at six events during each of the
three cycles marked in the time series graph. These events are (a)
total number of individuals is minimum, (b) predator population is
minimum, (c) prey population is maximum, (d) total population is
maximum, (e) predator population is maximum, and (f) prey popula-
tion is minimum. (From Donalson and Nisbet 1999.)

The spatial effects in this model are subtle and the authors confessed that,
although they were able to identify some stabilizing and destabilizing mech-
anisms, they were not able to fully explain why persistence was lower at
medium system size than in the non-spatial model. But an even more fun-
damental concern about their spatial IBM is that it is based on numerous
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arbitrary assumptions such as homogeneous space, linear movement, and
the absence of environmental effects. The authors noted that, indeed, small
changes to these assumptions could cause significant changes in system dy-
namics. This observation casts doubts on the robustness of the model results
and, in turn, the insights gained from the study. Further, even though com-
plex dynamics emerge from the IBM, its individuals lack adaptive behavior:
prey make no effort to avoid predators, and predators do not change their
behavior as their need for food varies. The other IBMs examined in this
chapter make us suspect that an IBM based more clearly on a real popu-
lation, with adaptive traits of individuals, would be more robust than the
Donalson and Nibet model.
However, if Donalson and Nisbet had used a more realistic IBM, they

would not have been able to compare it so directly to the LV model. If
an IBM designed to mimic, as closely as possible, a classical model based
on ordinary differential equations (ODE) is inherently non-robust, then how
robust is the ODE model? Donalson and Nisbet (1999, p. 2506) make
the point that: “By being forced to match explicitly defined implementa-
tions (for example, space and movement) against the implicit structure of
ODE models, we find that the ODE is no more than one of the many pos-
sible selections from the total parameter space, even when using a set of
interaction rules as simple as Lotka-Volterra. The results of this work cast
doubts on the robustness of the ODE model results in many situations. If
the individual-based spatial model is not robust with respect to a choice of
model implementations (such as choice of movement patterns), then neither
is [the] associated ODE model.” The simplicity and generality of classical
models may thus often be only apparent.

6.6.2 The Logistic Equation Analysis of Law Et Al.

Law et al. (2003) published a study very similar in objectives and meth-
ods to that of Donalson and Nisbet, while addressing a different classical
model. The logistic equation, one of the oldest elements of classical theory
in ecology, models how a population grows from low density to densities at
which competition slows growth and finally causes density to approach a
fixed “carrying capacity”. Like the Lotka-Volterra model, the logistic equa-
tion assumes that interactions—in this case, intra-specific competition—act
at the population level, as if all individuals interact with all others. Law
et al. examined the effects of this assumption by comparing logistic equa-
tion results to those of an IBM in which interactions are local and spatially
variable.
The IBM used by Law et al. is similar to that of Donalson and Nisbet, as

both were designed to mimic a classical model as closely as possible while
adding temporal and spatial variability in demographic processes. Both use
a continuous depiction of both space and time, and stochastic models of birth
and death designed to reproduce the population-average rates of the logistic
equation. However, the IBM of Law et al. is loosely based on plants instead
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of mobile animals. Dispersal occurs only at birth: new individuals are given
a random location in the neighborhood of their parent, after which there is
no movement. Interaction occurs only as a local density effect on mortality:
an individual’s mortality risk increases with the density and nearness of
neighboring individuals.
In their analysis of the IBM, Law et al. used population trajectory over

time as their currency for comparison: how closely does the trajectory of
population density in the IBM follow the familiar rise and leveling of the
logistic curve? And does density reach the same “carrying capacity” as
the logistic curve? Law et al. repeated this comparison while varying the
parameters controlling the average distances over which newborn individual
disperse and over which competition affects mortality; these are the only
parts of the IBM not specified by the rate parameters of the logistic equation.
The analysis found that the dispersal and competition parameters have

strong effects. At one extreme, when both dispersal and competition oc-
curred over short distances, the population actually declined to zero instead
of following a logistic trajectory: individuals formed small clusters where
mortality was very high. At the other extreme, when dispersal occurred
over long distances and competition over short distances, the population
reached an equilibrium well above the carrying capacity predicted by the lo-
gistic equation. As expected, when dispersal and competition both occurred
over long distances (approximating global interaction), the IBM matched
the logistic equation very closely. These results support the same conclu-
sion that Donalson and Nisbet reached: that the classical model itself is
non-robust in the sense that processes ignored in it have strong effects on
results—changing, in the logistic equation case, not only the shape but the
direction of the population trajectory.

6.6.3 Separation of Time Scales in the Model of Fahse Et Al.

The IBM of Fahse et al. (1998) simulates nomadic larks in the Nama-Karoo,
a semi-arid grassland biome of South Africa. The model was constructed for
two reasons: to test which searching and flocking strategy is optimal for these
birds, and to design reserves for the larks (Dean 1995; Fahse et al. 1998).
The larks usually move in small flocks to find patches of grassland habitat
that are suitable for reproduction (Dean 1995). These small patches are rare
and ephemeral, appearing only after rainfall, which is typically patchy. The
grassland patches are on average about 3.5 × 3.5 km in size and provide food
and shelter for nestlings. However, successful breeding must occur within
two weeks after a patch appears; older patches dry out before the nestlings
mature. The environment of the larks is thus an ever-changing mosaic of
suitable and non-suitable breeding areas (Figure 6.13). If a flock finds a
suitable area, it will start a breeding session. The flock sizes vary over
space and time due to mortality, reproduction, and behavior: flocks split or
combine according to decisions made by their member birds. Larger flocks
are assumed more likely to find breedings areas but competition for food is
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believed to cause per-capita breeding success to decrease with flock size.

t = 1 t = 2

t = 3 t = 4

Figure 6.13 Spatiotemporal dynamics of randomly created grass patches suitable
for breeding (filled squares), flocks of larks searching for these patches
(circles), and locations where birds are breeding (crosses). The frames
around the circles indicate the flock’s range of vision. At the bottom
of the t = 1 display, arrows denote the splitting of a flock into two
smaller ones that appear at t = 2. At t = 1 and t = 4, arrows also
show a grass patch being found by a flock. Time proceeds in steps
of one day; the entire area is 50 × 50 cells and each cell represents
3.5× 3.5 km. (From Fahse et al. 1998.)

The IBM represents both space and time discretely, and uses a one-day
time step. The space has a grid of 50 × 50 cells, each the size of an average
grass patch. Which cells turn into usable grass patches, and when, are
determined stochastically. New grass patches are either found by a flock
within two weeks or revert to unusable status because they are no longer
suitable for successful breeding (Figure 6.13).
Individual birds are distinguished by age, lifestage, and the flock to which

they belong; and mortality occurs at the individual level. However, the
larks live in flocks their whole lives and flockmates interact and cooperate
intensively. Therefore, the IBM explicitly represents the flocks as collectives
and adaptive behavior is modeled at this collective level. Flocks have traits
allowing them to adapt their location and breeding behavior in response to
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the availability of grassland patches that can support reproduction. A flock
is assumed to sense the presence of a breeding patch within a radius that
increases with flock size. The reason for assuming bigger flocks are better
able to detect patches was unstated, but it could be that each individual
explores neighboring habitat somewhat independently, or bigger flocks may
be more likely to have individuals that are better explorers, or perhaps bigger
flocks must spend more time exploring to find adequate food. When a patch
is detected, the flock moves to it and breeds. Flocks also have traits for
splitting into two smaller flocks and for combining with other flocks they
encounter.
The technical problem with this model was that it combined a daily time

step with a large space and population, so it ran too slowly (on a 1997
personal computer) to perform even the most basic analyses. In general, op-
tions for dealing with this problem include simplifying the model, shrinking
the space and population, or using software engineering techniques (Section
8.7.4). But Fahse et al. turned to a more fundamental approach. They
wondered if it would not be possible to extract a per capita growth rate:

r(N) =
f (N)
N

where N is the population size and f is the population growth rate, i.e.

f =
dN(t)
dt

of the population from the IBM.
In the IBM, of course, r is not determined directly by N but instead by

mortality, the actual number and size of flocks, flock behavior, the structure
of the landscape, etc. Therefore, finding a function f at first seems very
difficult, but on the other hand if one process in the IBM dominates demo-
graphics a simple function might be found by focusing on that process. This
possibility seemed likely for the lark IBM because Fahse et al. found that
the number and mean size of breedings flocks reached a relatively steady
equilibrium value much faster than population size reached its equilibrium
(Figure 6.14). In fact, the processes determining the size distribution of
breeding flocks dominates the rate of population change because in each time
step the number and size of breeding flocks determines the number of new
progeny; mortality explains little variation in abundance because survival
rates are assumed to be constant. Thus, once we know the breeding flock
size distribution and how it depends on N , we can extract the population
growth rate f .
However, there is still a problem finding the population growth rate: f is a

function of breeding flock size distribution, but breeding flock size distribu-
tion is undoubtedly a function of N . To overcome this circularity, Fahse et
al. applied a technique well-known in physics but only occasionally applied
in ecology (but see Ludwig et al. 1978): the separation of time scales. This
means treating processes that change over fast vs. slow time scales sepa-
rately: while describing the fast processes, the “slow” variables are assumed
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Figure 6.14 Separation of the behavioral and the population dynamic time scales
in the IBM of Fahse et al. (1998). The daily number of flocks (a)
and daily mean flock size (b) adjust very quickly from initial con-
ditions, typically reaching relatively constant values within 10 days.
(The different curves correspond to different values of the parameter
Nsplit, which describes the readiness of individual birds to split a
flock.) However, (c) a long-term trend in the total number of indi-
viduals N(t) remains (here, for over a decade). (After Fahse et al.
1998.)
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constant. In the lark IBM, N can be treated as a slowly changing variable,
whereas the variables controlling the flock size distribution are fast, because
they are based on behavior occurring on daily time steps. Consequently, to
extract the function f from the simulation model, the slow variable, N , was
kept constant by deactivating all demographic processes: the IBM was run
with birds executing all their behaviors except dying or producing offspring.
After this version of the IBM was run long enough to reach equilibrium,
the size distribution of breeding flocks was observed from it. The number
of nestlings that this distribution would produce could easily be calculated
from the IBM’s assumptions concerning fecundity, and this number divided
by N equals r. Equilibrium population sizes predicted by this “behavioral”
version of the IBM matched results of the full IBM very well.
Repeated simulations using a wide range of initial values of N allowed

Fahse et al. to find how per capita growth rate r varies with N . This function
turned out to be a negative linear relation, which means that population
dynamics in the lark IBM can be simplified to exactly the classical logistic
equation that Law et al. (2003) analyzed (sections 6.6.2 and 11.4).
This example clearly shows that under certain conditions the population

dynamics of an IBM can be described (but not explained) by a classical
model, even when the IBM was not intentionally designed for direct com-
parison to the classical model. However, the discovery that the IBM could
be approximated by a logistic equation does not mean that the lark study
could have been addressed using only a logistic equation model. The prob-
lem is parameterization: without the IBM, the only way to parameterize the
logistic equation is fitting it to a time series of sufficiently variable obser-
vations, which was not available for lark in the Nama-Karoo. The logistic
model also does not lend itself as the IBM does to the lark study’s second
problem, examining effects of preserves that alter habitat conditions over
space.
The general protocol of Fahse et al. for extracting a function for population

growth rate from a detailed IBM can be used in other IBMs; when successful,
it can facilitate the analysis (using methods discussed in Chapter 9) of IBMs
which are too big to run many, many, times. This protocol can be used
whenever there is a clear “interface”—separation of time scales—between
behavior and demographic variables. If so, birth and death processes can be
turned off to determine a function for how r varies with N . The results of
the behavioral population IBM can then easily be tested by comparing them
to those from the full IBM.

6.6.4 Summary and Lessons: Classical Models vs. IBMs

Comparing classical models and IBMs seems like a natural project: knowing
all the limitations of both, we want to learn how they are similar vs. different,
and which might be “best” in various situations. And the project initially
seems fairly clear and easy: apply both types of model to the same system
and compare their results. However, the conclusions we can draw from
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the comparisons in this theme are not nearly as satisfying and clearcut as
expected.
One conclusion is that classical models simply cannot be translated ver-

batim to the individual level. We cannot translate population-level rates
(population increase, predation, competition) into individual events (birth,
death) without introducing behavior to the model, and the examples show
that behavior affects results as much as the rate parameters copied from the
classical model.
Does an IBM produce the same results as the classical model it was care-

fully designed to mimic? The examples show that the answer to this question
is: sometimes, depending on parameter values and what kind of behavior is
used; but not always, even when the IBM contains as little behavior as
possible.
But this ambiguous result is not the most dissatisfying aspect of these

comparisons. Translating a classical model into an IBM is the tail wagging
the dog: the resulting IBM is too simplistic to be interesting. Donalson
and Nisbet and Law et al. found their IBMs to be non-robust, and much of
this non-robustness is no doubt because the IBMs lack many characteristics
of real IBMs: individual variability, life cycles, resource dynamics, and (es-
pecially) adaptive behavior. Real IBMs, as we propose them in this book,
start with an ecological question, with patterns in real systems, and with
theories about the adaptive behavior of individuals. All these characteristics
are excluded when we design the IBM only to mimic a classical model.
The third example examined in this theme goes the other way: Fahse et

al. started with a real IBM of a specific population and then found a simple,
classical model that reproduced one of the IBM’s key outputs, equilibrium
population size. Several worthwhile objectives can be addressed by this ap-
proach. First, we can see whether classical models can reproduce results
of a useful IBM; this is still a comparison of model vs. model, but at least
the comparison is grounded in the characteristics of a real system that are
captured in the IBM. Comparing classical models to “real” IBMs of real
systems seems likely to tell us much more about the value and limitations
of classical models than does comparing them to highly simplified IBMs. In
general, simplifying full IBMs is an important method for analyzing IBMs
(Chapter 9). We can remove elements from an IBM and see how its capabil-
ities change as the simplicity of an analytical model is approached (Section
11.5.2).
A second objective of trying to find a classical model that “fits” an IBM

was the motivation of Fahse et al.: the need for a simpler model more
amenable to extensive analysis than the IBM. Other approaches for gen-
erating simpler versions of an IBM that have been explored (but rarely pub-
lished, as far as we know) include using IBM output to parameterize matrix
models and statistical models (including time series and spatial models).
These approaches all have limitations. The IBM is still needed to validate
and parameterize the simpler models, and the simpler models must be re-
parameterized each time new assumptions or parameter values are tried in
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the IBM (which happens often during analysis). Certainly, many of the
IBMs we examine in this chapter are too complex for these approaches to be
practical or even feasible. Often we must just rely on software techniques to
speed up an IBM.

6.7 DYNAMICS OF PLANT POPULATIONS AND COMMU-

NITIES

Instead of focussing on specific examples in this theme, we provide an overview
of general approaches used in many plant IBMs. We discuss general ap-
proaches because plant IBMs developed along quite a different pathway than
animal IBMs did, partly because of basic differences between animal and
plant ecology. In animal ecology, population ecology is a dominant disci-
pline and was the first discipline in ecology to become “theoretical” by using
mathematical models. Classical models operate at the population level in
animal ecology, but even the notion of a population being the natural unit for
modeling is much less prevalent in plant ecology. Classical modeling’s fun-
damental assumption that change in population size is a simple function of
current population size seems much less plausible for plants (Crawley 1990).
The key process in plant population dynamics often appears to be recruit-
ment, which often appears most strongly influenced by factors other than
current population size: disturbance, weather, soil conditions, local competi-
tion for unoccupied sites, etc. The effect of such factors on recruitment seem
less amenable to modeling so many plant IBMs focus on within-generation
processes: growth, local competition, and density-dependent mortality.
Another difference between animal and plant ecology is that “behavior”

is more readily associated with animals: their movement, feeding, interac-
tation, etc. is easier for us to observe and understand. Because we are like
animals, it is natural to us to develop and apply theories about adaptive,
decision-making traits of animals. Plants also have adaptive behaviors (Sec-
tion 6.7.5), but these behaviors are of different types, and often occur at
different time scales, than ours. Without an intuitive understanding of how
plants make decisions, we tend to make adaptive behavior less an explicit
issue in plant ecology than in animal ecology. Instead, because plants can-
not adapt to local conditions by moving ecologists have focused on local
competitive interaction as the key concept in individual-based plant ecology.
Because of this focus on interaction, this theme mainly concerns how com-
petition among neighboring plants is modeled (a topic reviewed by Czárán
1998; see also Kenkel 1990; Czárán and Bartha 1992).
In addition to having population dynamics that emerge primarily from

competitive interactions among individuals, many of the modeling approaches
in this theme share a major simplifying assumption: the use of space to rep-
resent interaction. Plants interact with neighboring plants in generally neg-
ative ways: one plant can block sunlight and rainfall before it reaches others;
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roots of one plant use up nutrients and moisture that otherwise would be
available to others; and some plants use allelopathic chemicals to suppress
neighbors. (There are also positive interactions among plants, e.g., the risk of
a tree being killed by wind is reduced by neighboring trees.) Modeling these
interaction mechanisms explicitly can involve considerable complexity and
uncertainty. Some models do represent some interactions explicitly: Pacala
et al. (1993) simulate competition for light; the BEFORE model examined
in Section 6.8.3 simulates effects of neighbors on wind mortality. But many
successful plant IBMs assume all interaction is negative, ignore mechanisms
and lump interactions together as “competition”, and further assume that
the degree of competition is a simple function of how space is divided, or
shared, among individuals.
Three general classes of plant IBM are reviewed in the following subsec-

tions. First are distance models, a class distinguished by Czárán (1998);
distance models represent the interaction between individuals as a function
of the distance between them. We examine three kinds of distance model
that use different functions for how interaction varies with distance: fixed-
radius neighborhood, zone of influence, and field of neighborhood. Next are
grid-based models, which use a discrete representation of space. Finally are
IBMs widely used in forest ecology and management: gap and growth-yield
models. We provide specific examples of some of these classes.

6.7.1 Fixed-radius Neighborhood Models

In fixed-radius neighborhood (FRN) models each plant is the center of a
circle of a fixed radius. Other individuals within a plant’s circle are, by
definition, neighbors that interact with the plant. The influence of neighbors
on a plant may simply depend on their presence or, in more sophisticated
models, on species, age, or other state variables. The functional relationships
representing this influence may be assumed ad hoc or—as in many detailed
forest models (e.g., Pretzsch et al. 2002)—determined empirically by using
regression methods.
The plant population models of Pacala and Silander (1985) and Pacala

(1986; 1987) use the FRN approach. These were pioneering plant IBMs, but
their design was constrained by the authors’ objective of comparing them
directly to analytical, classical models. These IBMs assume that individuals,
as soon as they exist, have a fixed radius within which they interact with
neighbors; very little about change in individual state is represented. This
assumption parallels classical models in ignoring the life cycle of individuals
(Uchmański and Grimm 1996): instead of representing how individuals grow
and develop, only the presence of plants and their neighbors is represented.
As with the models examined in Section 6.6, the objective of comparing
these models to classical models resulted in their being so simplified that
they retain few of the characteristics or advantages of IBMs (Czárán 1998).
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6.7.2 Zone of Influence Models

Like FRN models, zone of influence (ZOI) models assume a circular zone
around each plant, but the meaning of this zone is more explicit: the zone
specifically reflects the area over which a plant obtains resources such as light,
nutrients, and water (Ford and Diggle 1981; Wyszomirski 1983; 1986; Weiner
1982; Czárán 1984; Hara 1988; Wyszomirski et al. 1999; Weiner et al. 2001).
If the ZOIs of two plants overlap, they therefore interact via competition for
resources within the overlapping area. The effect of competition is reduced
growth. Resources are usually not modeled explicitly in ZOI models, but it
is assumed that the area of the ZOI represents the plant’s resource intake
and therefore its performance. A plant with no neighbors has maximum
performance (e.g., a size-dependent growth rate). The more a plant’s ZOI
overlaps the ZOIs of neighboring plants, the lower its performance.
In contrast to FRN models, the radius of the ZOI is not fixed but depends

on the size of the plant, usually quantified by biomass or stem diameter.
A plant thus may start out with no neighbors when its ZOI is small, but
as its ZOI grows and overlaps with others, local competition increases. As
a consequence, growth slows down and, in some IBMs, plants under severe
competition die.
Although ZOI models are conceptually simple, their implementation is

not straightforward because calculating the area of overlap becomes cum-
bersome as soon as more than two zones overlap. Wyszomirski (1983) used
an elegant algorithm to cope with this problem: sampling 44 regularly dis-
tributed points within the ZOI of each individual to see if they overlap ZOIs
of other individuals. Czárán and Bartha (1989) simplified the ZOI concept
by considering the distance between plant stems instead of overlap areas.
Most ZOI-based IBMs were designed to study growth in even-aged mono-

cultures (single-species cohorts planted all at the same time; see the review of
Wyszomirski et al. 1999, and the overview in Weiner et al. 2001). Typically,
the objective was to study how various factors influence the distribution
of individual plant sizes as a cohort grows. For example, empirical studies
(reviewed in Uchmański 1985) indicate that higher densities lead to more
positively skewed weight distributions: many small but few large individ-
uals. Other studies addressed the effect on size distribution of the spatial
arrangement (regular, random, or aggregated) of the plants.
Still other studies attempted to relate size distribution to the mode of

competition, so such relations could be used to infer whether competition
among plants is “symmetric”, with the negative effects of competition pro-
portional to the size difference of the competitors, or “asymmetric”, with
effects more than proportional to size difference (Weiner 1990). The general
approach—another instance of the pattern-oriented approach to modeling
described in Chapter 3—was to see whether IBMs assuming symmetric vs.
asymmetric competition best reproduce observed distributions of plant sizes
(Section 6.5.2 describes other studies of this problem). However, one result
from these studies was learning that the mode of competition cannot nec-
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essarily be inferred from the skewness of a population’s size distribution. If
density is too high, all plants may be so reduced in growth that large size
differences simply cannot emerge, so asymmetric competition may not have
detectable effects (Wyszomirski et al. 1999; Uchmański 2003; Bauer et al.
2004). A limitation of most of these studies is ignoring mortality, which at
higher density (and, therefore, higher competition) certainly occurs in na-
ture. Mortality reduces local density and therefore affects size distributions.
Another limitation is that these studies focused on one narrow problem in an
unnatural context: size distributions of monocultures. Consequently, they
have so far made relatively little contribution to our general understanding
of plant population and community dynamics.

6.7.3 The Field-of-Neighborhood (FON) Approach of Berger and
Hildenbrandt

A recent extension of the ZOI approach is the field-of-neighborhood (FON)
approach of Berger and Hildenbrandt (2000). Originally it was developed to
model long-term dynamics of mangrove forests, which means that effects of
competition on mortality and recruitment had to be considered as well as
growth. The size of a plant is represented by the radius of its stem. As in
ZOI models, individuals have a circular zone of influence around their stem.
The radius R of this ZOI is assumed related to the radius r of the stem:

R = arb. (6.4)

The parameters a and b can be determined empirically or simply assumed
(Berger and Hildenbrandt 2000; Grimm and Berger 2003). An individual’s
growth rate is not limited by competition if the ZOI does not overlap with
any other plant. However, growth may be assumed to also depend on the
individual’s state (e.g., size or age) or on environmental variables other than
competition. In the mangrove model of Berger and Hildenbrandt, growth
was also affected by groundwater salinity and nutrient availability.
While the ZOI only defines the geometry of interactions—whether there is

or is not an effect of neighboring individuals at any point—the FON approach
also represents how the strength of interaction varies over space. On a plant’s
ZOI a scalar “field of neighborhood” is defined; the FON quantifies, at each
point, the strength of the plant’s effect on potential neighbor plants (Figure
6.15). This influence is assumed to be strongest (=1.0) at the stem and
decreases exponentially towards the border of the ZOI. The total FON at a
point is the sum of fields from all plants having the point within their ZOI.
This FON concept provides, among other advantages, a simple way to model
the effect of competition on seedling establishment: it can be assumed that
if the total FON at a seed’s location, F (x, y), is above some threshold (which
may be zero), the seed cannot develop.
The FON is also used to quantify the competition among neighboring

plants. The strength of competitive interaction affecting a plant k due to n
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Figure 6.15 Visualization of the field of neighborhood (FON) of two plants with
overlapping fields. Stem radius and FON radius correspond to r and
R, respectively, in 6.4. Between the two plants, a part of the total field
F (x, y) is drawn. FONmax and FONmin are the maximum (=1.0)
and minimum values the field of neighborhood can assume. (Figure
courtesy of H. Hildenbrandt.)

neighbors is calculated by first integrating F (x, y) over the areas where the
neighbors’ ZOI overlaps the ZOI of plant k, then dividing by the area A of
plant k’s ZOI:

FA =
1
A

∫
A

∑
n�=k

Fn(x, y) da.

Because the interactions with different neighbors are assumed to be addi-
tive, the summation and integration in the above equation can be reversed,
which simplifies the calculation of FA. Finally, the plant’s current growth
rate is determined by multiplying the growth rate in the absence of compe-
tition by a correction factor C assumed to decrease linearly with FA:

C = 1− 2FA.

Without neighbors, FA is zero and therefore C = 1.0. If FA is larger
than 0.5, C is assumed to be zero and therefore growth is completely sup-
pressed. A completely suppressed plant can start growing again if one or
more neighbors die so that FA is decreased.
Mortality is also assumed to depend on local competition: if a plant’s

growth is completely suppressed for more than a certain time (e.g., 5 years),
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the plant dies. As a result, plants with too many neighbors that are too
large successively die or have their growth suppressed. Consequently, growth
rates in dense stands typically are highly variable over time: a plant’s growth
jumps up when a neighbor dies but then decreases as its growth, and that
of neighbors, again builds up the value of FA (Figure 6.16).
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Figure 6.16 Competition pressure experienced by individuals in the KiWi model
of Berger and Hildenbrandt (2000). Competition pressure is defined
as the correction factor C (see text) averaged over the past five years.
Each line is a randomly selected individual in a self-thinning cohort of
mangrove trees. Competition pressure is represented over time, with
the X axis indicating years. As a plant grows, the competition pressure
it suffers increases until one or more neighbors die; then competition
pressure drops and the cycle of increasing pressure with growth starts
again. (Figure courtesy of H. Hildenbrandt and U. Berger.)

The FON approach fulfills the criteria for modeling local competition for-
mulated by Stoll and Weiner (2000): each plant has an explicit spatial loca-
tion, a basal area where no other individual can exist, and a zone of influence
where it influences, and is influenced by, neighboring trees. The number, size,
and location of neighboring plants all affect the level of competition affecting
a plant. This last criterion is not fulfilled by the ZOI approach, in which
location does not matter for smaller plants having their ZOI completely
overlapped by the ZOI of a larger plant.
The FON approach is similar to the so-called “ecological field” approach

(Wu et al. 1985; Walker et al. 1989), in which a field—not necessarily a
circular ZOI—describes the influence of a plant on a specific resource. How-
ever, the mechanistic details of how plants influence resources in their neigh-
borhood are often unknown, and including them can make an IBM very
computationally intensive. The FON approach provides a level of mecha-
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nistic resolution between the complexity of ecological field methods and the
simplicity of ZOI models.
In conjunction with developing the FON approach, Hildenbrandt (2003)

addressed a basic problem of implementing distance models. Interaction
is represented as a variable function of distance between plants in con-
tinuous space, so identifying the neighbors that each plant interacts with
each time step is a difficult implementation problem. The conceptually
easy approach—checking each pair of plants in the IBM to see if they are
neighbors—is computationally burdensome for large populations because the
number of such pairs increases with the square of the number of individuals,
N . Distance IBMs must therefore use sophisticated algorithms and data
structures to keep track of neighbors. Hildenbrandt (2003) implemented a
FON IBM using a data structure called Hilbert R-Trees (Guttman 1984; Sel-
lis et al. 1987; Beckmann et al. 1990); this technique resulted in computation
time increasing only linearly with N .
To illustrate the potential of the FON approach, we now look at its appli-

cation in two IBMs.

6.7.3.1 FON Example 1: Cyclic population dynamics of plants.

Inherently complex population dynamics (cycles, chaotic fluctuations, etc.)
are a key issue of theoretical animal population ecology (e.g., Turchin 2003),
but plant populations are typically assumed to be inherently “stable” unless
affected by disturbances, environmental fluctuations, or pathogens (Crawley
1990; Krebs 1996). However, a few empirical studies indicate that stability
is not necessarily inherent (Symonides et al. 1986; Thrall et al. 1989; Sil-
vertown 1991; Tilman and Wedin 1991; Crone and Taylor 1996). Therefore
Bauer et al. (2002) studied non-equilibrium plant population dynamics us-
ing a full-life-cycle IBM and the FON approach. Reproduction was modeled
by assuming that plants above a minimum size produce seeds; the number
of seeds increases with plant size up to a maximum number. Seeds were
distributed randomly around the parent plant at distances drawn from a
negative exponential distribution. Growth was assumed to be a sigmoidal
function of size, the same assumption used in the so-called “gap models” of
forests (Section 6.7.5).
The IBM describes perennial plants, using a one-year time step. Initially

it was assumed that seedlings cannot emerge anywhere the local FON from
neighboring plants is above zero. This assumption could represent extreme
shade-intolerance of the seedlings or allelopathy. The IBM produced fluctu-
ations of population abundance between 550 and 900 individuals in its 50
m2 area. Autocorrelation analysis found significant, long-period cycles in
abundance. The population’s age structure also changed over the cycle: at
peak abundance the population was dominated much more by young indi-
viduals than at minimum abundance. Analysis of the individuals’ spatial
distribution revealed that larger individuals were regularly distributed at
smaller scales—distances of up to 4-5 m (Figure 6.17). At larger scales, the
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distribution of large individuals was random. In contrast, smaller individu-
als tended to occur in clumps. Robustness analysis (Section 9.7) found the
IBM’s cycles to be robust to parameter values and most model assumptions.
However, the abundance cycles disappeared when seedlings were allowed to
establish where the total FON was less than 0.5 instead of only where FON
is zero.
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Figure 6.17 Patterns of spatial distribution in the perennial plant IBM of Bauer
et al. (2002). Ripley’s L-function was used to classify distributions
as regular (black), random (grey), or clumped (white). For each year
(X axis), the classification was applied at increasing spatial scales (Y
axis). Different distribution patterns occur for small individuals (a)
and large individuals (b). (After Bauer et al. 2002.)

Bauer et al. (2002) concluded that the cycles are generated by both self-
thinning and monopolization of space by older and larger individuals. Exist-
ing plants monopolize space by preventing seedling establishment wherever
FON is greater than zero. Seedlings can only appear in gaps created by
the death of older plants and therefore have a clumped distribution. After
a clump of seedlings is established and starts to grow, competition causes
most of these individuals to die; this self-thinning (discussed further in the
following example) results in the gap again being dominated by one or a
few individuals. The importance of self-thinning is indicated by the regular
distribution of larger individuals: self-thinning is known to generate regular
distributions (Leps and Kindlmann 1987).
This understanding of the cycles and their cause leaves several interest-

ing questions unexplored. For example, would cycles also occur in a larger
system? Would the cycles persist if seeds were dispersed over greater dis-
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tances? So far, only one field study confirming the relation of cycles to space
monopolization and self-thinning has been found: Tilman and Wedin (1991)
describe cycles in a population of perennials in which leaf litter prevents
establishment of young plants. The same phenomenon of monopolization
of space leading to cycles—though for immobile animals (corals)—has been
discussed theoretically by Iwasa and Roughgarden (1986) and Roughgarden
and Iwasa (1986).

6.7.3.2 FON Example 2: Self-thinning in Monocultures.

Self-thinning can be quantified by the relation between the density d and
average biomass w̄ of individuals as a population ages. For monocultures
of higher plants, self-thinning relationships show a striking pattern: in dia-
grams of log(w̄) versus log(d) plotted over time as the cohort ages, there is
a long linear section with a slope of about −3/2. This pattern appears to
be independent of the species and initial density of the cohort (Yoda et al.
1963; Harper 1977; Westoby 1984; Silvertown 1992). A linear relationship in
a log-log diagram means that the relationship between density and average
biomass follows a power law:

w̄ = C d−3/2.

Power laws indicate a scale-invariant or “self-similar” process: no matter
what density we start at along the linear section of the self-thinning tra-
jectory, a decrease in density of, for example, 10% coincides with the same
increase in average biomass of 17%. Thus, along the linear section of the tra-
jectory local competition, mortality and growth affect each other the same
way and independently of the average size or density of the plants.
Early theoretical explanations of the “−3/2 self-thinning rule” were based

on geometric considerations: the area occupied by a plant scales with r2, with
r being the radius of the circular projection of the plant, whereas the indi-
vidual’s biomass scales with r3 (Yoda et al. 1963). Later, this and all other
explanations of the self-thinning rule were hotly debated and the existence
of the pattern itself was questioned (Lonsdale 1990). Currently, allometric
theories favor a power law exponent of −4/3 instead of −3/2; however, the
allometric theory does not try to explain the cohort’s trajectory but instead
predicts the upper limit of biomass in mixed stands of given densities (En-
quist et al. 1998). The shift from −3/2 to −4/3 is in an interesting instance
of how theory filters our perception of data (Fagerström 1987): the empir-
ical evidence supporting the theory of Enquist et al. is impressive, but the
empirical evidence supporting the −3/2 power law is no less impressive and
was presented in virtually every ecology textbook for decades.
Considering the obsession of plant ecologists with self-thinning, it is sur-

prising that so few attempts have been made to understand it mechanistically—
to simply simulate the process of self-thinning. A mechanistic analysis could
help identify the conditions under which the logarithmic biomass-density
trajectory has a linear section and determine how the slope of this linear
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section depends on biological processes (Li et al. 2000). Previous attempts
to model self-thinning with IBMs include Firbank and Watkinson (1985),
Adler (1996), Li et al. (2000), Weiner et al. (2001), and Stoll et al. (2002).
The FON approach can also be used because it includes a simple mortality
rule. Berger and Hildenbrandt (2003) used their mangrove IBM to simulate
biomass-density trajectories for two different initial numbers of plants (500
and 1000) and different values of the parameter b (Equation 6.4; b ranging
between 0.4 and 1.0). Smaller values of b make the radius R of the ZOI
grow faster with the radius r of the stem so that for the same stem sizes
and spatial configuration of plants competition strength is higher. Berger
and Hildenbrandt found two things: first, the slope of the linear segment of
the trajectory depends on b: the stronger the overall competition strength
(i.e., the smaller b), the larger the slope; for weak competition strength (b
larger than, say, 0.8), a linear segment hardly emerges. Second, Berger and
Hildenbrandt did what is possible only with IBMs: they “looked into” the
population during self-thinning. They observed the skewness of the size
distribution of the plants and found that—independent of initial density
and b—the linear segment starts when the skewness of the size distribution
is maximum and ends when skewness becomes zero. The linear segment
thus occurs over a period when the size distribution changes from positively
skewed to symmetric. Both of these findings of Berger and Hildenbrandt
clearly indicate that understanding local competition among neighboring
trees, not just allometry, is key to understanding the extent and slope of the
linear biomass-density trajectory.
Another use of IBMs for understanding self-thinning mechanistically is

explaining a phenomenon that is simply assumed, not explained, by the
aggregated theories of self-thinning. This assumption is that during self-
thinning space is more or less evenly divided among the existing individuals
so that the average area A occupied by a plant is inversely related to the
number of plants, N , or: A ∝ N−1. This assumption was made explictly
by Yoda et al. (1963) and more implicitly by Enquist et al. (1998) and
Enquist and Niklas (2001). Westoby (1984) suggests that the relationship
A ∝ N−1 occupies a central place in our understanding of ecosystems, and
Zeide (1987, 2001) claims that it constitutes the “core” of ecology because
it links two main branches, production ecology and population ecology.
What mechanisms might enforce A ∝ N−1 as a cohort of plants proceeds

along the linear segment of the biomass-density trajectory? In IBMs based
on the FON or similar approaches, A ∝ N−1 is not assumed a priori ; instead,
we can see whether and how it emerges from local competition, growth,
and mortality (Figure 6.18; Figure 3 in Berger and Hildenbrandt 2000). It
turns out that in the FON-based mangrove IBM of Berger and Hildenbrandt
(2000), the emergence of A ∝ N−1 is extremely robust to changes in model
parameters and structure (H. Hildenbrandt, personal communication). This
density-area relationship thus appears to be valid and indeed decisive for
explaining the robust self-thinning patterns in plant cohorts.
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Figure 6.18 Visualization of the areas influenced or occupied by plants during self-
thinning, comparing classical assumptions to the FON-based model
KiWi. Time and self-thinning proceed from top to bottom. The left
column illustrates the classical assumption that the average area of a
plant is proportional to the inverse of the number of plants. The cen-
ter column displays the location and field-of-neighborhood of trees as
simulated by KiWi. The right column is a contour plot of competition
pressure from the KiWi simulation. The value of competition pressure
is assigned to the stem location of each tree and interpolated among
trees; darker shading indicates stronger pressure. (Figure courtesy of
H. Hildenbrandt.)

6.7.4 Grid-based plant IBMs

Now we leave behind the distance models and look at some other ways
IBMs have represented plant interaction. In grid-based models, space is
discretized into uniform cells (usually square, but sometimes triangular or
hexagonal). Spatial effects within the cells are ignored—e.g., interaction
among individuals in the same cell does not depend on their location within
that cell—but spatial interactions are modeled as occurring among cells: the
state of a cell is influenced by the state of its neighbor cells. This basic design
of grid-based models (Section 7.3; Czárán 1998; Wissel 2000) is widely used
in ecology and other disciplines, not just for IBMs.
In grid-based plant IBMs, cell size is often chosen to approximate the

average or maximum size of an adult plant. Within a cell, one or more
individuals may exist but their location within the cell is not considered
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explicitly. Moreover, interactions among individuals within a cell are not
explicitly represented and only their average result considered. For exam-
ple, in grid-based models of single-species Pacific forests, Jeltsch and Wissel
(1994) assumed that each cell is occupied by one adult individual. In re-
ality, if this individual dies the opened space will be occupied by a cohort
of seedlings which then grow and self-thin until again the cell is occupied
by only one adult. While the IBMs based on the FON approach (Section
6.7.3) represent recruitment and self-thinning explicitly, Jeltsch and Wis-
sel ignored these processes and simply assumed that after a tree dies it is
replaced sometime later by another tree of the same size.
The grid-based approach has several advantages: the state of small spa-

tial cells is easily described, and changes in the state of a cell’s plant(s) in
response to neighboring cells are easily described using “if-then”-rules (Sec-
tion 7.4). Grid models have an important computational advantage: while
identifying a plant’s neighbors is a difficult problem for distance models (Sec-
tion 6.7.3), neighbors in a grid IBM are easily identified by looking one (or
several) cells in each direction on the grid.
Many grid-based plant IBMs describe individuals in a very coarse way,

often considering only one or two state variables: location (grid cell) and
perhaps size. The plant’s life cycle is often ignored because the assumption
that one cell holds only one individual makes no sense for small seedlings.
Even these coarse descriptions of individuals can be sufficient for modeling
some problems because many plants are close to full-sized for most of their
life span. Other IBMs have treated grid cells as units similar to collectives:
processes such as reproduction and recruitment of new plants are modeled
as internal functions of the grid cell, not as behaviors of individual plants;
yet full-sized plants are treated as individuals. Useful examples of grid-
based plant IBMs, which in fact are only partly individual-based, include
the beech forest model BEFORE (sections 1.2 and 6.8.3); a model of a shrub
community in a semi-arid region (Wiegand et al. 1995); a model explaining
large-scale, stand-level diebacks in single-species forests of the Pacific region
(Jeltsch 1992; Jeltsch and Wissel 1994); a savanna model addressing the
coexistence of trees and grass (Jeltsch et al. 1996; 1997a); an IBM of compe-
tition between two tree species along an environmental gradient (Groeneveld
et al. 2002); a theoretical model of the coexistence among annual plant pop-
ulations (Silvertown et al. 1992); and further examples described by Czárán
(1998).

6.7.4.1 Example: The Winkler and Stöcklin model

A grid-based representation of space can be combined with a truly individual-
based approach to modeling plants. In such models, a grid cell no longer
represents the size of an adult individual. For example, Winkler and Stöcklin
(2002) developed an IBM of the perennial herb, Hieracium pilosella. The
IBM addressed the question of how sexual and vegetative reproduction, com-
petition with a grass species, and disturbance—mainly by cattle trampling—
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influence the spatial distribution of H. pilosella along an environmental gra-
dient which favours the grass species on one side and H. pilosella on the
other side (Figure 6.19). The model area was 200 × 50 cm2. One grid cell
of 1 cm2 represents the initial size of an individual H. pilosella rosette, but
larger individuals are represented by clusters of grid cells. Every year, a
rosette’s diameter increases by a certain amount. Larger individuals (diam-
eter of 3–5 cm) will, with a probability depending on their size, reproduce
sexually and also vegetatively by producing stolons with a juvenile rosette
at the apex. The competing grass was modeled using a similar description
of tussock growth, but was assumed to reproduce only vegetatively.

Reproduction by stolons 

  

Seedling 

   

Rosettes 
 

Seeds

Flowering
rosettes

Reproduction by seeds

(a)

calcareous debris 

grass

Hieracium pilosella

(b)

Figure 6.19 (a) Life cycle of Hieracium pilosella with four stages. (b) Schematic
profile of the distribution of H. pilosella and competing grass in a gra-
dient of soil quality in calcareous grassland. (Modified after Winkler
and Stöcklin 2002.)

Winkler and Stöcklin analyzed the IBM by comparing its predicted spatial
patterns of H. pilosella to corresponding patterns observed in real popula-
tions. This analysis indicated that two additional processes were needed in
the model: long-distance seed dispersal and facilitation of seedling estab-
lishment in the vicinity of grass tussocks (Figure 6.20). Interestingly, one of
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(a)

(b)

Figure 6.20 Vegetation pattern results from the grid-based IBM of Winkler and
Stöcklin (2002). Fictitious Hieracium species with only (a) sexual
or (b) vegetative reproduction are simulated. Soil fertility (increas-
ing from left to right) affects Hieracium seedling establishment and
grass regeneration. Hieracium rosettes are shown in dark grey with
black spots indicating their origin; grass patches are light grey. (From
Winkler and Stöcklin 2002.)

the few adaptive traits that we found in the plant IBM literature turned out
to be decisive for the maintenance of H. pilosella populations: phenotypic
plasticity of stolon length. The IBM assumes that when a stolon reaches a
grid cell that is already occupied it can, with a certain probability, search
for unoccupied sites in up to four additional cells. Without this adaptive
behavior of the stolons, the population was not able to persist in the pres-
ence of disturbances. Winkler and Stöcklin also concluded that a mixture of
vegetative and sexual reproduction is necessary for this species to maintain
populations in the presence of high interspecific competition and a shortage
of open space.

6.7.5 Individual-based Forest Models

Forest IBMs are certainly the most important and successful class of plant
IBMs, and of IBMs in general. There are hundreds of forest models and
many are individual-based (Liu and Ashton 1995). The manpower invested
in forest models reflects the enormous importance of forests, both from the
economic (timber production and other forest services) and ecological (con-
servation of natural biodiversity) points of view.
In reviewing forest IBMs, Liu and Ashton (1995) distinguished the two

main classes we examine: gap and growth-yield models. (Porté and Bartelink
2002 provide a general classification of forest models.) Forest IBMs that do
not fall in either of these classes include the mangrove forest model KiWi
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(Berger and Hildenbrandt 2000) and so-called process models which consider
physiological processes such as assimilation and respiration (e.g., TREE-
DYN3 by Bossel 1996; FORMIND by Köhler and Huth 1998; for a critical
discussion of process models see Zeide 2001).

6.7.5.1 Gap Models

The purpose of gap models is to understand long-term forest dynamics, in
particular species composition and succession in relationship to environmen-
tal variables. Gap models are thus developed mainly by ecologists. Gap
models consider the gaps created by death of canopy trees (Botkin et al.
1972; Shugart 1984; Botkin 1993). Typical gap sizes used in early gap mod-
els are 0.01 ha. Seedlings of the tree species of interest are then released in
this gap. Each individual tree is characterized by its size, most often as trunk
diameter at breast height. Empirical relationships are used to calculate the
tree’s height and biomass from its diameter.
Each individual tree is assumed to have a sigmoidal potential growth curve.

The potential annual growth increment is reduced by “multipliers” which re-
flect the influence of competition and environmental factors. The multipliers
range between 0 and 1, with 1 indicating no reduction in growth and 0 indi-
cating that no growth is possible. Competition is only considered vertically,
representing competition for light. The heights of the trees in the gap de-
termine the vertical profile of a leaf area index (representing the density of
leaves over vertical distance), and this index determines the light absorption
and, therefore, the amount of light which reaches each layer in the gap. Trees
shaded by larger trees are thus reduced in their growth. Mortality often is
assumed to depend on the growth rate: the tree is assumed to die when
growth falls below a critical rate for a specified length of time.
The pioneering gap model JABOWA (Botkin et al. 1972) and many of

its descendants include no horizontal spatial effects: the position of a tree
within a gap is not considered and the entire forest consists of gaps which
do not interact with each other. However, spatial relationships have been
introduced in more recent IBMs by merging gap models with the grid-based
approach. For example, the model ZELIG (Smith and Urban 1988) uses 10-
m grid cells and assumes interaction among adjacent cells via shading and
seed dispersal.
Liu and Ashton (1995) present a genealogical tree of 19 gap models, but

the basic design of growth, vertical competition, and mortality is quite sim-
ilar in most. The great success of gap models probably has three main
reasons. First, the model design is conceptually (and computationally) very
simple; each individual is described by the same small number of equations,
with species differing only in their parameter values and individuals differ-
ing only by their one state variable, diameter at breast height. Second, the
sigmoidal growth equations are relatively easy to parameterize (A. Huth,
personal communication). Third, gap models make important testable pre-
dictions: they mimic the species composition and dynamics of real forests
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so at least these outputs can be tested and validated (Shugart 1984).

6.7.5.2 Growth-yield models

The second class of forest IBMs distinguished by Liu and Ashton (1995)
are growth-yield models (e.g., Ek and Monserud 1974; Zeide 1989; Pretzsch
et al. 2002). Growth-yield models vary more in structure than gap models
do (Liu and Ashton 1995), but there are several consistent ways that they
differ from gap models. Growth-yield models are developed by foresters
to help manage timber production, so they usually address much shorter
time scales than gap models (e.g., one or several decades) but much larger
areas. Also because of their management purpose, gap models represent the
effect of biotic (e.g., stand structure and species composition) and abiotic
environmental conditions (e.g., light and moisture availability) on individual
growth. For example, most growth-yield IBMs (unlike gap models) represent
the explicit spatial position of trees so that distance-dependent competition
among trees can be simulated. The effects of environmental conditions are
represented using empirical regression functions, so these models require
much more data to parameterize than do gap models.
Growth-yield IBMs are highly empirical and lack adaptive individual be-

havior, but they nevertheless seem to capture some essential processes and
structures of forests—especially, the horizontal structure of a stand— better
than gap models do. Liu and Ashton (1995) therefore proposed development
of hybrid IBMs that combine the advantages of gap and growth-yield mod-
els. The forest IBM SORTIE (Pacala et al. 1993) is such a hybrid: although
a descendant of JABOWA, it considers the explicit spatial location of trees
and the effect of one critical environmental condition— light availability—so
SORTIE also shares characteristics of growth-yield forest IBMs (more about
SORTIE is in Section 11.5.2).

6.7.6 Summary and Lessons: Plant IBMs

Plant IBMs have a longer history (since at least 1964; Newnham 1964),
are more numerous, and are almost certainly more widely used in applied
ecology than animal IBMs (Liu and Ashton 1995). Yet we discuss example
plant IBMs in only this one theme because plant IBMs are generally simpler
and more similar to each other than animal IBMs are. To summarize the
common characteristics of most plant IBMs, we apply the conceptual design
checklist of Section 5.12 in the same way we applied it to animal IBMs in
sections 6.2.5 and 6.3.5. Then we finally discuss new directions in botany
and their implications for plant IBMs.

Emergence.—The plant IBMs are designed so that population-level out-
comes of interest— age and size distributions, production rates, species di-
versity, spatial patterns, etc.—emerge from individual-level processes, espe-
cially competition among individuals. Emergence is used in part because
the individual-level processes are believed to be important, but also (a pri-
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mary concern for forest management models) because empirical models of
individual growth—the most important process—are relatively easy to pa-
rameterize.

Adaptative traits and behavior.—Adaptive traits are almost completely
absent from the plant IBMs we reviewed. The most essential process of plant
IBMs is the effect of competition (and, sometimes, environment) on growth;
but plants are not assumed to have behavioral responses to competition, such
as choosing what parts of the plant to grow how much in which directions
(discussed further below). Instead, competition is assumed to simply impose
a reduction in growth. The adaptive choice of growth direction in the IBM
of Winkler and Stöcklin (2002) is an exception to this generalization.
With the lack of adaptive traits, the concepts of fitness and prediction are

also unused in plant IBMs.
Interaction.—Interaction is a key concept of most plant IBMs: competi-

tive interaction with neighbors is the most important (and, sometimes, only)
biological process represented. Consequently, how interaction is represented
is the characteristic distinguishing whole families of plant IBMs: FRN, ZOI,
FON, etc. Unlike most animal IBMs, plant IBMs represent interaction di-
rectly: each plant identifies the neighbors it interacts with and the effect of
each such neighbor is represented. However, the mechanisms of interaction
are highly simplified; with some exceptions, the details of how neighbor-
ing plants compete for light, moisture, nutrients, and space are ignored and
competitive interaction is instead modeled simply as a function of distance
or spatial overlap.
When a plant has two or more neighbors, their effects are treated as an

interaction field: the plant is affected simply by the sum of effects from all
neighbors.

Sensing.—The plant IBMs we examined do not explicitly represent sens-
ing because they do not assume that plants recognize and respond to the
presence of neighbors. Instead, competitive interaction with neighbors is
assumed simply to reduce the availability of resources that limit growth.

Stochasticity.—Stochasticity is used in plant IBMs in ways that are also
common in animal IBMs: to initialize the model (plants are initially given
random locations) and to represent processes like seed dispersal and mor-
tality that are highly variable yet driven in part by processes (e.g., wind)
too short-term or complex to include in the IBM. Plant growth, the most
important process in these IBMs, is modeled without stochasticity.

Collectives.—While many plants do form colonies or other aggregations
that resemble collectives, none of the IBMs we examined represent collec-
tives. Some grid models use a technique resembling a collective: early life
stages are represented simply as characteristics of the grid cell. The cell
may have variables representing the number and species of seeds, seedlings,
or saplings; and assumptions modeling how these plants die and grow into
the next life stage. While this aggregation of juvenile plants resembles how
collectives can be explicitly represented in an IBM, it is simply a modeling
technique and does not represent real collectives.
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Scheduling.—The plant IBMs represent time using discrete time steps,
usually at least one year and sometimes more than a decade in length. It is
tempting to think that scheduling decisions are less important for plant IBMs
because the processes represented in them are slow. However, scheduling is
just as important when long time steps are used to represent slow processes
as when short time steps represent fast processes. There are potentially
important effects of how model actions are scheduled. Growth of each plant
depends on the size of its neighbors, so how is the size of each plant updated
with respect to its neighbors? When mortality is simulated, it is usually a
function of growth rate; is growth updated before or after mortality risk is?
Unfortunately, such scheduling assumptions have often been undocumented.

Observation.—Spatial processes are important in all plant IBMs, so the
ability to observe individual plants over space and time certainly helps test
and understand the models. Models with graphical output of plant size and
location over time (e.g., Pacala et al. 1993; Huth et al. 1998; Köhler and
Huth 1998; Savage et al. 2000; Berger and Hildenbrandt 2000; Rademacher
et al. 2004) illustrate its value for testing assumptions about how individuals
interact and understanding system dynamics. Many plant IBMs were imple-
mented without such observer capabilities, undoubtedly due in part to the
technologies available at the time the IBMs were built. However, many of
these IBMs also address problems that allow them to be tested and analyzed
adequately from aggregated, non-spatial outputs such as timber production
rates, self-thinning relations, and frequency distributions of size or species.

Future directions.—One generalization about plant IBMs that stands out
starkly from the checklist is the lack of adaptive traits—plants are rarely as-
sumed to make decisions allowing them to respond to changes in themselves
or their situation. Why are adaptive traits so rare in plant IBMs while they
are so important in animal IBMs? One answer is that the adaptive behaviors
most widely addressed in animal models—dispersal and movement—are not
available to plants once seeds are established. Another answer lies with the
kinds of problems addressed by plant IBMs, which tend to be large-scale and
long-term. Apparently, these problems can be addressed with some success
using IBMs that only coarsely represent the most important processes and
neglect adaptive behavior.
However, as these IBMs were being developed plant physiologists have

been discovering many important and fascinating adaptive behaviors (or
“responses”, the term used in botany) and the detailed mechanisms—often,
chemical signalling—plants use for sensing and interacting (e.g., Cosgrove et
al. 2000). Whereas the IBMs we examined simply assume that proximity of
other plants reduces growth, it is now known that plants can sense neigh-
bors even before shading occurs by detecting changes in the light spectrum,
and adapt to high densities of neighbors via mechanisms such as allocating
more growth to stems and less to roots (Schmitt et al. 1995) or adapting
their above-ground shape (Umeki 1997). It is also now known that plants
defend themselves against herbivores and pathogens with an array of active
responses, not just latent resistance; upon attack, plants release chemicals
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specific to the type of damage and to their own state. For example, plants
can respond to insect herbivores by releasing chemicals that attack the in-
sects directly by interfering with feeding, growth, and ability to reproduce;
and indirectly by attracting the insects’ predators and parasites (Walling
2000). And in some systems, allelopathy (“chemical warfare”) is considered
potentially as important as passive competition in regulating spatial patterns
and population dynamics.
Learning how important these individual adaptive traits are to the pop-

ulation dynamics of plants is obviously an important research goal for IBE,
and in fact some progress has already been made. The Winkler and Stöcklin
(2002) IBM (Section 6.7.4) showed that adaptive behavior can be critical
to the kinds of problems plant IBMs often address. Umeki (1997) is one of
several studies of how the predictions of forest IBMs could be affected by
adaptive behavior. Umeki assumed that individuals could adapt to neigh-
bors that block light by growing partly sideways toward light instead of only
straight up; this behavior strongly affected the predicted density and size
distribution of trees.
A second, related, generalization we can make about the plant IBMs is

that the full IBE theory development cycle (Chapter 4) has not yet been
widely applied. At the individual level, IBMs have typically assumed mod-
els for individual behavior, often parameterizing them with field observations
but rarely contrasting alternative theories for individual traits to see which
best explains observed higher-level patterns. At the population or commu-
nity level, plant IBMs have typically addressed only one or two particular
patterns, rarely a wide variety of patterns or long-term dynamics. Much
more could be learned by testing alternative theories for individual plant
behavior by how well they reproduce a wide variety of observed higher-level
patterns. These analyses should start with simple approaches such as ZOI
and FON, but eventually should also examine more mechanistic models of
interaction and adaptive individual behaviors.

6.8 STRUCTURE OF COMMUNITIES AND ECOSYSTEMS

Most IBMs deal with populations of one species. This is natural because the
motivation behind early IBMs, both pragmatic and paradigmatic (Chapter
1), was to overcome conceptual and technical limitations of classical popu-
lation models. It also seems wise not to aim too high at the beginning: we
should learn how to use IBMs for populations first before tackling commu-
nities and ecosystems. Some have even argued that IBMs are unlikely to be
useful for more than one species because even single-species IBMs are dif-
ficult to develop, analyze, and understand—difficulties that could multiply
or even increase exponentially as more species and interspecies interactions
are added.
However, one of the ultimate goals of IBE is to understand how traits and

behavior of individuals affect the structure and dynamics of ecological sys-
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tems in general, including communities and ecosystems. Werner and Peacor
(2003) reviewed the empirical evidence and concluded that adaptive traits of
individuals can have effects on communities at least as strong as the density
effects that ecologists traditionally focus on. By “communities” we refer to
assemblages of several species which live in the same environment and in-
teract with each other directly or indirectly, e.g. via competition, predation,
or facilitation. By “ecosystems” we refer to assemblages similar to commu-
nities, but with abiotic factors and environmental heterogeneities addressed
more explicitly. (We thus do not address the abstract view of ecosystems as
compartments and flows of nutrients and energy, e.g., Odum 1971, although
such ecosystem elements could be included in IBMs.)
One strategy to achieve this ultimate goal of IBE is to apply relations and

understanding developed with population-level IBMs into more aggregated
community- and ecosystem-level models (Schmitz 2001). Unfortunately,
these aggregated models—e.g., community matrix models—tend, for the
sake of analytical tractability, to be extremely artificial so it is not clear how
the complex dynamics emerging in population IBMs could be included even
indirectly. Another strategy is to follow the general and pattern-oriented
modeling guidance of chapters 2 and 3 to design community and ecosystem
IBMs which are structurally realistic but still tractable. This guidance tells
us that when building an IBM to study interactions among species, each
species is likely to be modeled in a different, usually less detailed, way than
when modeling problems that address only one species.
In this theme we present two community IBMs and one ecosystem IBM.

These IBMs are quite different from each other but show that new and
important insights can be gained by applying individual-based approaches
directly to levels of organization higher than populations. Other community
and ecosystem IBMs include the theoretical plant succession model of Bartha
and Czárán (1989); individual-based forest models, which usually include
several—up to more than 100—species (Liu and Ashton 1995; Section 6.7.5);
the grid-based model of a semi-arid shrub community of Wiegand et al.
(1995); the grid-based savanna model of Jeltsch et al. (1996; 1997a); the
plant community model of Smith and Huston (1989); and the fish community
model of Shin and Cury (2001).

6.8.1 Adaptive Traits in the Community IBM of Schmitz

The IBM of Schmitz (2000) addresses the structure of an early-successional
old field community. The community contains 25 different grass and herb
species; five of these species, all perennials, provide more than 90% of the
total vegetation biomass. The dominant herbivore is a grasshopper species,
and the major predators on grasshoppers are three different species of hunt-
ing spiders. Field experiments showed that the spiders exerted a strong
influence on plants via direct interactions with grasshoppers, by reducing
grasshopper density and by causing grasshoppers to change their foraging
behavior to avoid predation. In experiments with the spiders prevented from
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actually killing their prey (by gluing the spiders’ mouth parts), spiders still
influenced plant biomass even without reducing grasshopper density.
Schmitz concluded that in this system indirect effects of the spiders on

the plants arose largely from the grasshoppers changing their behavior in re-
sponse to the spiders, not just from spiders reducing grasshopper abundance.
Without spiders, grasshoppers preferred eating grass, probably because it is
more nutritious. In the presence of spiders, grasshoppers feed more on herbs,
which are structurally more complex so grasshoppers are harder for spiders
to detect and capture. The effect of spiders altering grasshopper behavior
could clearly be demonstrated in experiments lasting one season, but the
long-term consequences of this effect on community structure and dynamics
were not clear. Therefore, Schmitz developed a community IBM describing
two types of plants (preferred grass and safe herbs), herbivores (grasshop-
pers), and predators (spiders).
Unlike most of the IBMs examined in this chapter, this community IBM

was not designed or implemented in software from scratch. Instead, it was
implemented using Gecko, a generic platform for IBMs developed by Booth
(1997). (Gecko was in turn implemented in the Swarm software platform;
Section 8.4.3.) The way individuals are represented in Gecko is similar to
the ZOI and FON approach used for plant IBMs (sections 6.7.2, 6.7.3):
individuals are represented as spheres that project as circles onto a plane.
The radius of an individual defines its world: for two individuals to interact,
their spheres must overlap. Interactions and production of resources used by
the individuals take place in the plane. However, the third dimension—the
volume of the spheres—is used to determine the biomass of the individuals
from allometric relationships. Mobile animals move in the plane; sessile
individuals stay at the location where they were released, but via growth
they increase the area over which they influence, or are influenced by, other
individuals.
Gecko’s representation of individuals as spheres may seem awkward (to

those unfamiliar with spherical cows; Harte 1988), but it is important to un-
derstand that the spheres do not represent individuals physically but their
“zone of influence”. This generic model of an individual makes Gecko es-
pecially useful for modeling different kinds of species and, in particular, for
modeling multiple species (i.e., communities) simultaneously. To create his
community IBM, Schmitz (2000) had only to translate the properties of his
species and their traits into the “language” of Gecko (Figure 6.21). We can
see from the following summary of the model’s assumptions that it is not
crude or simplistic compared to other ecological models or even other IBMs.
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Figure 6.21 Translation of a real community into Gecko, by Schmitz (2000). The
community has two plant species, a grasshopper species, and a spider
species that preys on grasshoppers. In Gecko (Booth 1997), individu-
als, or their zone of influence, are represented as spheres on a plane.
(After Schmitz 2000.)

• Population dynamics of the four species emerge from individual survival
and reproduction, which depend on growth and predation (spiders eat
grasshoppers; grasshoppers eat plants).

• Resource consumption and competition is represented using direct in-
teraction: an herbivore eats a specific plant, a predator kills a specific
herbivore. Individuals gain resources at a rate proportional to the area
their sphere projects on the plane. Plants gain resources over their entire
area; herbivores gain resources over the area where their circle overlaps
that of their plant resource. Overlap of individuals of the same species
represents intra-specific competition.

• Large individuals consume resources faster than smaller individuals of
the same species do, including asymmetric competition (Section 6.7.2).

• Growth is modeled as the difference between resource intake and metabolic
demands. Inadequate resource intake (e.g., due to competition or re-
source depletion) can have effects on individuals ranging from reduced
growth to loss of size, reduced fecundity, and death.

• Animals move following a biased random walk, modified by additional
rules describing sensing and interactions.

• Herbivores select the plant within their circle which yields the highest
rate of resource intake (grass, if present in the circle). Within a time
step (10 per day), “feeding” means to take one “bite” from the plant,
which reduces the plant’s size.
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• Herbivores sense predators with a size-dependent detection radius. If
they sense a predator within this radius, they exhibit an adaptive be-
havior: moving towards a “safe” plant (herb) in hopes of avoiding the
predator.

• Reproduction is asexual and individuals reproduce only if they attain
sufficient size.

• A season consists of 190 days. During the rest of the year, plants are dor-
mant as roots and seeds, herbivores exist as dormant eggs, and predators
overwinter as juveniles.

While calibrating his model Schmitz made two interesting observations
regarding the significance of adaptive traits. When the adaptive trait for
responding to predators was taken away from herbivores, their population
never persisted beyond half of the first season. Similarly, if the herbivores
had the adaptive trait but no “safe” plants existed, they went extinct by the
middle of the second season. These experiments use a technique discussed
in Chapter 9: simulating unrealistic scenarios.
To test the community IBM, it was run for one season using input cor-

responding to the field experiments (including, for example, the experiment
with spiders’ mouths glued so they cannot actual kill grasshoppers). The
results of these simulations, and the general within-season pattern of commu-
nity structure, matched the empirical observations. Then, after calibration,
the model was applied to the problem it was designed for: studying long-term
effects of the predator on community dynamics and structure. Experiments
simulating 10 seasons contrasted community dynamics with vs. without the
spider predators. Without predators, abundance of the plant species pre-
ferred by herbivores declined steeply and it took about five seasons for the
community to reach a new steady state (Figure 6.22a). With predators, the
density of both plant types remained almost constant at a high level very
close to that observed in the one-season experiment and simulations (Figure
6.22b and c).
Schmitz concluded that in this system within-generation processes are

sufficient to predict long-term community dynamics because seasonality re-
moved the serial dependence in population abundance over time: the system
is “re-set” each season. This finding has important implications about the
significance of many ecological time series, which are derived from obser-
vations taken once per year and thus ignore within-generation processes.
Schmitz (2000; p. 482) concluded that: “Ignoring the information value of
within-season interactions may lead to the wrong interpretation about com-
munity dynamics and thus decrease our ability to elucidate causality.” For
example, analyses of an annual census time series (as performed by Schmitz
on his annual time series of IBM output) may find no autocorrelation, im-
plying the absence of density dependence in population dynamics. But such
a conclusion could be misleading: strong within-generation density depen-
dence may be the reason why no between-generation density dependence is
detected. (Grimm and Uchmański 2002 were lead to similar conclusions by
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Figure 6.22 Long-term time series of biomass of preferred and safe plants in the
community IBM of Schmitz (2000). Predators are either absent (a),
present so that they affect herbivore behavior but without actually
killing them (b), or present and preying upon the herbivores (c). (Af-
ter Schmitz 2000.)

another IBM; Section 6.5.2.)
The model of Schmitz (2000) is an important example, not only for what

it teaches about a particular community but mainly because it illustrates
a productive, individual-based way to study community dynamics. Com-
munity IBMs can use highly simplified representations of individuals, and
can use generic platforms like Gecko to further reduce the design and imple-
mentation effort; and still produce important knowledge of how individual
traits affect community dynamics. Finally, Schmitz’s study illustrates an
important part of IBE that we have seen few examples of in this chapter:
field studies designed specifically to support model design and analysis. The
elegant experiment that manipulated perceived predation risk vs. actual pre-
dation rate by allowing spiders to stalk but not kill grasshoppers produced
a pattern that was very important in conceptualizing and validating the
model.
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6.8.2 The Plant Community IBM of Pachepsky Et Al.

The model of Pachepsky et al. (2001) was designed to explain general pat-
terns in relative abundance distributions, which describe the distribution of
individual abundance among species. Communities considered “in equilib-
rium” are expected to have a log-normal relative abundance distribution,
with few species having either extremely high or low abundance but more
species having low than high abundance. In contrast, disturbed communities
considered out of equilibrium are expected to have geometric relative abun-
dance distributions, with a few very abundant species and more rare species.
Several theories based on considerations such as recruitment and metapop-
ulation dynamics have been developed to explain these patterns; Pachepsky
et al. wanted to explore how individual-level processes and variation affect
the distributions.
The IBM of Pachepsky et al. describes an artificial community of plant

species. Individuals have twelve physiological traits that govern how pro-
cesses such as resource intake, internal allocation of resources, reproduction,
and survival vary with the plant’s developmental state. A species is gener-
ated by drawing a random value from the parameter probability distribution
for each trait. A model run is initialized with one individual of each such
artificial species, and when individuals reproduce they pass their traits on
unmodified. (In some very general ways, this approach resembles the arti-
ficial evolution approach to modeling individual traits discussed in sections
6.9 and 7.5) The model is grid-based: each plants occupies—exclusively—
one grid cell, but the size of a plant’s interaction neighborhood (a zone of
influence; Section 6.7.2) depends on its development stage. Competition
for resources is represented as mediated interaction: if two plants use re-
sources from the same grid cell, resources are divided in proportion to the
plants’ current resource uptake. Competition for space occurs at the seed
stage: seeds are dispersed randomly within a limited distance but can only
germinate on empty grid cells.
The simulation experiments varied the size of the space between 100 and

2,500 grid cells, started with 75 randomly located individuals (and, therefore,
75 species), and ran for 50,000 time steps (1,250 generations of 40 times steps
each). Typically, the number of surviving species decreased exponentially at
the start of a run and stabilized after about 5000 time steps. The number
of species that persisted for long periods at the end of a run increased with
system size in a manner consistent with observations from real communi-
ties that are disturbed or managed. During this “equilibrium” period, the
abundance distribution was log-normal, as expected for stable communities
(Figure 6.23). Pacheptsky et al. reported that the distribution was, also
as expected, more of the geometric form during the initial, non-equilibrium
period.
To better understand their IBM, Pachepsky et al. used a technique dis-

cussed in Section 9.4.4: reducing the model’s complexity. They tested the
importance of variability in the 12 physiological traits to the relative abun-
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Figure 6.23 Abundance distribution produced by the Pachepsky et al. plant com-
munity IBM on a 30×30 grid. The values were averaged over the time,
during one simulation, when 15 species coexisted. Error bars show the
standard deviation among time steps. (Modified after Pachepsky et
al. 2001.)

dance distributions by, one at a time, assuming each trait does not vary
among species. They found out that variability in only the traits affect-
ing time to reproduction and fecundity is needed to reproduce the abun-
dance distribution patterns of the full IBM. The species remaining during
the equilibrium period had traits falling along a linear tradeoff between time
to reproduction and fecundity. The main conclusion of Pachepsky et al. (p.
926) is thus “that the trade-off between time to reproduction and fecun-
dity sustains the diversity in the community, and governs the form of the
resulting abundance distribution”. Further, observing that this trade-off is
manifested at the individual level, Pachepsky et al. (p. 926) suggest that
“replacing species with individuals as the fundamental ecological accounting
unit” can be productive.
The Pachepsky et al. study illustrates how simple, very tractable IBMs

can reproduce fundamental patterns at the community level and be used
(along with clever analysis techniques such as reducing complexity) to ex-
plore the mechanisms from which the patterns emerge. But several unique
aspects of how this model was designed and communicated leave interest-
ing questions unanswered. The paper was published in a journal (Nature)
with severe space limitations, so we know unfortunately few details of the
model design (we discuss strategies for this problem in Section 10.3.1). The
paper also includes a differential equation version of the model that—in our
opinion—was not the best use of the limited publication space (another com-
munication issue we address: Section 10.3.3). One unique characteristic of
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this IBM is merging the concepts of individual and species. At the start of
each simulation, each individual was given unique traits that were passed
on to offspring, so each initial individual essentially gives rise to a separate
species. The important tradeoff between time to reproduction and fecundity
varies among individuals in the initial population, but with initial individu-
als equivalent to species it is not so clear whether the fundamental ecological
unit in the IBM is the individual or the species.
This study shares a characteristic of other highly abstract IBMs designed

to address questions of classical ecological theory (Section 6.5.5): while these
models and the research based on them provide important insights on clas-
sical theory, they leave us wondering how applicable the results are to real
ecological systems. The study focused on one community-level pattern, the
relative abundance distribution. Showing that the IBM reproduced this one
pattern is important, but not sufficient to give us high confidence that results
are applicable to real systems. Perhaps the relative abundance distribution
pattern would have been explained by other processes such as environmental
variability or immigration if they had been in the IBM; in fact, this is such
a general pattern that it seems possible that many different processes could
explain it. The risk in using an abstract IBM is giving up the opportunity
to build confidence in the IBM by showing that it reproduces a variety of
observed patterns that capture essential behaviors of a real system and its
individuals.

6.8.3 The Beech Forest Model BEFORE

Now we look at an ecosystem IBM that simulates only one species. A single-
species IBM is extremely different from how many ecologists traditionally
think of ecosystem models: simulating flows among pools of energy and
nutrients. From the traditional ecosystem perspective, one might assume
that an ecosystem IBM would include all species (and abiotic factors) of
the system. But such an IBM would suffer from “naive realism” (Section
2.1), the belief that a model needs to include everything known about a
system to be “realistic”. But community and ecosystem models, like all
others, need to be designed for specific questions; and for some systems and
some problems, the best model may describe only a few, or even only one,
species. The forest IBMs described in Section 6.7 are examples: they were
designed to address questions about species composition in tree communities;
other plants and all animals were ignored. Therefore, questions regarding
animal-plant interactions or invasions of exotic herbs cannot be answered
with these models. But these forest IBMs still capture much of the essence
of their ecosystems simply because the most important elements of forests
are—trees.
The ecosystem IBM we examine here describes the spatial population

dynamics of beech (Fagus silvatica). Nevertheless, the model describes im-
portant aspects of an entire ecosystem because in central Europe natural
beech forests would be almost entirely dominated by this one species of tree.
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Beech tolerates a wide range of environmental conditions and casts heavy
shade while tolerating shade well itself, so can exclude other tree species.
Beech forests are ecosystems for which we can represent most of the energy
and nutrients (except in soil) by modeling a single species.
Before modification by people, central Europe was actually dominated by

single-species beech forests. Now, except for a few remnants in Bohemia and
the Balkans, there are no natural beech forests. Even the oldest reserves are
rather small and at most 130 years old, so they still reflect their history
of being managed. But what would natural beech forest ecosystems look
like, and what processes would drive their spatial and temporal dynamics?
What are good indicators of the naturalness of a beech forest ecosystem?
How large should beech forest reserves be to allow natural processes and
dynamics to emerge?
To answer these questions, the model BEFORE was developed (Neuert

1999; Neuert et al. 2001; Rademacher et al. 2001; Rademacher et al. 2004).
Because this problem addresses a specific ecosystem and requires predict-
ing system behavior under conditions never observed, a primary modeling
concern was building confidence in the IBM’s ability to capture essential
processes and dynamics of beech forests. From Chapter 3 we know that
building this confidence means reproducing a variety of patterns observed in
modern beech forests—especially vertical and spatial (horizontal) patterns
in tree size and density. Perhaps one of the existing forest IBMs could have
been modified to address the questions BEFORE was designed for, but no
existing IBMs were explictly designed to reflect the vertical and horizontal
structure of a forest and its dynamics for thousands of years over very large
areas.
The structure (state variables) of BEFORE was designed so that impor-

tant observed patterns could emerge in the model. An especially important
pattern is that natural beech forests consist of a mosaic of small patches
which can be assigned to three different developmental stages. These stages
are characterized by vertical structure. The “optimal” stage has a closed
canopy and almost no understory, whereas the “growing-up” and “decay-
ing” stages have understory and gaps in the canopy. This pattern can only
emerge if a model has both a small spatial resolution and explicit representa-
tion of different canopy layers. BEFORE is therefore grid-based in all three
dimensions. Horizontal space is divided into cells approximating the crown
area of a very large beech (about 0.02 ha); this cell size is much smaller than
the typical area (0.1–2 ha) of the developmental stage patches observed in
beech forests. Vertically, beech are grouped into four height classes (Figure
1.2): seedlings, juvenile trees, and lower and upper canopy.
The seedling and juvenile height classes are not represented as individuals

but instead simply as the fraction of cell area covered by plants of that class.
The lower and upper canopy trees are modeled individually, but the position
of the trees within the cell is not considered. Up to eight lower-canopy
individuals may be present in a cell, and the crown size of each individual is
fixed at 1/8 of the cell area. Similarly, up to eight upper-canopy individuals
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can exist in a cell, but the crown size of each can grow from 1/8 up to 8/8 of
cell area. However, the total crown area of all trees in the upper canopy of
one cell cannot exceed the cell area. Competition occurs if the upper canopy
is completely covered by tree crown; in this case trees with a larger crown
size can grow at the expense of trees with a smaller one. This asymmetric
competition can even lead to the death of smaller individuals.
The processes driving dynamics of the model forest are growth and mor-

tality. Growth is driven by the light reaching individual trees and mortality
is driven by growth and by storms that cause windfall. (Because these forests
are dominated by large beech trees, recruitment of seedlings was assumed to
be a far less important process than light competition and was represented in
a simple, stochastic way.) The light reaching trees of the three lower height
classes depends on the cover in the higher height classes in both the same cell
and in neighboring cells; the positive effect of indirect and oblique light from
canopy gaps in neighbor cells is taken into account. The relative amount of
light reaching each height class determines its growth and mortality rates.
BEFORE includes one environmental process—windfall—because it ap-

pears to have strong effects on the ecosystem. Simulated storms have dif-
ferent wind directions and three different strengths: “normal” storms occur
in 89% of time steps (which represent 15 years), 10% of time steps include
“strong” events, and “extreme” events occur in 1% of time steps. Storm ef-
fects are modeled at the individual level: each tree has a certain probability
of being wind-thrown. However, this probability is sharply increased if there
are gaps in the upper canopy of either up-wind or down-wind cells; up-wind
gaps increase the wind a tree is exposed to and down-wind gaps reduce the
support provided by neighboring trees. Wind-thrown trees are assumed to
damage the upper and lower canopy of the neighbor cells into which they
fall; the damage affects a row of up to three cells. The IBM’s scheduling of
wind damage was carefully designed so that natural patterns such as aisles
of wind-damaged trees can be reproduced (Figure 6.24): when a simulated
storm is executed, the model action simulating damage in each cell is exe-
cuted on cells in order from upstream to downstream. In this way, the risk
of wind damage to trees in a cell is affected by damage occurring up-wind in
the same storm; a gap opened in one cell increases the probability of windfall
in the down-wind neighbor cells, making chains of damage possible.
Overall, we see that the patterns and problems that BEFORE was de-

signed to address lead to a hybrid model design. The model is grid-based in
horizontal and vertical dimensions; the beech trees are represented partly in
an aggregated way (seedling and juvenile stages) and partly as individual-
based (lower and upper canopy trees). The individuals are described only
coarsely: lower canopy trees mainly by their age (they can survive in a
kind of “dormant” stage for a number of years but not forever), and up-
per canopy trees by their age and crown size. Most individual-based forest
models (Section 6.7.5) describe individuals in more detail, but for the pur-
pose of BEFORE—understanding large-scale and long-term spatio-temporal
dynamics of natural beech forest ecosystems—more detail was unnecessary.
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(a) (b)

Figure 6.24 Damage in the upper canopy (see Figure 1.2) caused by (a) “normal”
and (b) “extreme” storm events in the beech forest model BEFORE
(Rademacher et al. 2004). The figure shows only 15×15 cells (4.7 ha)
of a 54 × 54 cell (64 ha) model forest. Prior to the storm, the forest
had a typical mosaic of small patches (averaging 0.3 ha) in different
developmental stages. The damage ranges from opening the entire cell
as a gap (black) to no damage at all (white). The storm wind was
from left to right. (From Rademacher et al. 2004.)

BEFORE succeeded in reproducing important patterns observed in real
beech forests: the presence of three developmental stages (optimal, growing-
up, and decaying), their mosaic spatial pattern, and the sequence and av-
erage duration of the stages. The fact that these stages and patterns were
not imposed by the model rules but emerged from the IBM’s structures
and mechanisms provides confidence that BEFORE captures essential char-
acteristics of the beech forest ecosystem. But BEFORE was designed and
calibrated with these patterns in mind, so there still is a risk that wrong
model structures or parameter values were chosen because they cause these
patterns to emerge.
To develop more confidence that a model is structurally realistic, we can

test its ability to make independent predictions of system properties not used
to design or calibrate the model (Section 9.9). BEFORE can make indepen-
dent predictions about individual trees, because the patterns used to design
and calibrate the model are about developmental stages (the development
stage of a cell is assigned according to the total cover in the different height
classes, not the state of any particular tree). Rademacher et al. (2001) asked
two questions regarding individual trees: how are very old, large trees (“gi-
ants”) distributed? and what is the age structure of canopy trees? Predic-
tions from BEFORE matched—qualitatively— observations from remnant
natural forests and reserves. First, “giants” are present all the time, and
80% of giants have another within 40 m. The presence and distribution of
giants turned out to be a much more reliable indicator of the naturalness
of a beech forest than the spatial percentages of the three developmental
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stages, which were cyclical and can have extreme values after extreme storm
events. Second, the average age difference of two neighboring canopy trees
is about 60 years. Thus, even apparently homogeneous canopies are very
heterogeneous in age.
Given all these indications that BEFORE captures essential structures and

processes of the beech forest ecosystem, the model should be useful not only
for the questions it was designed for but also for new questions. One such
new question concerns the amount and distribution of woody debris. In the
original model, dead trees were ignored and the stem volume of canopy trees
was not calculated. To adopt BEFORE to questions about woody debris
(Rademacher and Winter 2003), rules were added to describe the production
and fate of dead wood. Canopy trees of different age and crown size were
assigned stem volumes. This modified model also produced predictions—
both “dependent” and independent—that matched observed patterns; one
example is that the total amount of living and dead wood is constant over
time. The model then could be used to investigate strategies for increasing
the dead wood in managed forests, e.g. by creating “dead wood islands”
where no wood is removed.
It is interesting to compare BEFORE to the earlier model of Wissel (1992a)

that also attempted to explain spatio-temporal dynamics of natural beech
forests. This model was designed around only one pattern, the spatial mosaic
of developmental stages. Patterns in vertical structure were ignored. The
Wissel model was able to reproduce the mosaic pattern, but foresters were
skeptical of it. The model was not rich enough in structure to allow those
familiar with real beech forests to look at it from different angles or to test
predictions that could make the case that it was structurally realistic. In
contrast, BEFORE has more structure (Figure 6.25) because it was designed
to reproduce several observed patterns simultaneously.
It is also interesting to contrast BEFORE with the forest IBMs discussed

in Section 6.7.5. Because BEFORE was designed for ecosystem questions, it
uses a relatively coarse description of trees and the forest while simulating
large areas and long times. BEFORE does not use, for example, detailed
models of growth rates and how they vary with environmental conditions.
In fact, no processes in BEFORE are modeled in a completely mechanistic
way. Instead, all the traits of trees are partially stochastic and based on
“if-then” rules developed from empirical experience: if a tree (or cell) is in
a certain state, then the probability of event X is Y% (Section 7.4). (“If
there is a normal storm and all upwind and downwind neighbor cells have
full canopy cover, then the probability of the cell’s upper canopy tree being
wind-thrown is 0.01.”). BEFORE is clearly not suited for many questions
that other forest IBMs are used for, such as planning harvests or predicting
what kind of forest would occur in different soils or moisture conditions.
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Figure 6.25 Graphical representation of the forest structure in the model BEFORE
(see Figure 1.2). Each cell represents an area of about 15×15 m2 (the
maximum canopy area of a single beech tree). Within each cell, the
cover in the four tree height classes is indicated by four rows of line
segments. In the upper canopy (the top row of line segments in each
cell) and in the lower canopy (second row of lines), 0-8 trees may be
present. Upper canopy trees can have crown sizes between 1/8 and
8/8 of the cell size, but the sum of sizes over all upper canopy trees
cannot exceed the cell size. Lower canopy trees all have a crown size
of 1/8 of cell size. For the two lower height classes (the lower two
lines in each cell), the lines represent percentage cover. (From Neuert
1999.)

6.8.4 Summary and Lessons: IBMs of Communities and Ecosys-
tems

The three IBMs examined in this theme were chosen mainly to illustrate
one point: that by using modeling practices similar to those we recommend
in chapters 2 and 3, it is quite possible to develop community and ecosys-
tem IBMs that are simple and tractable enough to learn from. By focusing
on specific problems and patterns, and simplifying appropriately, we can
build these IBMs almost as easily as we can population IBMs. In Schmitz’s
(2000) study, the community was simplified into four representative species
and modeled using a platform, Gecko, that provides a generic template for
multi-species IBMs. Pachepsky et al. (2001) represented plant communities
in general using an abstract IBM in which species differences were simplified
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to variability in 12 basic traits, and then these differences were even further
simplified via model analysis. The developers of the BEFORE model recog-
nized that important dynamics of a whole ecosystem could be represented
by modeling only its dominant species, beech. Despite these simplifications,
the IBMs all provided new insights on real systems or ecological theory.
These examples also show that we can use IBMs to link patterns of biodi-

versity to traits of individuals. The model of Pachepsky et al. was designed to
look at a classic problem of biodiversity: what traits of separate species allow
them to persist together in a community (see also Smith and Huston 1989)?
Schmitz’s study looked at how an adaptive trait of grasshoppers (avoid-
ing risky foraging behavior) affects their persistence and relative abundance
within the community—an important reminder that adaptive behavior can
have strong effects on communities and ecosystems, not just individuals and
populations. The BEFORE model looked at diversity in forest structure,
studying the environmental processes and individual traits that cause the
diversity of forest stages observed in natural forests.
The abstract model of community diversity by Pachepsky et al. provides

an interesting contrast with the other two IBMs in how we think of “general”
research. The Pachepsky et al. IBM was designed to explain one particular
pattern—a community’s relative abundance distribution. Because it simu-
lated an artificial system, this one pattern was the only way to show how
“valid” the IBM was. In contrast, both the community IBM of Schmitz and
the BEFORE model were built around a number of patterns observed in
real systems, in some cases patterns developed from field experiments de-
signed specifically to support modeling. As a result, these IBMs could be
parameterized with field data and analyzed to build confidence that they
capture essential characteristics of the real systems. Consequently, we feel
we learned something we can believe, if only about the particular systems
that were modeled. When abstract models are used to address “general”
problems, though, we often find ourselves wondering what real systems, if
any, the results might apply to.

6.9 ARTIFICIALLY EVOLVED TRAITS

In this theme we examine a “high-tech” approach to the central problem of
IBE, finding adaptive traits that explain observed population-level behav-
iors. With this technique, models of the individual behaviors that cause a
particular system behavior to emerge are artificially evolved within an IBM.
The technique does not model evolution of the species, but uses computer
algorithms that mimic evolutionary processes to calibrate traits so they re-
produce particular population behaviors.
Artificial evolution is often used to create artificial, digital worlds of evolv-

ing agents or species. (Adami 2002 provides an overview of artificial ecosys-
tems; Tesfatsion 2002 discusses artificial economies.) In these digital worlds,
agents typically compete with each other in an unstructured environment
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and the systems never settle down into a stable state: new traits continu-
ally appear because they exploit weaknesses of previous traits, only to be
displaced by even newer traits. However, here we look at a completely dif-
ferent application: using artificial evolution as a computational technique to
solve a specific modeling problem, the calibration of individual traits to solve
real-world fitness problems in IBMs. Mitchell and Taylor (1999) provide an
excellent overview of artificial evolution and its application to problems in
biology and ecology, including problems of IBE; Mullon et al. (2002) provide
an interesting application of artificial evolution to traits of the anchovy.
All the IBMs in this theme were developed at the University of Bergen,

Norway. While the three studies differ in the problems they address, they
share a general technique for artificial evolution of adaptive traits. Huse
et al. (1999) describe and test this “individual-based, neural network, ge-
netic algorithm” (ING) technique. One of the most interesting aspects of
the ING technique is that it uses a highly simplified representation of how
decision-making actually occurs at its lowest levels within organisms: as an
interaction of genes and networks of neurons, driven by sensed information
about the individual’s environment and internal state. A second interesting
aspect is that different traits for different behaviors (e.g., movement, energy
allocation, and reproduction timing) can be evolved simultaneously in such
a way that the traits combine to produce realistic emergent behaviors.
The ING technique represents an adaptive trait as an artificial neural net

(ANN). An ANN is a software representation of a simple network of neurons,
commonly used to model complex decisions from multiple inputs. As input,
an ANN takes information that the individual senses from the environment
or from itself; each ANN can accept several kinds of such input. As output,
it produces the decision that the trait models, usually as one or several
variables standardized to range between zero and one. For example, Huse
et al. (1998) represented traits (discussed below) using an ANN with three
“layers”, each layer being a set of nodes. Nodes are analogous to neurons: a
node accepts input values from senses or other nodes, transforms the inputs,
and if the sum of transformed inputs is high enough the node “fires” by
producing an output. Thus, node j of a layer that receives n inputs can be
represented as:

Fj =
n∑

i=1

1
1 + exp (−WijIi −Bj)

. (6.5)

Fj is the output variable that ranges between 0 and 1, Ii the input infor-
mation, Wij a weighting factor for each input, and Bj the node’s so-called
bias. The sigmoid function used to calculate Fj means that nodes respond
nonlinearly to their inputs. The three layers used by Huse et al. (1999) in-
clude one that uses sensed information as input (with one node per type of
information), a second “hidden” layer, and a final output layer. Each node
in the hidden and output layers receives, as a separate input, the output F
of each node in the previous layer. The output layer has one node for each
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of the ANN’s outputs. For example, if the ANN produces only a “yes-no”
decision, its output layer has only one node; if F for that node is close to
1.0, the decision is “yes”; otherwise the decision is “no”.
ANNs are capable of producing quite complex and sophisticated decisions

from their multiple inputs, but only after they are “trained” by calibrating
their parameters W and B. This training is an extremely complex problem
because the number of parameters is large: each layer in an ANN has one
B parameter for each of its node but the number of its W parameters is the
number of nodes times the number of inputs. Huse et al. (1999) modeled
a trait using a three-layer ANN with six sensed inputs, a five-node hidden
layer, and four output variables—and, therefore, 71 parameters. And, of
course, the individual- and population-level consequences of changing any
particular parameter are completely unpredictable. The ING concept thus
uses artificial evolution, via genetic algorithms (GAs) to do this training of
the ANNs: the genes in these algorithms are simply the values of W and B
for each of the ANN’s nodes.
GAs were developed by one of the pioneers of CAS, John Holland (1975),

and are now a common technique for solving extremely difficult problems
that can be represented in simulation models. Without going into detail
(extensive literature and software is available for GAs), a GA represents a
potential solution to the problem as an artificial gene: a string of values anal-
ogous to a string of DNA. The simulation model is used to impose “natural
selection” (actually, digital selection): only genes producing good solutions
in the simulation model survive. These surviving genes then are reproduced,
but with processes such as recombination and mutation to continually pro-
duce new strings. Typically, a GA has hundreds or thousands of individuals,
each with their own genes competing and recombining. Thus, GAs coarsely
approximate the genetic and selection processes that drive biological evolu-
tion.
The ING technique for finding adaptive traits in IBMs can be summarized

in the following steps (see also Section 7.5.4). The following subsections
illustrate the technique in more detail.

1. Completely define the fitness problem faced by individuals by develop-
ing a full-life-cycle IBM that is complete except for the adaptive traits
that are to be artificially evolved. In the subsequent steps, the adaptive
traits are evolved so they provide individuals with behaviors allowing
them to survive and reproduce in the IBM’s virtual environment.

2. In the model individuals, represent each of the adaptive traits to be
evolved as an ANN. The ANN has inputs for each kind of sensed in-
formation that are assumed to drive the trait, and its output is the
decision that the trait represents. The problem now is to “train” the
ANNs: find parameter values that produce realistic decisions.

3. Couple the IBM with GA software that conducts the artificial evolution
of ANN parameter values. The ANN parameter sets are treated as
artificial genes. At the start of a “training run” of the IBM, individuals
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have ANNs with random parameter values. Then, as the training run
proceeds selection sorts out the successful parameter sets. Individuals
that have parameter sets producing behavior good enough for them to
survive and reproduce in the IBM then create offspring. The offspring
inherit their parents’ ANN parameter values, altered by crossover and
mutation. The genes producing poor ANN decisions disappear from the
GA because the individuals containing them die before reproducing.

4. After sufficient generations of artificial evolution, the ANN parameters
have evolved into highly successful adaptive traits. The artificial evo-
lution may result in all individuals having similar parameter values so
there is essentially one best trait; or there may be a variety of traits
that are quite different but each successful when competing with the
others.

5. The modeler can analyze the IBM to determine whether the evolved
ANNs produce behavior matching the behavior of the real system. If
not, there could be several problems: the IBM may not adequately rep-
resent the fitness problem faced by individuals (e.g., the distributions
of food and mortality risks over space and time) or the ANNs may not
represent the decision traits—inputs, outputs, or level of complexity—
well enough.

6. When the evolved ANN parameter sets are considered adequate, they
are then implemented as fixed traits in the IBM. Now the IBM can be
used as any other to solve ecological problems.

Now we take a look at three IBMs that used the ING technique. The
third example modified the technique to address a well-known limitation of
ANNs.

6.9.1 The Huse and Giske Model of Horizontal Movement in Ma-
rine Fish

Huse and Giske (1998) modeled horizontal movement of fish such as herring
or capelin in an environment resembling the Barents Sea. From day to day,
horizontal movement is important for finding and following concentrations
of prey while avoiding conditions where predation risk is high; but horizontal
movement must also include annual long-distance migration to areas suitable
for spawning. If the IBM’s individuals are not successful at finding food while
avoiding excess risk and migrating to suitable spawning areas, they do not
reproduce. This study examined whether the ING approach could reproduce
all these movement behaviors. The study also assumed that two different
movement traits—reactive and predictive—might be needed to reproduce
both the short-term and migration movements.
“Reactive movement control” is the trait for how the fish move in response

to local, short-term variation in prey and predation risk. Reactive movement
was represented with an ANN having four variables as input: the individual’s
current growth rate, the predation risk it senses, the temperature it senses
in its current cell, and the temperature of the cell it was in the previous day.
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“Predictive movement control” is the trait for how the fish move seasonally,
also represented by an ANN. The predictive movement ANN has as input the
date, the fish’s age and size, the current temperature, and the fish’s current
location. Huse and Giske point out environmental cues (e.g., day length) and
physiological mechanisms (e.g., ability to sense geomagnetic fields) justifying
the assumption that fish can sense date and location. The fish also have a
separate simple trait they use each day to decide whether to navigate via
predictive vs. reactive movement control.
The ANNs produce four outputs: “yes” or “no” values for moving east,

west, north, or south. Together, these four outputs determine if and where
the fish moves. For example, if only the outputs for north and west are
“yes”, the fish moves to northwest; if only the outputs for north and south
are “yes”, the fish does not move.
Huse and Giske used artificial evolution in a GA to find parameter values

for the reactive and predictive movement ANNs and for the trait that decides
when the fish use reactive vs. predictive movement. After 300 generations,
evolution in the GA had slowed and the individuals made highly successful
movement decisions. The traits evolved by the GA were quite heterogeneous:
apparently there were a number of different yet successful traits.
Huse and Giske conducted several analyses to learn more about the traits

they developed via artificial evolution. They investigated the importance of
reactive and predictive movement traits: do individuals need a trait for bas-
ing decisions on predicted seasonal changes, or is it sufficient to have just the
ability to react to current and recent conditions (as many behavioral models
and IBMs have assumed)? Huse and Giske found that their individuals used
reactive movement most of their lives, but without predictive movement were
unable to evolve the migrations needed for successful spawning. Both kinds
of movement were necessary for the population to persist.
A second analysis tested how well the evolved traits perform when the

environment was altered in one important way. During the artificial evolu-
tion to train the ANNs, the simulated environment included food depletion:
high densities of fish drove prey densities down over time. What would hap-
pen if food depletion was turned off, without re-training the ANNs? Huse
and Giske predicted that with food depletion off, food concentrations would
stay high so local densities of fish should be higher if the movement trait
produced emergent density dependence realistically. The simulation experi-
ment confirmed the prediction, finding fish densities averaging nearly twice
as high with food depletion off.

6.9.2 The Model of Strand Et Al.: Vertical Movement, Energy
Allocation, and Spawning

Strand et al. (2002) modeled a fish called Müller’s pearlside, in a Norwe-
gian fjord environment. The study was designed to develop traits for three
different behaviors: vertical movement (whether the fish moves up or down
each time step), energy allocation (whether fish use excess energy for growth
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or for fat reserves, with this allocation decision made once for each month),
and spawning (whether the fish spawns during the month, a decision made
once for each of the seven possible spawning months). To examine the effects
of variability in environmental conditions that affect juvenile survival, the
traits were evolved twice: once with a constant juvenile survival probability
and once with survival probability that varied among and within years.
The trait for vertical movement was represented with an ANN, the output

of which is the depth the fish occupies (Figure 6.26). Inputs are the visual
range of the fish (a function of light level), prey density, temperature, how
full the fish’s stomach is, and what the fish’s current fat reserves are. Because
prey (zooplankton) density at the study site is dominated by tidal advection,
prey availability was assumed unaffected by consumption by the modeled
fish: there is no competition among the individuals.

Temperature

Will there be predators tomorrow?

Stomach fullness

Buoyancy

Fat reserves

Is there food today?

Currents

Salinity

Predators
Prey

Conspecifics

O2 level

Light levels ?

Figure 6.26 This cartoon demonstrates the environmental factors, both internal
and external, that influence a fish’s decision whether to move up or
down at any moment. A trait for this decision was created via artificial
evolution by Strand et al. (2002). (From Strand 2003.)

The traits for energy allocation and spawning were not represented as
ANNs, but instead as simple strings of 0 or 1 values, one per month: for
example, if the spawning trait’s value for June is 1, then the fish spawns
in June. All the parameters for the vertical movement ANN, and for the
energy allocation and spawning traits, were evolved in a GA. In this model,
the GA converged until there was very little variation among individuals:
apparently, one best set of traits was found instead of there being several
successful traits for the same behavior.
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Strand et al. compared the behavior and population dynamics produced
by traits evolved with and without variability in juvenile survival probability.
These two different sets of traits produced different vertical movement be-
havior and population age structures. However, neither set was consistently
better than the other at reproducing observed behavior and population dy-
namics.

6.9.3 Giske Et Al.’s “Hedonic” Model of Vertical Movement

Giske et al. (2003) built an IBM that is superficially similar to that of Strand
et al. (2002) but makes some important changes in how artificial evolution
is implemented. The Giske et al. model simulates an artificial marine or-
ganism and its one adaptive behavior: vertical movement. This organism
lives in a one-dimensional environment: temperature varies with depth, light
level varies over a diel cycle, and the distribution of food organisms moves
vertically during the diel cycle. Mortality risks resemble those from a sight-
feeding predator with risk dilution: risk increases with light level and de-
creases with density of the modeled individuals.
The artificially evolved trait determines whether the individual moves up

a meter, down a meter, or stays put. For each of these three possible des-
tinations, the individuals can sense four variables: food concentration, light
level, temperature, and density of individuals. Individuals that survive and
attain sufficient size and energy reserves through one life cycle (which is ar-
tificially short—only two days, with 75 time steps per day) reproduce and
pass their traits on to the next generation. Growth and energy reserves
are modeled using simple feeding and bioenergetic algorithms that depend
on temperature, light level, prey density, competition, and the individual’s
body mass.
The important difference between the model of Giske et al. and the previ-

ous two models is an attempt to overcome a well-known limitation of ANNs:
the difficulty of understanding the trait once it has been evolved. Once the
ANNs in an IBM have been “trained”, it is relatively easy to analyze how
closely the IBM’s emergent behaviors match behaviors observed in real pop-
ulations. However, it is not trivial to describe how an ANN itself works
or how its output varies with all the different inputs—so it is very hard
to understand exactly what the individuals are doing. ANNs are “black
boxes” because the only way to describe their behavior would be to conduct
experiments similar to sensitivity analysis (Section 9.6).
Giske et al. (2003) developed a new approach they call “hedonic modeling”

because it describes an individual’s response to sensed information in terms
of emotions like fear and attraction. The most important characteristic of
this approach is representing a trait not with an ANN but instead with a set
of equations that link the individual’s response to the trait’s inputs. First,
each input sensed from the environment (food concentration, temperature,
etc.) is modified by the individual’s internal state to produce a “hedonic
tone” for that input. For example, the hedonic tone for temperature, HT ,
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has the form:
HT =MT S

m1T
1 Sm2T

2 T.

S1 and S2 are two internal state variables, stomach fullness and body mass,
both scaled so values are between 1.0 and 2.0; T is the sensed tempera-
ture; and MT , m1T , and m2T are coefficients. Similar equations determine
a “hedonic tone” for each of the externally sensed variables: food, light,
temperature, and density of individuals. The individual’s net attraction or
avoidance of a decision alternative (e.g., moving up a meter) is determined
by adding the hedonic tone values for all four externally sensed variables.
The coefficients for these hedonic tone equations are analogous to the ANN
parameters in the previous two models: they determine the direction and
strength of the individual’s response to sensed information, and they are
calibrated using artificial evolution.
After completing the artificial evolution, Giske et al. illustrated how their

approach facilitates understanding of traits by identifying three individuals
and examining the vertical movement trait of each. While the traits are
still complex, by just looking at their coefficient values we can describe the
traits using terms such as how attraction to light and to other individuals
changes with body mass. The three individuals analyzed in this way were
quite different in some hedonic tone coefficients, indicating the presence of
multiple successful traits in the population.

6.9.4 Summary and Lessons: Artificial Evolution of Adaptive Traits

In this theme we have explored ways to develop highly sophisticated adap-
tive traits by borrowing approaches—ANNs and GAs—widely used in arti-
ficial complex adaptive systems and to solve complex engineering problems.
Even though these techniques have some “black box” characteristics, a con-
siderable amount of biological knowledge is needed to use them. First, the
modeler must decide exactly what adaptive traits are important for the pop-
ulation and problem being modeled: what decisions of the individuals need
to be modeled? Before the parameters for an ANN (or a set of hedonic
equations) are artificially evolved, the modeler must also decide what ex-
ternal and internal variables are sensed by the individual and used by the
trait: to what conditions does the trait allow the individual to adapt? Fi-
nally, the rest of the IBM must be designed to represent the environment
and physiological context in which the adaptive trait must work.
One compelling feature of the ING technique is its resemblance, however

simplified, to real mechanisms that organisms use to make adaptive decisions:
signals sensed from external and internal conditions and then processed by
algorithms that have been shaped by genetic evolution under the influence of
natural selection. Equally compelling is the ability to jointly evolve several
different traits for different decisions so they act together to produce realistic
emergent behavior.
Even though the ING technique resembles physiological and evolutionary

mechanisms, we must remember that traits developed via artificial evolu-
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tion are empirical. Artificially evolved traits are “trained” only to solve the
problems posed to them in the IBM during their evolution. However, the
simple experiment of Huse et al. (1999), testing how well a trait evolved
in one environment (with food depletion) performed in a different environ-
ment (without food depletion), indicates that there is much to learn about
how general evolved traits can be. Can we evolve traits that perform well
under a very wide variety of conditions, including many not present during
“training”? Can even these simplistic representations of neural processes
produce behavior resembling that produced by predictive, fitness-seeking
theory (Section 7.4.3)?
We briefly touched on another of the many intriguing facets of the Bergen

models and experiments: the possibility of evolving several different traits
that succeed simultaneously for the same individual behavior in the same
population. Both Huse et al. (1999) and Giske et al. (2003) found a variety
of “genes” in their evolved traits: multiple sets of parameters, sometimes
producing quite different behavior, that survived the artificial evolution in
competition with each other. Evolutionary ecologists expect traits to be
more diverse and frequency-dependent for decisions driven by intra-species
competition. Is it a coincidence that the one model without competition
for resources (Strand et al. 2002) was the only one of the Bergen models to
converge to one set of parameter values?

6.10 SUMMARY AND CONCLUSIONS

The primary purpose of summarizing all these IBMs and the research done
with them is simply to illustrate conclusively that there is much to be learned
from IBE. We clearly have learned much already, even before the use of IBMs
has gelled into a cohesive approach to ecology. Each of the studies in this
chapter is interesting and exciting and produced new insights that could not
have been produced by other approaches; and there are many more such
studies we could have included.
Another main purpose of this chapter is to illustrate points made through-

out the rest of the book. In fact, three of the main points from earlier
chapters especially stand out from the example studies.
First, when model design is guided by patterns observed in a real system

(or a generic class of real systems, such as forests), good things happen.
Models are testable throughout the entire modeling cycle. Even early ver-
sions can be tested qualitatively, and the final version can often even make
testable independent predictions. Pattern-oriented modeling leads to models
that are rich enough in structure and process to be testable in many ways,
yet still simple enough to be understood.
Second, when the IBE theory cycle (Chapter 4) is followed, ecologists can

learn important things about their individuals and systems and maybe even
about individuals and systems in general. When the cycle is not followed,
mainly by not testing alternative theories of individual behavior, we learn
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less about the detailed mechanics of how systems and individuals are inter-
related. But the examples also include many studies that did not focus
on testing theory for adaptive individual behavior yet were very useful and
productive.
Third, the examples illustrate the need for a standardized, comprehen-

sive way to think about and describe IBMs and, therefore, the value of the
concepts and terminology developed in Chapter 5. Sometimes these con-
cepts help us succinctly describe some part of an IBM; other times they help
us think about important design questions that the modeler did not think
about—or document—enough. From the highest levels of an IBM (e.g., what
outcomes are emergent vs. imposed? exactly what assumptions about fitness
are the basis of how decisions are modeled?) to the lowest (exactly how are
model events scheduled?), there are assumptions that do not fit into tradi-
tional modeling frameworks. Yet we must think about and describe these
assumptions because they are of utmost importance for understanding and
reproducing IBMs.
However, the example studies also illustrate the challenges to individual-

based modeling discussed in Chapter 1. Someone wanting only to criti-
cize IBMs could draw sweeping, negative generalizations from the examples:
IBMs have not been coherent as an approach to ecology. They have not
followed common research agendas and their design is not based on common
principles or theory. Consequently, it is difficult and ineffective to compare
different IBMs, to relate their results to each other, and to see a general,
overarching framework. IBE has also been inefficient, with little re-use of for-
mulation methods and software. The models and their software are complex
and detailed, but not fully communicated and therefore not reproducible;
and the software could easily be full of mistakes.
These generalizations are indeed true—as generalizations. But they cer-

tainly are not inherent limitations of IBMs and IBE. How do we know that?
First, the studies examined in this chapter include clear exceptions to all
these generalizations, so we know they are not insurmountable. More im-
portantly, most of this book is dedicated to avoiding these kinds of problems.
We have already seen in parts 1 and 2 how we can bring coherence to the
use of IBMs by using appropriate modeling strategies, developing theory,
and using a new conceptual framework. But we still need to address the
more mundane issues of making IBE more efficient and effective: How do
we formulate and analyze IBMs in detail? How do we make software effi-
cient, reliable, and useful? And, finally, how do we communicate our work
so its value and credibility is conveyed? In Part 3 we roll up our sleeves and
get busy learning how to deal with these issues that, experience shows, we
actually spend most of our time on.
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Chapter Seven

Formulating Individual-based Models

Technical skill is mastery of complexity, while creativity is mas-
tery of simplicity.

Sir Erik Christopher Zeeman, 1977

7.1 INTRODUCTION

This chapter begins our descent into the “machine room” of individual-
based modeling. According to the above statement by bio-mathematician
E. C. Zeeman, Par 2 focused on the creative phases of individual-based ecol-
ogy: approaches for reproducing and explaining ecosystem complexity using
relatively simple concepts and theories. Now, in Part 3 we address the tech-
nical skills needed to master the complexity we create when we implement
an IBM, execute it, and start to conduct science with it. A major theme
of Part 3 is that many of the technical skills needed for IBE are different
from those typically used in classical modeling. The individual-based ecol-
ogist needs familiarity with discrete mathematics and software engineering,
the ability to design the experiments that provide understanding of complex
digital worlds, and a thorough understanding of the natural history and
autecology of the organisms being modeled.
The implementation of an IBM typically begins with preparing a writ-

ten formulation: a fully detailed description of the model as it is to be
implemented in software. The formulation (called a specification in soft-
ware engineering) captures the conceptual design developed from the prob-
lem the model addresses (Chapter 2), the patterns used to define the mod-
eled system’s essence (Chapter 3), theories of adaptive traits (Chapter 4),
and individual-based modeling concepts (Chapter 5); and fills in the details
needed to translate the IBM into executable software. Writing a detailed for-
mulation makes the whole research cycle more productive: it helps us think
through the model design thoroughly—and have the design reviewed—before
starting to invest time in software development, documents how and why we
made design decisions, tells the project’s programmer (if there is one) ex-
actly what to do, and provides the reproducibility we need to publish our
work and have it accepted as credible.
Formulating a model’s detailed design is never an isolated activity. We

start modeling by developing a conceptual design and some of its specifics
in our head, but—as we all know—trying to write our ideas down so they
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are complete and unambiguous can be painful and frustrating. Often we are
happy with the model in our head, but when we start writing it down we
discover inconsistencies and gaps. Writing the model’s software inevitably
identifies more ambiguities and ideas that do not seem quite so smart when
we try to actually implement them; and once we start using and analyzing the
model we continue to revise and improve its formulation. Yet when it is time
to publish work based on IBMs it is especially important (and challenging)
to provide a thorough description of the model. This chapter is not intended
as a comprehensive guide to the detailed design of IBMs (such a guide would
be a big project by itself) but as a way to link the conceptual design process
of Part 2 with the following phases of the IBE modeling and research cycle
discussed in chapters 8-10. We provide formulation techniques that help
modelers prepare for and manage the challenges of software development,
analysis, and communication.
We start by outlining the kinds of information that need to be included in a

typical formulation. Then we discuss techniques for three specific problems:
formulating spatial elements, probabilistic rules, and decision-making traits.
The remaining sections recommend general ways to limit an IBM’s uncer-
tainty and make its parameterization, analysis, and communication easier
and less controversial; ways of formulating an IBM that lead to a smooth,
easy transition from conceptual design to written description to software;
mathematical styles appropriate for IBMs; and techniques sometimes needed
for coping with extremely high numbers of individuals.

7.2 CONTENTS OF AN IBM FORMULATION

In Chapter 5 we discussed many essential characteristics of IBMs that cannot
be described with just equations and parameter values. To describe these
characteristics, an IBM’s formulation must contain more kinds of information
than is usually needed to define a classical model. Here we list the kinds
of information that are essential, or very helpful, to include in the detailed
formulation of an IBM.
We must emphasize that the formulation needs to describe not just what

is in the IBM but why. Ecologists using IBMs constantly combat the mis-
conception that IBMs are inherently ad hoc; the purpose of much of this
book is to show that we can often have a strong biological basis for our
modeling decisions. Instead of simply writing down what assumption, equa-
tion, or parameter value was used, write down why it was chosen—even if
the best justification is “our field observations X, Y , and Z indicate that
this assumption captures essential elements of the process” or “the literature
indicates that there are no good assumptions so we chose this simple one”.
An IBM’s formulation needs the following elements (see also Section 10.3):
Statement of model purpose.—A clear statement of the problem that the

IBM is intended to solve, which can serve as a compass for the rest of the
formulation (Section 2.3). It can help the modeler and reviewers understand
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why some processes need to be included and others do not.
Major structural assumptions.—Description of the kinds of entity repre-

sented (habitat units, individuals, etc.) and their state variables, the time
step, the spatial extent and resolution, and the environmental variables or
processes that drive the model; and why these were chosen.

Conceptual design.—Essentially, the checklist from Section 5.11. It is es-
pecially important to define early what model outcomes emerge from what
traits of individuals.

Overview of submodels.—What major processes are included and why
(Section 7.6). These include submodels for environmental processes as well
as traits of the individuals.

Observer plan.—A description of what model results need to be observed,
why, and how (Section 8.6.5). This plan determines how each kind of output
should be summarized statistically and written to files or graphical displays.

Schedule.—A complete description of how submodels are grouped into
actions and the order in which actions are executed (Section 5.9). The
schedule must include everything in the IBM, including habitat simulations
and observer actions (outputs).

Initialization.—How the habitat and individuals are created and placed in
space (and, sometimes, time) at the start of a model run, and why.

Submodel details.—The complete description of each part of the IBM. The
description includes assumptions and equations and justification for their
selection; parameter values; and the literature, data, and methods used to
test and calibrate the submodel. While these details are absolutely essential
for reproducibility, they are still details compared to the preceding elements.
It may be best to isolate the submodel details near the end of the document
so they do not interfere with the reader’s ability to first develop a clear
understanding of the conceptual design.

Input data.—A description of the model’s input data, such as data used
to represent environmental conditions. Data sources and field methods may
need description, as may any methods used to process or transform data.

7.3 FORMULATING AN IBM’S SPATIAL ELEMENTS

One of the major structural assumptions of most IBMs is how space is rep-
resented. Most IBMs are spatial because most questions of IBE require
modeling the spatially heterogeneous environment that individuals occupy
and interact with locally. Basically, representing space is very simple: we
must decide on the extent of the area (or volume) to represent, define a co-
ordinate system for this area, and assign coordinates to each spatial object.
Then, the fundamental design decision is whether to represent space as dis-
crete units (cells) or continuously. A related decision is whether to explicitly
represent the spatial extent of individuals.
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7.3.1 Discrete Space

Discrete-space models represent space as a collection of discrete cells, with
spatial characteristics varying among, but not within, the cells. Many such
models are called “grid-based” because they use a grid of uniform, usually
square, cells. (Other names in use are “interacting particle system” and “lat-
tice gas”, but these names reflect their roots in physics and should be avoided
in ecology.) A general description and examples of grid-based plant models
are in Section 6.7.4; for overviews of the approach, see Hogeweg (1988), Er-
mentrout and Edelstein-Keshet (1993), Czárán (1998), Wissel (2000), and
DeAngelis et al. (2003). Some discrete-space models, though, use irregular
cells designed to match the geometry of the natural environment; examples
include the stream fish models of Clark and Rose (1997), Van Winkle et al.
(1998), and Railsback and Harvey (2002; Section 6.4.2).
The discrete-space approach is widely used and successful for several rea-

sons. The basic assumption that spatial variation and processes are negligi-
ble within small areas (within cells) yet important over larger areas (among
cells) can greatly simplify models. The approach also has computational
advantages, especially for identifying an individual’s neighbors: for uniform
grids it is very easy to identify a cell’s neighboring cells by incrementing
or decrementing the cell’s grid coordinates. Another advantage is the wide
availability of grid-based spatial data from remote sensing, Global Position-
ing System (GPS), and Geographic Information System (GIS) technologies.
The lynx dispersal model of Schadt (2002; Section 6.4.1) is an example of
how satellite data can be made into the spatial element of a grid-based IBM.
With GPS or other surveying technologies and GIS, it is now easy to generate
grid data even for very small spaces and grids.
One of the most important potential advantages of discrete space is the

potential to give model behaviors to the spatial cells. In some IBMs (e.g.,
the lynx model of Schadt 2002) cells have no behavior and only provide
environmental information to the individuals. In others (e.g., the stream fish
models cited above), cells model the depletion and regeneration of resources
such as food. Some IBMs even represent the individuals as cell behaviors
for some or all of their life cycle; the BEFORE forest IBM (Section 6.8.3)
tracks seedlings and juvenile trees only as a cell characteristic—the fraction
of cell area covered by the trees. Models that represent all of the population’s
behavior as traits of the grid cells fall within a general category called cellular
automaton models (von Neuman and Burks 1966; Wolfram 2002). These
models characterize each cell by an ecological state, for example the presence
of a species, the amount of biomass, or the size of a local subpopulation.
This state then changes every time step according to “transition rules” which
consider the state of the cell itself and its neighbor cells. In ecological models,
these rules are often are probabilistic (Section 7.4).
A limitation of the grid-based approach is that the spatial resolution

(grain; or cell size) of the model is not just a model parameter which can
easily be changed but a design decision that affects the design of all other
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parts of the model and even parameters values (Section 2.3). Therefore, it is
essential that the formulation of any grid-based IBM explain why its partic-
ular grain was chosen. Of particular concern is showing that it is reasonable
to assume that spatial variation and effects can be ignored over areas less
than the cell size.
The discrete-space approach is especially suited for IBMs that do not

explicitly represent the spatial extent of individuals. Many animal IBMs,
especially, represent the individuals’ locations but not how much space they
occupy, because animals move over much greater spaces than they occupy.
(An exception is IBMs of animals assumed to always maintain a territory;
the territory size can be considered the individual’s spatial extent.) Discrete-
space IBMs that do represent the spatial extent of individuals run the risk
of cell size artifacts: model outcomes such as the density of individuals can
be affected in nonlinear ways by the cell size. For example, if adults each
occupy a 1× 1 m square and juveniles occupy 0.5× 0.5 m squares, a cell of
1.9× 1.9 m can hold one adult and five juveniles; but a slightly bigger grid
of 2.1× 2.1 m could hold four adults and no juveniles.
To avoid such artifacts of cell size, grid-based IBMs of sessile organisms

(especially plants; sections 6.7.4, 6.8.3) or territorial animals (e.g., Tyre et
al. 2001) often simply assume that the grid size is equal to the spatial extent
of one individual. This assumption can greatly simplify the IBM, but also
introduces another limitation: individuals grow, so there is no single grid
size that matches the size of all individuals or even one individual over its
life span. A solution that is acceptable in some plant models is to use the size
of adults as the grid size and ignore or greatly simplify the early life stages
of individuals (Section 6.7.4). Or, as in the Winkler and Stöcklin model
(Section 6.7.4), clusters of grid cells can be used to represent individuals; in
this way, the change of spatial extent of individuals can vary at the price of
making the model more complex conceptually and computationally.

7.3.2 Continuous Space

In continuous-space models, the position of an object is described by con-
tinuous variables. Whereas an individual’s location in a grid-based model
might be described as “within the 10 × 10 m grid cell that is centered at
X = 250, Y = 190”, in a continuous-space model the location might be
described as “at X = 245.734, Y = 193.806”. Continuous space has obvious
advantages for problems strongly affected by the exact spatial arrangement
of individuals; examples include fish schooling (Section 6.2), growth of mi-
crobial colonies (Kreft et al. 2000; 2001), and competition among plants
(Section 6.7). Continuous space also allows modeling the spatial extent of
individuals of very different sizes without having to worry about how the
individual’s size corresponds to grid size.
One difficulty with continuous space is representing resource dynamics. In

a discrete-space model, it is typically assumed that an individual consumes
the resources within its cell; and depletion and regeneration of the resources
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is modeled at the cell level. A continuous-space model cannot simply assume
that an individual uses the resources at its location: its location is a point,
and the amount of resources available at a point is of course zero. The usual
way to overcome this problem is to assume individuals occupy—or consume
resources over, or interact with their environment over—a zone surrounding
their location. Examples of this approach are “zone of influence” plant
models (Section 6.7.2) and Gecko (Section 6.8.1). The area occupied or
influenced can easily vary among individuals or increase over time as an
individual grows.
However, modeling spatial variation in resource availability, and dynamics

of spatial resources, remains a problem with continuous-space models. For
example, there is no simple way to represent environmental data (e.g., from
GIS) in a continous space; nor to model how resources consumed by an
individual moving through the space are regenerated. These limitations can
be overcome by using hybrid approaches (Section 7.3.3).
Several computational problems are often encountered with continuous-

space IBMs. These IBMs are particularly useful for representing direct, spa-
tially dependent interactions among individuals, but doing so requires that
each individual know which other individuals are its neighbors. Computing
which individuals have overlapping zones of influence, or which individuals
are “seen” by another individual that has a specific zone of vision, can be
done simply by comparing all pairs of individuals but computation time in-
creases with the square of population size. For models large enough for this
simple comparison to be a problem, the problem can be overcome with so-
phisticated software techniques (Hildenbrandt 2003; Section 6.8) or, again,
by using hybrid approaches. Another problem is computing the areas of over-
lap when more than two individuals have overlapping “zones of influence”.
Computational approaches to this problem are illustrated by Wyszomirski
(1983) and Weiner et al. (2001).

7.3.3 Hybrid Approaches

Many of the limitations of both discrete and continuous representations of
space can potentially be overcome by not sticking rigidly to either. Some
ways that spatial approaches and resolutions can be hybridized are:
• Representing the environment as discrete cells while tracking individuals
in continuous space. This approach allows use of grid-based spatial data
and allows resource dynamics to be modeled at the cell level. Berger and
Hildenbrand (2000), for example, use a discrete bitmap of salinity data
as the environmental component of their otherwise continuous-space
forest model.

• In discrete-space models, using one spatial resolution for environmen-
tal processes and another resolution for individuals. Consider an IBM
of animals that move rapidly through a complex habitat; it may be
best to model the complex habitat with a small grain size (e.g., plant
production on 10 m grids that vary in soil type, moisture, slope, and
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aspect) and then aggregate the habitat variables to a larger grain size
more appropriate for the animals (e.g., total food availability on one-ha
grids).

• Using different spatial resolutions for different behaviors of individuals.
The trout IBM of Railsback and Harvey (2002; Section 6.4.2) represents
food competition within each cell, but assumes individual can move
each time step to any cell within a radius that increases with trout
size. Trout can use hiding habitat many meters from where they feed,
so hiding habitat was represented in each cell as the distance to the
nearest hiding spot, whether that spot is within or beyond the cell.
The continuous-space Gecko-based community model of Schmitz (2000;
Section 6.8.1) uses one radius to represent resource intake by herbivores
and another radius for predator detection.

• Modeling different life stages differently. One example discussed above
(Section 7.3.1) is the BEFORE beech forest model, which uses a cellu-
lar automaton approach for juveniles and treats adults as full individ-
uals. In the extreme, completely different models with different spatial
(and temporal) resolutions can be used for different life stages (e.g., the
salmon IBM of Railsback and Jackson, unpublished report).

7.4 FORMULATING LOGICAL AND PROBABILISTIC RULES

Because IBMs are discrete event simulators (Section 8.3.1), they contain
rules for how model objects change state upon certain conditions. For ex-
ample, in the fish school model of Huth and Wissel (1992; Section 6.2.2),
once per time step each fish changes its swimming direction in response to
the spatial configuration of its neighors. If a neighbor is too close, the fish
turns to avoid collision; if neighbors are close but not too close, the fish
turns to swim parallel to them; or if the nearest neighbor is far away the fish
turns to swim toward it. We can see from this example that logical (“IF-
THEN”) rules are a natural way to model the behavior of individuals—and
other processes such as habitat dynamics—in IBMs. The “IF” part of these
rules can include several logical conditions combined by Boolean algebra us-
ing the operators AND, OR and NOT. (Usually, no more than two or three
conditions are combined in one rule, to avoid logic errors.) But logical rules
are not always adequate by themselves: often we know from observations
that the process we are modeling does not rigidly follow a simple set of such
rules. The rules may capture important trends but often there is variation
in process outcomes not captured by a purely logical approach.
We also often want to base an IBM’s rules on empirical information about

the system we are modeling. When the available information includes data
of sufficient types and quantities, we can use it to formulate probabilistic
rules. If real individuals have been observed to exhibit a certain behavior
(e.g., dispersal in the marmot model described in Section 6.3.2) on X% of
their opportunities, then a simple probabilistic model rule is that on each
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opportunity the model individuals have a probability of exhibiting the be-
havior equal to X. This simple probabilistic approach has limitations, too.
If used as a trait for individual behavior, the behavior is not adaptive—the
individual makes the same decision with the same probability no matter
what conditions it is in. Also, the data are often too sparse or uncertain to
estimate the probability value with confidence. (The use of stochasticity in
general is discussed in Section 5.8.)
Combining the logical and probabilistic approaches overcomes many of

each approach’s limitations. Combined rules take the form “IF condition
X occurs, THEN event Y occurs with probability Z”. Most importantly,
adding logical conditions to a probabilistic trait for individual behavior can
make the behavior adaptive: it gives individuals the ability to behave differ-
ently in different conditions. The adaptive trait for woodhoopoe dispersal
(Section 6.3.1) assumes birds have a probability of dispersing from their na-
tal territory that increases with their age and decreases with their social
rank: “IF age = 3 and rank = 2, THEN execute dispersal behavior with
probability of 0.3”. A random number between zero and one is then drawn;
if it is less than 0.3, the dispersal behavior is executed.
The other major advantage of combined logical and probabilistic rules is

that they can take advantage of many kinds of “soft” information. Often,
people familiar with the system and its individuals may know, or suspect,
what outcomes are possible, and which are more likely, under various con-
ditions. Experts may also have a feeling for how predictable the outcomes
are. Often there are also small or uncertain sets of field observations—for
example, only a few observations of rare but important events. These kinds
of information can be very valuable, sometimes the most important infor-
mation we have about a system. Such information cannot be boiled down
into probabilities or fixed rules reliably, but can be used to formulate logi-
cal rules that include probabilities to represent uncertainty. The probability
values can (and should) be treated as parameters and the effects of their
uncertainty on model results examined (sections 9.6-9.7).
There is, in fact, an extensive literature on modeling the behavior of sys-

tems and individuals by using logical and probabilistic rules derived from
the knowledge of experts and sparse data. In the 1980s and 90s, this “Ex-
pert Systems” technology was developed as a kind of artificial intelligence.
The Expert Systems literature (e.g., Cowell et al. 1999; Jackson 1999) cov-
ers such topics as how to extract useful information from experts and data,
Bayesian statistical methods for calibrating probability parameters, and soft-
ware tools. This approach has also been developed specifically as a way to
formulate IBMs: MOAB (Carter and Finn 1999) is a platform for assem-
bling and executing spatial IBMs of terrestrial animals with traits formulated
entirely from logical rules.
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7.5 FORMULATING ADAPTIVE TRAITS

Adaptive traits—models of how individuals make decisions in response to
other individuals, the environment, or changes in themselves—are often the
“guts” of an IBM. Chapter 4 discusses developing theory for adaptive traits
and much of Chapter 5 provides a conceptual basis for the theory. Here,
we provide some approaches for formulating decision-making traits in de-
tail once the theoretical and conceptual approach has been selected. First
we describe a framework—four distinct steps to address—for designing an
adaptive trait. Then we briefly describe four very different approaches for
evaluating decisions alternatives.

7.5.1 A Framework for Modeling Decisions

It is useful to think of an adaptive trait as involving four distinct steps.
Designing and describing each of these steps separately should help avoid
hidden or implicit assumptions and make assumptions that are reasonable
and effective.
The first step in a decision-making trait is specifying when the decision is

executed. The modeler must determine how often, or under what conditions,
the individuals execute their decision-making trait and have the opportunity
to change the behavior prescribed by the trait. Often, decision traits are sim-
ply scheduled to be executed every time step so individuals are continually
able to reconsider and change their decisions. However, it is not unusual
for IBMs to include some decisions that are only occasionally executed, be-
ing triggered by some internal or external event. For example, Bernstein et
al. (1988) modeled habitat selection by assuming that predators move only
when prey capture rate falls below a threshold: one decision (whether to
move) is executed every time step, but a second decision (where to move to)
is executed only when triggered by the first decision. An IBM representing
competition among mobile animals might assume animals decide whether to
move only when a new competitor enters their territory. Some decisions are
even irreversible, so can only be made once; examples are the selection of
dispersal destinations by marmots and coyotes in IBMs depicted in Section
6.3.
The second step is identifying alternatives. The range of alternatives can

be either discrete (with the individual choosing among a limited number of
specific alternatives) or continuous (choosing where to be on a continuous
gradient). This step is trivial in the case of decisions for which the same
alternatives are always considered (e.g., “Should I feed or should I hide?”;
“How much of my daily energy intake should I expend on growth, reproduc-
tion, or reserves?”; “In which direction should I extend my roots?”). For
many decisions, however, identifying alternatives is an important process by
itself and can be an important constraint on the decision. How many po-
tential mates does an individual consider before choosing one? How many
habitat patches does an individual consider when deciding where to forage?
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Are these patches defined as being within a circle around the individual’s
current location, or within a square, or along a line in a random direction?
The assumptions that define which alternatives are considered can be as
important as the rest of the decision-making formulation.
Real organisms make many contingent decisions: two or more decisions

that are highly dependent on each other. One example is a contingent choice
of habitat and activity: animals decide which habitat cell to occupy, but
this choice depends on whether they decide to feed or hide from predators.
Habitat that is good for feeding may not be good for hiding, and vice versa.
At the same time, the activity choice between feeding and hiding depends on
what habitat is available: hiding may be a better choice if there is currently
no good feeding habitat available, or the presence of good feeding habitat
may make hiding undesirable. Because the range of alternative activities is
sufficiently limited (only feeding or hiding), this contingent decision can be
modeled by assuming individuals identify the combinations of activity and
habitat as distinct alternatives: feeding in habitat cell A is one alternative,
hiding in habitat cell A is a second alternative, feeding in habitat cell B is a
third alternative, and so on.

Evaluating alternatives is the third step. If the alternatives are discrete,
then this step involves rating the relative value or desirability of each alter-
native. For continuous alternatives, the evaluation typically involves deter-
mining the best point on a continuous gradient. As we discuss extensively in
Chapter 5, modeling how individuals evaluate alternatives to make adaptive
decisions involves many assumptions about what information the individuals
sense and how the individuals use the information. General approaches are
discussed in sections 7.5.2-7.5.5.
Even after an individual has identified and evaluated its alternatives, there

is a final step of selecting an alternative that the individual then implements.
Often (but not always), IBMs simply assume that individuals choose the
alternative that was ranked highest in the evaluation step. The individual
chooses what it perceives to be the best alternative, but the optimality of
this choice is bounded by the individuals’ limited ability to identify and
evaluate alternatives.

7.5.2 Probabilistic and Logical Rules

The probabilistic and logical approaches discussed in Section 7.4 are often
used to model adaptive traits. These rules are used to determine the proba-
bility of the individual choosing each alternative; then a random number is
drawn to determine which alternative is actually chosen. These approaches
are best suited for selecting among a fixed set of discrete alternatives.

7.5.3 Direct Fitness-seeking

Another common approach for modeling decision-making is what we call
direct fitness-seeking (Section 5.3): the individuals evaluate a fitness mea-
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sure—an indicator of their expected success in passing genes on to future
generations—for each alternative and then select the alternative providing
the best value of the fitness measure. In many early IBMs and behavior
models, this approach was implemented by simply assuming individuals se-
lect the alternative providing highest growth or lowest mortality risks. The
state-based, predictive approach to fitness-seeking theory (Railsback et al.
1999, Railsback and Harvey 2002; similar approaches have been proposed or
used by Tyler and Rose 1994, Giske et al. 1998, Thorpe et al. 1998, Grand
1999, and Stephens et al. 2002b) represents how fitness depends on both
growth and mortality; and on the individual’s life history state and energy
reserves; consequently, this approach provides a more general adaptive abil-
ity. The elements of this approach are all discussed in Chapter 5; here we
summarize the steps in developing state-based, predictive fitness measures.
An example application to habitat selection is described in Section 6.4.2.

1. Identify one or several appropriate fitness elements (Section 5.4): fitness
“goals” such as future survival or reaching reproductive status that are
most important for the individual at its current life stage.

2. Identify a time horizon appropriate for the fitness elements: the future
period over which expected fitness will be evaluated. The time horizon
can be a fixed future date (e.g., the beginning of the next reproductive
season; the end of a winter period of reduced activity) or may be a
constant number of days after the current date. The end of the current
life history stage may be a useful time horizon (e.g., Grand 1999).

3. Identify internal state variables and environmental variables that de-
pend on the decision alternatives and affect the fitness element. These
are variables that affect the individual’s survival, growth, etc.; and that
also change with the individual’s decision.

4. Develop appropriate models for how the individual predicts the vari-
ables identified in Step 3 over the time horizon (Section 5.5).

5. Develop the full fitness measure: a model of how the current and pre-
dicted future values of the variables identified in Step 3 directly affect
the fitness element(s) over the time horizon.

6. If appropriate, repeat the process to develop different fitness measures
for different life stages.

7.5.4 Artificially Evolved Traits

Instead of carefully formulating direct fitness-seeking traits, we can empir-
ically develop traits that mimic the fitness-seeking behavior of real organ-
isms. In this approach, model individuals are given generic traits that can be
“trained” to produce successful adaptive decisions. The training is accom-
plished using an artificial evolution (or “evolutionary computation”) tech-
nique. Mitchell and Taylor (1999) provide an overview of artificial evolution
and its applications to biology and ecology. Huse and Giske (1998; see also
Huse et al. 1999; Strand et al. 2002; Giske et al. 2003) have applied these
techniques to the problem of modeling behavior in IBMs; their approach is
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described in Section 6.10.
Artificially evolved traits have great promise for modeling complex be-

haviors for which direct fitness-seeking theory is unavailable. Another po-
tential advantage of this approach is its ability to develop several different
but related traits at the same time (e.g., how the individual feeds and how
it allocates its energy intake). However, the approach has limitations and
tradeoffs. First, even though the traits are “trained” to convey fitness, we
must remember that the artificially evolved traits are highly empirical. Un-
like traits based on direct fitness-seeking theory, we cannot automatically
expect artificially evolved traits to solve problems they were not exposed to
during their artificial evolution. Second, using artificial evolution requires
a full-life-cycle IBM that simulates how the traits of interest affect the in-
dividual’s ability to survive and reproduce. Third, the approach is fairly
simple (at least conceptually) for traits with clear, direct effects on indi-
vidual fitness, but could be very challenging for traits having only indirect
effects on fitness. Finally, of course, artificial evolution requires additional
software and computational effort. However, the general approach of mod-
eling behavior via artificial neural networks that are “evolved” using genetic
algorithms is well established. There are dozens of books on evolutionary
computation (Mitchell 1998 is a popular introduction) and dozens of soft-
ware packages for adding artificial evolution to models (lists of these packages
are currently available at web sites such as www.aic.nrl.navy.mil/galist/ and
www.geneticprogramming.com/).

7.5.5 Decision Heuristics

Decision heuristics have been promoted—most conspicuously by the Cen-
ter for Adaptive Behavior and Cognition, Max Planck Institute for Human
Development, Berlin (Gigerenzer and Todd 1999)—as a biologically realistic
model of adaptive decision-making in situations where information, time,
or cognitive power are very limited. Decision heuristics can be thought of
as very simple rules for making decisions that are usually good—but rarely
optimal and possibly bad. Heuristics generally use minimal information or
computation. Another characteristic of some heuristic approaches is min-
imizing the number of alternatives considered. For example, “satisficing”
approaches do not closely follow the four-step decision process described in
Section 7.5.1; instead, individuals are assumed to repeatedly identify one
more alternative, evaluate it, and then decide whether to accept that alter-
native as “good enough”.
Some heuristics for human or animal decisions analyzed by Gigerenzer and

Todd (1999) are:
• When selecting among alternatives, choose one that you recognize. When
choosing a stock to invest money in, for example, go through a list of
stocks and select the first one you recognize. (This heuristic works for
the stock selection problem because stocks of bigger, well-known compa-
nies generally outperform stocks of smaller, more obscure companies.)
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• When selecting among alternatives that have different values for several
different “cues” (e.g., variables that might affect fitness), (a) identify
the one cue that is most important, then (b) select the alternative that
has the best value of that one cue.

• To make a good choice among many alternatives, evaluate a small num-
ber of the alternatives and then pick the next alternative that has a
higher value than any of the previous. (This heuristic is well-known
from mate selection theory.)

The first of these three example heuristics solves the problem of evaluating
alternatives (Step 3 of the decision process; Section 7.5.1). However, the
second two only address Step 4—how to select among alternatives that have
been evaluated; the often-difficult problem of how to evaluate the alternatives
is not addressed.
The agenda of the Center for Adaptive Behavior and Cognition is to de-

velop a “toolbox” of heuristics from which the right rule for a particular
decision and environmental situation can be selected (Gigerenzer and Todd
1999). Then, adaptive traits could be represented as a process of first se-
lecting the right heuristic and then applying it to evaluate or select among
alternatives. So far, we are unaware of any attempts to use this approach in
IBMs. Heuristics seem promising for the kind of trait that Gigerenzer and
Todd advocate them for: decisions that must be made with little information
or an uncertain number of alternatives. The mate choice problem (Ander-
sson 1994) is a good example of such a decision. However, many traits in
IBMs represent decisions that very strongly affect an individual’s fitness—
often determining whether or not the individual eats, or is eaten—and have
been made over and over for many generations in environments rich with
information and cues. Such decisions do not seem to be the kind of problem
that heuristics have been designed for. Still, until heuristic traits are further
developed and tested we do not know what kind of adaptive decisions they
could model well.

7.6 CONTROLLING UNCERTAINTY

One of the key themes throughout this book is finding the right level of
complexity for an IBM: an overly simple model cannot solve the problem it
is intended for, while excess complexity produces uncertainties that make an
IBM hard to test, understand, and learn from. Chapters 2-5 focus on finding
the right level of complexity at the conceptual modeling level: determining
what structures, variables, processes, emergent processes, etc. should vs.
should not be included in an IBM. In this section we discuss controlling
complexity and uncertainties in an IBM’s detailed design as it is formulated.
Once the processes that must be included in an IBM have been chosen,

efforts to reduce uncertainty then focus on reducing the uncertainty in each
process. Key to doing so is organizing the model (and, subsequently, its soft-
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ware) in a way that lets each process be designed and tested independently.
Each major process can be treated as a submodel that has its own distinct
inputs and outputs. The design, parameterization, testing, and validation
of each submodel becomes a separate task. For example, one part of a plant
model is a set of equations and parameters that calculates growth for a time
step from the solar radiation. Treating this process as a submodel to be
developed, parameterized, and tested separately is much easier than test-
ing and calibrating growth as part of the whole IBM. To do so, we develop
a test code: a little bit of simple software that implements the submodel.
Developing a test code helps identify and resolve any ambiguities in the
submodel’s formulation, and then the code becomes an important piece of
documentation (Section 8.6.4): it is a complete, independent description of
the submodel.
Here we present three techniques that are useful for reducing uncertainty

in the submodels that represent an IBM’s major processes.

7.6.1 Keep Submodels Simple

Often it is necessary to capture only the most basic dynamics of a process to
adequately represent its effects in an IBM. In making the inevitable decisions
of how much detail to include in a submodel, keep in mind the benefits
of minimizing complexity and the number of parameters. IBMs often can
produce realistic dynamics with highly simplified or partial representation of
key processes. For example, many IBMs use very simple representations of
resource dynamics, such as how the availability of food for animals or light for
plants varies with season, time, or consumption by individuals. These IBMs
can still reproduce many resource-dependent dynamics when they include
the processes controlling the ability of individuals to obtain the resources.
An IBM that represents how an individual animal’s ability to obtain food
varies with habitat type and competition may capture many important food-
related dynamics even if it ignores how food production varies over space and
time.

7.6.2 Consider Borrowing Existing Submodels

Sometimes a process can be represented in an IBM by using an established,
existing model. Using an existing model allows the IBM to borrow the ex-
isting model’s credibility, while avoiding the need to make up a new and
potentially controversial submodel and its parameters. (It also shows that
the IBM developer is familiar with the literature on the process in question.)
Useful existing models are especially likely to be available for environmental
or habitat processes because mechanistic models are widely used in environ-
mental chemistry, meteorology, hydrology, etc. The trout model described
in Section 6.4.2, for example, uses (1) a popular river hydraulic model to
simulate depth and velocity in habitat cells; (2) a modification of an exist-
ing model of how fish food intake depends on hydraulic conditions; (3) a
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widely used bioenergetics model to predict fish growth from food intake and
temperature; and (4) an existing model of the probability of trout eggs be-
ing destroyed by high flows as they incubate in river gravel. Of course, it is
important to avoiding misusing existing models. Common misuses include
extrapolating an empirical model beyond the conditions used to parameter-
ize it and applying models and their parameters to temporal or spatial scales
they were not designed for.

7.6.3 Design Submodels Carefully and Thoroughly

The development of every submodel in an IBM should be treated as an
independent modeling exercise that includes documentation, literature re-
view, parameter estimation, and testing. The primary reason to conduct
all these steps is of course to find the best possible way to represent the
submodel’s process, with the fewest uncertainties. An important secondary
reason is to convince reviewers and clients that uncertainties in each part
of the IBM were thoroughly considered and reduced as much as practical.
In an influential paper on how potential clients should decide if an IBM is
useful, Bart (1995) emphasized the importance of submodels that are fully
described, tested, and shown to produce realistic predictions. Therefore, the
following stages of submodel development should be described in the IBM’s
formulation document.
A good first step in designing a submodel is searching the literature for

models that could be adapted; or conceptual models, parameter values, or
even field observations that could be useful in designing the submodel. Even
if little of use is found, it is worthwhile to document the literature review
and why no existing approaches were used.
After a submodel is formulated, it should be implemented in a test code so

it can be calibrated, tested, and analyzed by itself. Spreadsheet software is
often useful for test coding because many of us are familiar with spreadsheets,
their graphing capabilities are useful, and they are a convenient platform for
using the test codes to test the full IBM’s software (Section 8.5.1). Mod-
elers have also developed test codes in other convenient platforms such as
MathCad, MatLab, and S-PLUS.
Next, the submodel can be parameterized to the extent possible. In some

cases parameter values will be available directly from the literature, and
in other cases parameters can be fit to available information using formal
techniques (e.g., Hilborn and Mangel 1997). Often, however, it is necessary
to simply “guestimate” parameter values for simple submodels, selecting
values that produce believable results. Some parameters cannot be estimated
with any certainty until the entire IBM is assembled; such parameters should
be identified as among those needing calibration (Section 9.8) and given an
estimated value.
Finally, the submodel should be analyzed to develop a thorough under-

standing of its behavior under all conditions that could possibly be encoun-
tered during simulations. It is important to explore how the submodel be-
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haves over all possible ranges of inputs and document (often, graphically)
that it produces realistic, believable results. Submodel errors or unrealistic
behaviors will cause much more trouble if they are found later instead of
sooner.

7.7 USING OBJECT-ORIENTEDDESIGN ANDDESCRIPTION

In Chapter 5 we show how IBMs are best understood using concepts such
as individuals, adaptive traits, interactions, actions and schedules, and ob-
servation. In Chapter 8 we discuss object-oriented software platforms that
implement IBMs using very analogous concepts: objects with methods that
define their behavior, messages for interaction among objects, schedules of
actions, and observation tools. Clearly, following the same object-oriented
style in an IBM’s formulation can provide a smoother, more natural link
between conceptual design and software (as partly illustrated by the coyote
model description in Section 6.3.3). Using a consistent style of description
from conceptual design to detailed formulation to software makes each of
these phases easier, makes it easier to track each idea all the way through
the design and implementation phases, and helps make sure that the model
formulation is complete—that every assumption used in the software is also
documented in the text.
An object-oriented model formulation can be developed by, first, under-

standing the object-oriented software platform that the IBM will be imple-
mented in (Section 8.4), and then describing the detailed model design in
a way that can be translated directly into the platform. Software engineers
have developed somewhat formal techniques for doing so, and it is helpful to
at least examine techniques such as Universal Modeling Language and Ob-
ject Modeling Technique (described in many software books; figures 7.1 and
7.2 are examples of the kinds of diagrams used in these techniques). How-
ever, less formal approaches are often suitable. Instead of the traditional
approach of listing equations and parameters, an object-oriented model for-
mulation can completely describe an IBM’s detailed design by describing the
following kinds of model components (defined in more detail in Section 8.3).
It should be clear how each part of this object-oriented description fits into
the formulation organization recommended in Section 7.2.

Classes and instance variables describe the model’s structure. Each class
defines a different kind of entity in the IBM (the individuals, habitat units,
etc.). A class’s instance variables define the state variables of its objects:
age, sex, weight, location, etc.

Methods and parameters define all the IBM’s submodels, including the
traits of its individuals. Each class has a number of methods that define the
behaviors that objects of the class can execute.

Messages are the ways that objects tell other objects to either execute
a behavior or provide some information. Messages typically define such
important model characteristics as how individuals conduct interactions and



g-r May 17, 2004

FORMULATING INDIVIDUAL-BASED MODELS 249

                        Model
Initializes grid cell.
Each time step: Simulates storms;
executes schedules of grid cell and tree
actions; writes output

                        Grid Cell
Tracks how many trees of each height class
are in cell. Simulates canopy gaps and light 
level. Simulates interactions among trees and 
cells: competition among upper canopy trees, 
gap closure, promotion of seedlings and 
juveniles to next height class. Determines 
cell’s developmental stage.

       Upper Canopy Tree
Tracks tree’s crown area. Simulates 
processes unique to upper canopy 
trees: mortality from competition, 
crown loss from being fallen on, 
falling on neighbors in storms.

     Lower Canopy Tree
Tracks how long tree has been in 
lower canopy. Simulates processes 
unique to lower canopy trees: 
mortality due to being fallen on, 
promotion to upper canopy.

              Tree
Tracks tree age, height class. 
Simulates mortality from age.

Figure 7.1 An informal, hypothetical, class responsibility diagram for the beech
forest IBM described in Section 6.8.3. Each box represents a class of
entity in the IBM and describes the class’s responsibilities: the vari-
ables and processes it represents. Dotted arrows indicate ownership
relations: the model “owns” (creates and controls) the grid cells; the
grid cells “own” the trees. Solid arrows indicate class hierarchy rela-
tions: the Tree class is the superclass of the Upper Canopy Tree and
Lower Canopy Tree classes. (See also Section 8.6.4.)



g-r May 17, 2004

250 CHAPTER 7

Number of upper canopy trees

Number of lower canopy trees

Percent covered by juveniles

Percent covered by seedlings

Percent upper canopy closure

Percent lower canopy closure

Developmental state

Upper canopy competition

Upper canopy gap closure

Juvenile promotion to lower canopy

Seedling promotion to juvenile

Seedling production

Light availability update

Neighboring gap update

Damage when fallen on

Developmental state update

Crown area

Age*

Increment size

Decrement size

Die from competition

Die from age*

Crown loss from being fallen on

Fall on neighbor cells

*Inherited from “Tree” superclass
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Figure 7.2 A hypothetical class relationship diagram for grid cell and upper canopy
tree classes of the beech forest IBM described in Section 6.8.3. “In-
stance variables” are variables that each object of the class (each grid
cell or each tree) has its own value of. “Methods” are processes simu-
lated by the class. (For classes representing individuals, instance vari-
ables correspond to the individual’s state variables; and methods cor-
respond to individual traits.) Dotted arrows indicate information flow
among classes: methods of one class that use instance variables of an-
other class as input. Solid arrows indicate control flow among classes:
methods of one class that execute methods belonging to another class.
(See also Section 8.6.4.)

sensing.
Actions and schedules define an IBM’s model of time. They determine

which behaviors of which objects are executed in which order, and define
the IBM’s temporal resolution.

Observer tools and observer actions define how data are collected from
the IBM and reported to the modeler. The tools describe what information
is reported and how (e.g., summary statistics written to output files; spatial
data reported graphically); and the observer actions define how observations
are scheduled with respect to other model actions.

7.8 USING MECHANISTIC AND DISCRETE MATHEMATICS

Two issues of mathematical style can help formulate IBMs clearly and avoid
errors. First, the mechanistic nature of an IBM can be expressed and rein-
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forced by using variables, equations and rules that have clear meanings and
consistent units. By ‘clear meaning’ we mean that variables represent actual,
measurable, quantities; and equations and rules represent specific, real, pro-
cesses. By ‘consistent units’ we mean that each variable in an equation has
explicit units (e.g., joules of energy per grams of body weight), and the units
on one side of the equation match those on the other side. Engineers and
physicists are well-trained to use these kinds of mechanistic equations, but
ecologists are not always—instead, our models often rely on empirical rela-
tionships (e.g., statistical models) that have no clear and measurable units.
Using the engineering style whenever possible can help keep the model de-
sign focused on real processes, make the model easier to understand, provide
the ability to check the units consistency of equations—a safeguard against
errors, help make it clear what parts of the model are mechanistic represen-
tations of real quantities and processes, and make it possible to parameterize
and test as much of the model as possible against data.
An example equation with measurable variables and consistent units is

this bioenergetics energy balance that calculates an individual’s growth in-
crement (growth during one time step) from food intake and metabolic costs,
with mass units of grams (g) and energy units of joules (j):

G =
(C × EF )−M

EI
.

In this equation G is the growth increment (g), C is the food consumption
(g), EF is the food’s energy content (j/g), M is the metabolic energy cost
(j), and EI is the individual’s energy content (j/g). When units on the right
hand side of the equation are cancelled out, we find that both the left and
right hand sides have units of g, grams of growth.
The second issue of mathematical style is using discrete mathematics.

IBMs are discrete models, so using the mathematics of discrete events can
help avoid subtle mistakes and demonstrate that the modeler understands
the fundamental differences between discrete and rate-based modeling. Con-
fusion of rates and probabilities is, for example, a common mistake in de-
scriptions of IBMs. In a discrete model, change occurs in discrete amounts,
not at a continuous rate. An individual in an IBM does not have a growth
rate; instead, its size changes by a discrete amount each time step. In a rate-
based model, mortality might be described as a rate with units of inverse
time: a mortality rate of 0.002day−1 means that 0.2% of the population dies
per day. In an IBM, we model mortality of individuals, a discrete event: ev-
ery day, each individual either lives or dies. Therefore, mortality is modeled
using a dimensionless probability value: the risk of dying (or probability of
surviving) that an individual experiences for a specific time period. A daily,
individual, mortality probability of 0.002 would produce a population-level
mortality rate close to 0.002. (The inverse is not necessarily true: in nature,
and many IBMs, a population with a mortality rate of 0.002day−1 has no
individuals with a daily mortality probability of 0.002; instead, the mortal-
ity rate is an outcome of mortality risks that vary among individuals due to
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their size, condition, habitat, etc.) Stochastic processes in discrete systems
follow different distributions (e.g., binomial, geometric, Poisson, exponen-
tial) than do stochastic processes in continuous systems. In Section 7.9 we
present an example where failing to use a discrete distribution could cause
serious errors.
Ecologists may find it useful to browse a few textbooks on discrete mathe-

matics. The discrete-event simulation literature (Section 8.3.1) also provides
background on this topic, with content more likely to be directly applicable
to IBMs.

7.9 DESIGNING SUPER-INDIVIDUALS

The concept of “super-individuals” is used to make simulation of very large
populations computationally feasible. A super-individual is a model ob-
ject that is generally treated as an individual, but represents many (N)
individuals (Figure 7.3). Huse and Giske (1998), for example, used super-
individuals to make a large-scale marine fish IBM computationally feasi-
ble; their IBM represented a population of 15,000,000,000 fish by using
15,000 super-individuals with N = 1, 000, 000 individuals represented by
each super-individual. This technique has been used especially for organ-
isms like fish that have high reproductive and mortality rates, so a popu-
lation having a moderate number of adults periodically has extremely high
numbers of juveniles.

Figure 7.3 A super-individual.

Usually, a super-individual has state variables (e.g., size, location) that
apply to all the individuals it represents; all its N individuals are therefore
assumed to be identical. The behaviors of super-individuals are generally
treated as individual behaviors, but with some obvious exceptions: when
a super-individual eats, for example, it consumes N times the food of one
individual. IBMs that use super-individuals clearly have some parallels to
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age- or size-structured models—treating the population as a collection of
groups, within which individuals are identical—but they still meet the four
criteria for IBMs set out in Section 1.5. While some of the variability among
individuals is obviously lost, this loss can be minor (discussed below). Most
importantly, super-individuals can still exhibit the adaptive behaviors and
local interactions that give rise to emergent population dynamics in IBMs.
Several approaches for modeling super-individuals have been explored by

Rose et al. (1993) and Scheffer et al. (1995). These papers mainly address
how the relation between the number of super-individuals and N is han-
dled as population size decreases due to mortality. There are three general
approaches to this problem, each with advantages and disadvantages.

1. Assume that mortality reduces N of each super-individual while the
number of super-individuals remains constant. This approach has the
advantage of retaining more variability; as mortality proceeds and N
decreases, the model becomes more and more truly individual-based.

2. Assume that mortality reduces N , but then combine super-individuals
as needed to keep N relatively constant. When a super-individual’s N
falls below half its original value (e.g.), it is combined with another to
create a new super-individual with N near the original value. A dis-
advantage is that variability is lost as super-individuals are combined.
However, maintaining a relatively constant N can avoid spatial reso-
lution problems: the most appropriate resolution can depend on the
value of N (discussed below). The computational advantage of this
approach is that the number of super-individuals decreases over time.

3. Assume that an entire super-individual lives or dies together: when
mortality occurs, the whole super-individual dies. This approach has
the advantages of the second approach: N is constant and the number
of super-individuals decreases over time. It does not have the first ap-
proach’s advantage of retaining more of the original variability, but this
limitation can be overcome by using more super-individuals with lower
N—if it is computationally feasible. This approach requires fewest
assumptions about what super-individuals do.

There is no simple algorithm or theory for figuring out how many super-
individuals are needed to retain an acceptable fraction of the population’s
variability among individuals. Instead, we must experiment with the IBM
to understand the effects of using super-individuals of various designs. The
value of N should be a parameter that is varied to explore its effects. How-
ever, in discrete-space IBMs it may not be trivial to vary N without intro-
ducing spatial resolution artifacts. Spatial elements of IBMs using super-
individuals must be designed with great care to avoid errors due to inappro-
priate spatial resolution, and the most appropriate spatial resolution may
vary with N . A cell with enough food to support 20 individuals may be
excellent habitat for a super-individual with N = 10 but very poor for a
super-individual with N = 100. In general, it is safest to design the spatial
resolution and N so that the number of individuals a cells can support is
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much greater than N .
Super-individuals may be especially appropriate for IBMs that include rel-

ative few adults, treated as individuals, and many juveniles that are repre-
sented using super-individuals. If such models are spatial, super-individuals
can be designed so that the spatial resolution appropriate for adult individ-
uals is also suitable for the juvenile super-individuals.
A risk in using super-individuals is the temptation to mix rate-based ap-

proaches into IBMs, which are fundamentally discrete (Section 7.8). Mod-
eling mortality provides an example: it is tempting to apply a mortality
probability to a super-individual as a mortality rate. If an individual’s daily
probability of mortality via predation (P ) is assumed to be 0.05 (resulting in
79% mortality per month, not unrealistic for juveniles of some species) and
N is 1000, it is tempting to simply multiply N by the mortality probability
P as if it were a rate, determining that 50 individuals die so N becomes 950.
Problems obviously set in as N gets lower and N×P is no longer an integer:
rounding up exaggerates mortality and rounding down underestimates mor-
tality. The solution is to stick with discrete math. The number of individuals
dying each time step can be drawn randomly from a binomial distribution,
which models the—integer—number of times an event (death) occurs in a
specified number of trials (N individuals), with P as the probability of the
event occurring each trial.

7.10 SUMMARY AND CONCLUSIONS

This chapter describes techniques for designing the detailed formulation of
an IBM in a way that facilitates the following phases of the individual-based
modeling cycle. Many of the techniques are ways to design and describe an
IBM in a style appropriate for complex, discrete, object-oriented simulators.
Primary concerns are reducing the real and perceived uncertainty of the
IBM and providing a consistent and smooth flow of ideas from the IBM’s
conceptual design through the formulation and on to its software.
Several of the techniques we recommend in this chapter are fairly radical

departures from the way ecological models have traditionally been formu-
lated. One is treating each of an IBM’s major processes as a separate model
and using many kinds of information to develop, justify, test, and param-
eterize the submodel. Primary among the kinds of information useful for
developing submodels is the autecology and natural history of the organ-
isms being modeled, another way to keep our models grounded in biological
reality. Object-oriented model design and description is common in many
disciplines and very natural for IBMs, though still rare in ecology. Discrete
mathematics and mechanistic equations with consistent units should be used
to formulate IBMs, whereas classical models typically use rate-based math
or statistical parameters that lack physical or biological meaning.
One of our objectives in this chapter is to make clear the links between an

IBM’s conceptual design (the subject of parts 1 and 2) and its translation into
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a complete, working model that is then used to solve problems (the subject
of Part 3). Even more important than the techniques we present is the
basic idea that the way we formulate a model—translate a conceptual model
into a complete written description—largely determines the efficiency and
productivity of our modeling project. We also hope that readers understand
how the formulation’s style can facilitate its translation into software. This
translation of formulation into working software is of course the next step in
developing an IBM and the topic of our next chapter.
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Chapter Eight

Software for Individual-based Models

Early in the development of a scientific field scientists typically
construct their own experimental equipment: grinding their own
lenses, wiring-up their own particle detectors, even building their
own computers. Researchers in new fields have to be adept en-
gineers, machinists, and electricians in addition to being scien-
tists. Once a field begins to mature, collaborations between scien-
tists and engineers lead to the development of standardized, reli-
able equipment (e.g., commercially produced microscopes or cen-
trifuges), thereby allowing scientists to focus on research rather
than on tool building. The use of standardized scientific appara-
tus is not only a convenience: it allows one to “divide through”
by the common equipment, thereby aiding the production of re-
peatable, comparable research results.

Nelson Minar, Roger Burkhart, Chris Langton, and Manor Aske-
nazi, 1996

8.1 INTRODUCTION

This is by far the most difficult chapter in the book, certainly for the authors
and probably also for the readers. Developing the software for an IBM is a
major step, yet this topic easily takes on a negative tone. For an unfortunate
number of early IBMs, the modeling cycle was not propelled forward by the
software development phase; instead, the cycle ground to a halt. Many IBMs
were implemented in home-made software that contributed to common, yet
avoidable, problems: (1) far too much of the researcher’s time and budget
was spent on programming instead of on science; (2) much time and money
was wasted because errors were found after, instead of before, a model was
put into use; (3) the IBMs lacked both credibility and usefulness because
important parts were unobservable and untestable; and (4) models soon
fell into disuse because—each being totally different—they were difficult to
communicate, understand, or share (Axelrod 1997; Grimm et al. 1999b;
Minar et al. 1996; Lorek and Sonnenschein 1999).
For new individual-based modelers, we feel compelled to provide plenty of

advice so these problems can be avoided, but then we risk scaring beginners
away. Developing software for a large IBM is indeed a major job, so we
cover software design and testing extensively. Yet we hope beginners do not



g-r May 17, 2004

SOFTWARE FOR INDIVIDUAL-BASED MODELS 257

miss another key message: that there are tools available now that can make
software development much easier, even trivial for some IBMs.
Ecologists that are already experienced simulation modelers are also likely

to find parts of this chapter frustrating. They will hear the message “You
could be doing a better job!” but find only general information on what
approaches and technologies would help do better. Software tools and tech-
nologies are themselves complex and adaptive, and different technologies are
best for different IBMs. We cannot make this a software engineering book,
and if we did it would likely be out of date by the time you read it. So please
accept that our aim can only be to help you know what kinds of tools you
might need and where to look for help, but we cannot provide a cookbook
for software development.
Experienced IBM developers may also not like the many parts of this

chapter that discourage software practices that are widespread in ecology.
We made a tough decision: where practices that are standard in ecology differ
sharply from standard practices of software engineers that specialize in agent-
based and discrete-event simulation, we went with the software engineers.
Nothing in this chapter is considered new, controversial, or excessive in the
field of simulation software engineering (which has, by the way, been around
considerably longer than IBMs have).
The underlying reason why this chapter is difficult is that ecology as a

discipline still has a naive attitude toward software. Universities rarely pro-
vide ecology students with a strong background in software design or even
(in many programs) modern programming skills; instead, students follow the
“do it yourself” approach that Minar et al. (1996) describe in our chapter
motto as characterizing an immature science. This attitude is frustrating be-
cause we do not need to develop new or expensive technologies, only to adopt
and adapt software and modeling approaches that are already cheap and
widely used—just as we have adopted other technologies such as geographic
information systems, statistical software, remote sensing, and telemetry. Tal-
ented software developers take great pride in never programming anything
they do not absolutely have to; instead, like any good scientist, they search
out proven tools and methods.
How can we keep software from making IBE more difficult or controversial

than other model-based approaches to ecology? In our vision of IBM soft-
ware heaven, a modeler could describe their IBM on paper using some kind
of language that (1) people can understand intuitively, (2) is widely used
throughout ecology, (3) provides ‘shorthand’ conventions that minimize the
effort to describe the IBM rigorously and completely, and (4) can be con-
verted directly into an executable simulator without the possibility of pro-
gramming errors. After converting the model description into an executable
simulator, the modeler then could turn the simulator into a simulation lab-
oratory by attaching experimentation tools: probes to collect data; displays
to show results visually; and controls that automatically generate, execute,
and interpret the kinds of analysis experiments we discuss in Chapter 9.
What would such a language look like? Possibilities include graphical lan-
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guages in which the modeler draws a ‘picture’ of the model which is then
turned into an executable code; menu-driven systems in which a model is
described by selecting menu options; and simplified programming languages
that use statements resembling human language.
But what do we do until this vision of software heaven is realized? (This

question is, of course, the topic of this entire chapter.) First is to be aware
that many elements of the vision are already real. There already are graphi-
cal languages, menu-driven systems, and simplified programming languages
that can take much of the work out of IBM software. Currently these lan-
guages or platforms are an essential, but only partial, solution. For most
IBMs, the most valuable approach we can follow now, both to facilitate our
own research and to promote IBE in general, is to use one of the “frame-
work” platforms (Section 8.4.2) that are, essentially, programming languages
specifically for agent-based simulation. These frameworks are designed to be
the standardized scientific apparatus that Minar et al. (in the chapter motto)
say will catalyze progress. And we should consider it an important part of
our job to support development of these tools, not only financially but by
contributing software and helping other users. Mainly, we need to overcome
the temptation—very strong in an immature field—to start over from scratch
every time. The more we share (and contribute to!) common software tools,
the more rapidly these tools will improve toward our ideal vision.
The history of statistical and geographic software should be an inspira-

tion: as more people used the same tools, the tools rapidly improved and
standardized; and it therefore became far easier to do and communicate our
work. Now, in a journal publication we can describe an elaborate statistical
procedure by simply saying “we used PROC GLM in SAS”. Sharing and
contributing to platforms specifically for agent-based modeling will help us
get to the same point.
Our goal in this chapter is to help ecologists prepare for and manage

the inevitable challenges (and pleasures) of bringing an IBM to life in well-
designed software. A key message is that software design and engineering
must be taken seriously; programming skills are not enough and in fact are
not always even necessary for the ecologist. But individual-based modelers
do not have to become experts in software engineering—we try to show that
ecologists can be more productive by knowing the right stuff, not necessarily
more stuff, about software. Therefore, we focus on familiarizing readers with
the tools and techniques that are available and equipping readers to partic-
ipate in the growing world of agent-based simulation software. Especially,
we try to help ecologists estimate the level of effort needed for software, a
crucial step in planning an IBM project. Another important goal is to help
research program managers and proposal reviewers better understand the
resources—plans, software tools, interdisciplinary collaboration—needed to
keep software development from sinking an IBE project.
We begin by explaining why software is more important for IBMs than

for conventional models. Next, we briefly describe a handful of software
engineering concepts that are particulary important for developing IBMs and
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communicating with those who design software for agent-based modeling.
We then present a number of specific strategies and techniques for efficiently
designing and implementing an IBM’s software. Two of these strategies—
selecting an appropriate platform and testing software—are so important
that we discuss them in separate sections.

8.2 THE IMPORTANCE OF SOFTWARE DESIGN FOR IBMS

Modelers often think of a model’s software as simply being an “implemen-
tation” of a model that also exists as a written “formulation” (discussed in
Chapter 7). However, this concept of the software being only a computer-
executable version of the model does not work for IBMs because the software
must do much more than just implement the model. John Holland, a pioneer
of both computer science and simulation of complex adaptive systems (cas)
illustrates the issue using the analogy of a flight simulator program (Holland
1995, p. 157):

To be useful, the flight simulator must successfully mimic the real
plane under the full range of events that can occur. Solid theories
of aerodynamics and control, a natural cockpit-like interface, and
superb programming are vital ingredients of an acceptable flight
simulator. Given this complex mix, how is one to validate the
resulting simulator? Even relatively simple programs have subtle
bugs, and flight simulator programs are far from simple.

Enter the experienced pilot. The pilot “takes the simulator out”
for a series of test flights. . . If the simulator performs as the pilot
expects, we have a reality check; if not, back to the drawing
board. . .

This means of attaining a reality check sets a goal for simulations
that mimic real systems. Individuals experienced with true cas
should be able to observe familiar results when executing familiar
actions in the simulator. This puts a requirement not only on
the programming, but also on the interface provided.

The flight simulator analogy illustrates the first of several reasons why
software is a bigger concern for IBMs than for other kinds of models: an
IBM’s software must provide a laboratory for experimenting on the model.
We need to think of ourselves sitting in front of a display that gives us a
thorough feel for the complex simulations going on in our IBM and how
closely they resemble the real system we are studying. And we can only
understand and learn from IBMs by conducting simulation experiments to
figure out how results arise from what processes and traits (the subject
Chapter 9). A computer program can implement an IBM’s formulation
perfectly, but we can still learn nothing until it also allows us to “see” and
conduct experiments on the virtual ecosystem.
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The greater complexity of IBMs is a second reason their software is more
important. Many IBMs simulate a variety of processes for one or several
kinds of organisms, plus habitat dynamics. The software must manage and
collect data from large numbers of individuals that are variable and contin-
ually changing. As a consequence of this complexity, designing and writing
the software is more work, with more potential for error.
We must also pay more attention to software because errors are more

difficult to detect in IBMs. By their nature, IBMs produce complex and
novel outcomes, making the consequences of programming mistakes difficult
to distinguish from useful results (or from errors in the formulation). “Taking
the simulator out” to see if it looks and feels right is a necessary, but by
no means sufficient, testing procedure. In most IBMs there are essentially
infinite states and control pathways the software can attain, so IBMs often
have errors that are manifested only in rare situations or in a few individuals.
And because we are simulating complex adaptive systems, we cannot assume
that rare or small software errors are unimportant. IBMs, like the real
systems they represent, can be sensitive to rare events and sometimes can
tip sharply from one state to another when a threshold is crossed (e.g., Huse
et al. 2002b; Lammens et al. 2002).
Finally, communicating an IBM’s software to its “clients” is much more

important than for classical models. Clients may be a student’s advisors,
a research program’s sponsors, the readers of a journal article, or resource
agency staff that might use the IBM to make management decisions. These
people know, even if only intuitively, that any seemingly small detail of how
an IBM is implemented can affect its results—so they cannot understand
and trust an IBM unless they can understand and trust its software. A key
job of the software development process, and the software itself, is therefore
to promote the clients’ understanding and trust.

8.3 SOFTWARE TERMINOLOGY AND CONCEPTS

In this section we briefly introduce a few terms and concepts applicable to
software for IBMs. One purpose of this section is to encourage ecologists
to think about software in more ways than the traditional perspective of a
computer program that reads in data, executes an algorithm, then prints
out results. The second purpose is to equip ecologists to participate in the
large community of scientists and engineers building and using software for
agent-based models. Participating in this community is one of the most
essential keys to success with IBMs. Each of the following subsections in-
troduces a term or concept that is important to understand in thinking and
communicating about software for IBMs.
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8.3.1 Discrete-event Simulation

IBMs are of a class of model known as discrete-event simulators. This term
denotes that instead of representing processes as occurring at continuous
rates, processes are modeled as discrete events happening independently at
specific times. Events can be represented using a wide variety of nonlinear
and complex algorithms. Discrete-event simulation has been used in many
fields for many decades, and there is a large body of established theory and
software to take advantage of (e.g., Fishman 2001; Zeigler et al. 2000). Much
of the software technology now available for IBMs is simply an extension
of preceding discrete-event simulation technology. Whenever we need an
algorithm that is not specifically biological, we should look in the discrete
event simulation literature (software and books) before making one up.

8.3.2 Software Platforms

By “software platform” we refer to the programming language or environ-
ment used to convert the model into executable code and run it. Software
platforms used in ecological modeling range from procedural programming
languages (e.g., Basic, C, FORTRAN) to high-level environments in which
specific kinds of models can be built and executed with little programming
(e.g., RAMAS for risk assessment using matrix population models; SAS for
statistical models; StarLogo for simple IBMs). Platforms for IBMs are dis-
cussed in Section 8.4.

8.3.3 Observability

“Observability” refers to the ability, provided by software tools, to see what
is going on in an IBM: environmental conditions, individual behaviors and
interactions, spatial patterns, etc. Techniques for this job are discussed in
Section 8.6.6.

8.3.4 Object-oriented Programming

“Object-oriented programming” (OOP) is a software design paradigm that
is the conventional approach for implementing agent-based models. Here,
we very briefly describe OOP and its advantages for IBMs. We strongly
encourage anyone building an IBM to become familiar with OOP, perhaps
by reading one of the many books on the topic (e.g., Gilbert and McCarty
1998; Weisfeld and McCarty 2000; NeXT 1993 provides an excellent intro-
duction for beginners and non-programmers and can be freely downloaded
from the internet). Prominent languages for OOP include C++, Delphi,
Java, Objective-C, and Visual Basic.
Many of us learned to program using the procedural programming paradigm,

in which program statements are executed in the order they are written ex-
cept when execution is controlled by loops (FOR, WHILE), logical state-
ments (IF. . . THEN. . . ELSE), and subroutine calls. In procedural program-
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ming, data are typically stored in arrays. For example, the population of
individuals in an IBM could be represented in an array, with a row for each
individual and a column for each variable representing the individual’s state.
In contrast, OOP represents program code and data in discrete objects. An
IBM might include a collection of objects that each represent an individual,
another collection of objects representing the habitat units, one object that
controls the individuals and habitat units, and other objects collecting data
and providing graphical output. The programmer writes classes that each
contain the code for one type of object. (The word class refers both to a
type of object and to the software that implements the objects; objects are
also called instances of the class.) All the objects of a class share the class’
code, but each has its own data describing its state, in instance variables. A
bird IBM, for example, would include a class Bird that codes all the traits of
the bird individuals. The Bird class also defines instance variables for sex,
age, size, and location. When the model is executed, the Bird class is used
to create many objects that each represent an individual bird. Each such
bird object has its own value for the instance variables, thereby defining the
bird’s unique sex, age, size, and location.
A class’s code is broken into separate methods, each method coding one

particular thing that its objects do. Methods are analogous to subroutines in
procedural programming languages, except that in OOP all code is broken
into methods. Objects communicate with each other (and among their own
methods) by sending messages that tell a specific object to execute a specific
method. Messages serve two purposes: causing objects to execute their
methods, and transferring information among objects.
There are many reasons why the OOP paradigm has become the standard

approach for discrete-event simulation and agent-based models. Following
are some of OOP’s important advantages for IBMs.

Code that resembles the model.—The primary advantage of using OOP
for IBMs, in our opinion, is that it makes the code resemble the system
being modeled more closely. IBMs are designed to represent individual or-
ganisms, habitat patches, and other discrete entities; and the specific ways
these entities interact and communicate with each other. In OOP, these dis-
crete entities are represented as separate objects, and the modeler explicitly
decides what each object knows about each other object, and how the ob-
jects communicate and interact. Conventional programming approaches can
be used to code the same kinds of communication and interaction among
individuals, but it is much more natural to use OOP.
The great benefit of code that more closely resembles the model is that

much less abstraction is required to convert an IBM from its written de-
scription into working code. The more closely the code structure resembles
the real system being modeled, the less translation is required between the
modeling concepts and the code design. A population of some species can
be considered a collection of unique individuals with a common genetic her-
itage; in an OOP code, this population is treated as a collection of unique
objects of a common class, not as rows of numbers in an array. The re-
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semblance between code and modeled system makes it easier to implement
natural processes like interaction among individuals and makes the code eas-
ier to understand. (In Section 7.3 we encourage formulating an IBM in the
same object-oriented paradigm, to reduce abstraction between the formu-
lation and the system being modeled as well as between formulation and
software.)

Metaphor.—Metaphor is a way of understanding something by comparing
it to something else. OOP promotes metaphor as a way to make code easier
to design and understand. Metaphor makes the code seem less abstracted
so we can think about it using everyday concepts and terminology instead
of having to think about what is actually happening within the computer.
Metaphor is fundamental to the basic concepts of OOP presented above.

Calling a small piece of computer memory an “object” and the code for
the object’s behavior a “class” is metaphor, describing the computer oper-
ations using simple, everyday concepts. OOP programmers routinely talk
about whether an object “knows” some information (has its own variable
representing the information) or has to “ask” another object for it (send a
message to the other object, which returns the information in response to
the message). One object “tells” another object to do something (by sending
it a message that executes a method).
Metaphor specific to a model is also encouraged by OOP. During design

of an IBM, the modelers and programmers may think about, for example,
whether a “rabbit” (a code object of the class representing rabbits in a rab-
bit population IBM) “knows” the food availability (has a variable for food
availability) or whether the rabbits can “get” (or “sense”) the food avail-
ability (send a message, receiving the food availability value in return) from
“their habitat” (the habitat patch object pointed to by a rabbit’s variable
representing its current patch). This kind of metaphor increases the abstrac-
tion in the description of the code, so less abstraction is needed between the
system being modeled and the code description. As a result, the modeler
can think about and document the model and its code using concepts and
terminology that are familiar to ecologists, while still providing a rigorous
description of the code.

Hierarchical organization.—Building an OOP code requires the modeler
and programmer to make a number of explicit decisions about how the code
is organized, including:

• The code’s class hierarchy (also known as its constituency): what classes
are needed, and which should be subclasses of other classes.

• Which classes should contain the code for each part of the model.
• In each class, how many methods there are and what function each has.
• What state variables each class has—or the inverse decision: which class
should each model variable be in.

• What objects get what information from what other objects.

Making and implementing these decisions can lead to a well-organized, hier-
archical code design. (Tools like Universal Modeling Language and Object
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Modeling Technique are simply ways to document these decisions; Section
7.3.) For example, all the code for what the individuals in an IBM do is in
one place, and all the code for what the habitat does is in another place, so
the two are not confused. Within a class, we generally write one method for
each major equation or assumption in the model. This organization makes
it easy to find and modify the code for each assumption.

Flexibility in process control.—OOP makes it easy to use great flexibility
in process control; it is simple and natural for any object to pass execution
control to any other object. This makes it easy to program natural processes
like interactions among individuals.

Protection of code and data.—The OOP approach isolates both data and
code to make them less subject to unintended alteration. Data are encapsu-
lated and protected within objects instead of contained in public variables
or arrays. Code is encapsulated in several ways. Each class has its own
completely separate code; code for one class has no effect on code of other
classes. Within each class, code is further encapsulated in separate meth-
ods. The variables within each method are local (except specially declared
exceptions), so 10 methods can each have a variable called aParameter and
these variables have no effect on each other (just as 10 classes can each
have a method called dailyUpdate, each doing completely different things).
Having each important process or equation in a model encapsulated in a sin-
gle method avoids the risk that altering one part of the code unexpectedly
affects some other part. Likewise, having each individual’s state variables
encapsulated in a separate object is much safer than representing the indi-
viduals in an array where state variables can be accessed and modified by
many parts of the code. Experienced programmers know that this kind of
protection often saves a lot of trouble.

8.3.5 Causality

The concept of causality refers to how a simulation model reaches the states
and results that it does. Understanding the causality of a model result is
usually as important, or more so, than the result by itself. However, figuring
out how an IBM’s results arose is often a challenge. The causality of a
model result can be a combination of the software’s algorithms, the input
data driving the model, and the initial conditions; often, just changing model
input or parameter values can completely change the order in which various
algorithms are executed. One of the potential benefits of using IBMs instead
of studying real ecosystems is that causality can eventually be figured out:
given adequate software tools, we can observe and experiment as needed to
determine how results arose (Chapter 9).

8.3.6 Software Evolution and Maintenance

Because model development and use follows a cycle of testing, revision, and
experimentation, software development is never a one-time job. The soft-
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ware is routinely changed as an IBM is developed and tested. Even after
an IBM is in full use, its code requires occasional maintenance such as pro-
viding additional kinds of output needed for new applications; fixing bugs
that were previously undetected; adapting the code to new versions of the
software platform or computer operating system; improving execution speed
when we need to simulate bigger systems; and, of course, updating the doc-
umentation to reflect all such changes. In addition, good models are often
revised, extended, and adapted to new problems long after they were origi-
nally implemented.
At the same time, we very often need to go back and reproduce simulations

made in an older version of the model. A typical example is when comments
on a journal submission require reproducing simulations that were conducted
many months previously. If the code or input files have been modified in
undocumented ways, or cannot be identified, or do not run on the new
computer we are now using, we cannot reproduce our own results—a serious
credibility problem. We need not only to plan for future maintenance and
evolution of the software, but also to manage software change in a way that
lets us reproduce old versions.

8.4 SOFTWARE PLATFORMS

Selecting an appropriate software platform is one of the most important
steps in IBM software development because the right platform can make the
entire process much more efficient and likely to succeed. Selecting the right
platform is how we take advantage of all the work that other people have
done for us: for any kind of IBM, there are now platforms that provide tools
we need and greatly reduce the programming effort.
Unfortunately, we cannot simply recommend the best platform because

different platforms are most appropriate for different IBMs and because new
platforms regularly appear. Instead, we provide some criteria for selecting a
platform and review the types of platforms now available.

8.4.1 Criteria for Selecting a Platform

The following criteria are useful to consider in selecting a platform for an
IBM. No platform provides all the capabilities listed here; however, most
IBMs will need most of these capabilities. Whatever necessary capabilities
the platform does not provide will have to be developed from scratch.

Support for individual-based simulation.—A platform is much more use-
ful if it not only allows individual-based simulation, but actively supports
IBMs with built-in designs and code. How much of the IBM’s formulation
can be implemented using the platform’s capabilities instead by writing new
code? Does the platform provide facilities for creating and managing col-
lections of model objects, scheduling model events, storing spatial informa-
tion and performing spatial functions (e.g., tracking locations, calculating
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distances between objects, identifying nearest neighbors), and generating
random number sequences from a variety of distributions? The more IBM
support a platform provides, the less new code must be written, debugged,
tested, and documented.

Code analysis capabilities.—How does the platform help the modeler un-
derstand, debug, and test the software? What tools are available to help
understand causality as a model executes? Competent debugging facilities
are essential (except perhaps for high-level modeling environments). Code
profiling tools, which tell how much execution time is spent in specific parts
of the code (Section 8.6.11), are very useful for understanding how the code
executes during a simulation. Graphical programming environments (de-
scribed below) illustrate the software design visually, which can help model-
ers understand and communicate the model and its software.

Observer capabilities.—What tools does the platform provide for observing
the IBM as, and after, it executes? Does the platform provide graphic user
interfaces (GUIs) allowing behavior of model individuals to be observed?
How deeply into the model does the platform allow you to probe (e.g., is it
easy to identify a single individual and track its calculations and behavior)?
Is it easy to obtain summary output of any desired kind (e.g., to get the
weekly mean, minimum, maximum, and standard deviation of individual
weight, broken out by species and age class)?

Links to other software.—Often an IBM can be greatly enhanced by link-
ing its software to other programs. A simple kind of link is writing output
files so they are easily imported into spreadsheet or statistical software to
analyze results, or designing input files so they can be generated by a ge-
ographical information system (GIS). The ability to directly link an IBM’s
software so it uses other packages as it executes can also be very desirable;
for example, why write code for spatial or statistical functions when these
functions could be provided by linking to a GIS statistical package? The
Swarm platform (Section 8.4.3) has a facility making it easy to save, in the
HDF5 database format, the state of all the individuals at any time dur-
ing a simulation. This database can then be analyzed directly with the R
statistical language, or used to re-start the simulation in its saved state.

Tools for model analysis.—In Chapter 9 we discuss approaches for ana-
lyzing an IBM once it is implemented, and some analyses can be at least
partly automated. What analysis tools does the platform provide? Can
multiple model runs be created and executed automatically to compare sce-
narios or analyze sensitivities? Are tools provided for Monte Carlo analysis
or parameter fitting?

Ease of use.—How easy is it to learn to use the platform, and how pro-
ductively can models be implemented? How complete are training classes or
materials, documentation, and user support? Unfortunately, there is usually
a tradeoff between ease of use and the platform’s flexibility and generality:
more complex IBMs are likely to need platforms that require more effort to
use.

Cost-effectiveness.—The cost of modeling platforms varies widely, but it
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is important to consider cost-effectiveness: would a platform’s cost be offset
by increases in productivity and usability of the IBM? Many platforms cost
little or nothing, but a very expensive high-level platform could be cost-
effective if it saves months of effort for writing and testing code and allows
models to be analyzed rapidly.

User community.—Is the software platform widely used for individual-
based or agent-based simulation? Does it have an active user community?
Many ecologists participate in the user communities of geographical informa-
tion systems and statistical packages by subscribing to email lists, attending
user conferences, and reading and contributing to platform-oriented publica-
tions. Some of the platforms discussed here for IBMs have user communities
focused on simulation modeling in general, or specifically on agent-based sim-
ulation. Our experience (primarily with Swarm, below) has been that the
user community can provide the following very important benefits. (1) A
forum for interacting with scientists working on agent-based simulation in a
wide variety of fields, not just ecology. This cross-fertilization is extremely
valuable, especially because much of the pioneering work on complex systems
and agent-based simulation takes place in fields other than ecology. (2) User
support such as help in fixing bugs and finding the best way to design soft-
ware. (3) Shared code, from useful, re-usable classes to complete models
that can be adapted to new purposes. (4) Feedback from users to develop-
ers. Developers of software platforms typically collect information from their
user community on how the platform can best be improved. But the most
important advantage of using the same platform as many other agent-based
modelers is promoting the standardization of tools that we need for this new
scientific approach to mature (Section 8.1).

Execution speed.—Execution speed is rarely the factor that limits how
quickly good science is conducted with an IBM, and other characteristics of
a platform are usually much more important. However, platforms can vary
greatly in how fast they execute the same model, and for some large IBMs
the difference can be important. Unfortunately, reliable data comparing
the speed of different platforms are rarely available, and the speed of each
platform may be highly dependent on subtle characteristics of its design.
Software engineers or experienced modelers may be able to provide useful
advice on the relative speed of alternative platforms.

8.4.2 Types of Platforms

Software platforms likely to be considered for IBMs generally fall into the
following categories. We offer a few comments on the relative merits of
platforms typical of each category, although each platform is different so our
comments should be treated as generalizations likely to have exceptions.

Procedural programming languages.—Many IBMs have been implemented
using conventional, procedural programming languages like C and FOR-
TRAN. However, these languages meet few of the above criteria for good
platforms. Procedural programming languages provide no direct support for
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IBMs, so the entire model must typically be coded “from scratch”. Espe-
cially when used with traditional techniques such as storing state variables
for individuals in arrays, these languages are relatively clumsy and risky
for individual-based simulation. Observer tools are especially lacking, al-
though external graphics libraries may be useful to some extent for viewing
simulations as they occur. Compared to alternatives such as agent-based
simulation frameworks, procedural programming languages have many dis-
advantages and few benefits other than familiarity.

Object-oriented programming languages.—As discussed above, the OOP
paradigm has important advantages, being more naturally suited to IBMs.
For popular OOP languages like C++ and Java there are many library
classes with potentially useful tools and observer capabilities. Like other
programming languages, however, these platforms provide little direct sup-
port for IBMs so require the code to be written mainly from scratch; they
do not provide re-usable software designs that make different IBMs easier to
compare; and they lack tools for observing and experimenting with an IBM.

General high-level modeling environments.—This category includes plat-
forms that typically provide (1) a simplified programming language, (2) code
for a number of common modeling tasks, and (3) graphical output. An ex-
ample many modelers are familiar with is MATLAB, a platform for matrix
mathematics and modeling. Of more interest for IBMs are high-level plat-
forms for object-oriented modeling such as MODSIM and Simscript. Com-
pared to OOP languages, these platforms offer a simplified yet highly flexible
programming language, support for discrete-event simulation, and graphical
display capabilities. However, we are not aware of any general high-level en-
vironments that provide capabilities specifically for agent-based simulation.

Graphical modeling environments.—These platforms allow models to be
coded using graphical symbols, with a simplified script for coding details
that cannot be depicted graphically. Stella is one of the oldest and most
popular of these platforms. Many of the graphical modeling environments
were designed for rate-based modeling and are not suited for IBMs. There
have been a few, however, designed for discrete-event simulation and possibly
useful for some IBMs. These platforms typically provide observer tools like
GUIs and at least a few provide model analysis capabilities such as tools
for Monte Carlo analysis. We are not aware of any IBMs that have been
implemented using one of the commercial graphical modeling environments.

Agent-based modeling frameworks and libraries.—A framework can be
thought of as a standardized, general design for implementing a class of
models. A code library is usually a collection of re-usable object-oriented
code classes. Typically, libraries are used as building blocks as a program-
mer constructs a model’s software; in contrast, a framework provides the
overall model structure with the programmer writing new code to fill in the
details for a particular model. A framework can provide a consistent set
of software design concepts, conventions, and tools; these not only make
it easier to implement models but also to organize and communicate each
model’s software, compare different models, and share code and techniques.
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While a framework is a set of software concepts, it is typically implemented
as a code library, a set of re-usable OOP classes with which the program-
mer customizes the framework to a specific model. An example of a library
developed for implementing IBMs and grid-based models in C++ is EcoSim
(Lorek and Sonnenschein 1999); Swarm and RePast (Section 8.4.3, below)
are frameworks and libraries for implementing all kinds of agent-based mod-
els and IBMs.
There has recently been some effort toward adding graphical modeling

capabilities to these agent-based modeling libraries and frameworks. Tools
are in development that allow modelers to at least outline a Swarm or RePast
program (defining the types of objects, the schedule, etc.) graphically, while
detailed behaviors must still be encoded using a programming language. A
good example is RePast’s “SimBuilder” tool.

High-level agent-based modeling environments.—There is a small but grow-
ing number of packages that allow specific kinds of IBM to be implemented
very easily. Well-established examples are AgentSheets, EcoBeaker, Net-
Logo, and StarLogo. There are also more experimental and less commercial
products such as the MOBIDYC platform, which provides built-in “primi-
tives” for individual behaviors (Ginot et al. 2002; who also provide a review
of IBM platforms). These platforms allow modelers to use menus or simpli-
fied programming commands to customize agents and their environment in a
world that is otherwise highly structured. Most of these environments allow
users to write at least limited code for custom behaviors. In addition to
greatly reducing the work of designing and implementing software, these en-
vironments greatly reduce the effort to document and communicate a model
and its software. The relatively few lines of code (or set of menu choices)
needed to implement an IBM, along with the platform’s standard docu-
mentation, can describe the model completely enough to make the model
reproducible. Some of these environments (e.g., NetLogo) have active user
communities.
Although these high-level environments are less flexible than other plat-

forms, they can be used to create virtually infinite kinds of agents and en-
vironments and to conduct meaningful simulation studies. StarLogo is de-
signed for use by pre-college students, yet Camazine et al. (2001) developed
StarLogo models for several of the self-organizing biological systems they ex-
plore and An (2001) used a StarLogo simulation to develop a fundamentally
new understanding of an important medical problem. NetLogo is an exten-
sion of StarLogo intended for higher-level applications. These platforms can
be excellent for abstract simulations exploring fundamental ecological con-
cepts, for many IBMs of real systems, and for rapid prototyping of model
concepts. Given their advantages, we recommend modelers thoroughly ex-
plore and consider the high-level environments, especially for prototypes and
relatively simple IBMs.
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8.4.3 Swarm and Related Frameworks

Swarm and several related platforms fall in the ‘agent-based modeling frame-
works and libraries’ category but we discuss them in more detail because
they currently are the platforms most widely used specifically for agent-
based modeling and IBMs. We discuss Swarm in particular because it is the
most prominent and because we have more experience with it.
The Swarm project at the Santa Fe Institute pioneered frameworks for

agent-based simulation (Minar et al. 1996). The goal of the project was to
establish something like a programming language specifically for agent-based
models. The product of this project, Swarm, includes a powerful yet general
framework, a code library that implements the framework (and provides a
variety of other useful tools), and a community of users. Currently, Swarm is
maintained by the non-profit Swarm Development Group (www.swarm.org).
The general Swarm approach has also been implemented and modified in sev-
eral other software libraries; currently the RePast project at the University
of Chicago (http://repast.sourceforge.net) is doing so most actively. RePast
is also widely used, and most of what we say about Swarm applies equally
to RePast.
The overall concept of Swarm is that modelers use a normal programming

language to define the behaviors of the specific entities in their model—
so individuals, habitat units, etc. can have any characteristics the modeler
wants—while Swarm’s code provides common functions such as representing
space, managing collections of model objects, organizing and scheduling ac-
tions, controlling execution, and taking observations. A key element of the
Swarm framework is the concept of a “swarm”. A swarm is a software object
that includes a collection of agents or individuals and a schedule of actions
that the agents conduct. A simple IBM implemented in Swarm would include
a “model swarm” containing the individuals, their habitat, and a schedule
of actions that the individuals perform; and an “observer swarm” containing
the model swarm, the observer objects (animation windows, graphs, out-
put files), and a schedule integrating model actions with observer actions.
However, any hierarchy of swarms is possible. “Individuals” in one swarm
could each be a lower-level swarm. Higher-level swarms can perform such
functions as running multiple-simulation experiments, or coordinating mul-
tiple swarms that each model different life stages of a species at different
temporal and spatial scales. For example, we have modeled salmon us-
ing one Swarm program that includes a non-spatial swarm operating at a
monthly time step to represent adults in the ocean; and, at a daily time
step, a branched one-dimensional swarm for upstream spawning migration,
multiple higher-resolution swarms for spawning and egg incubation at vari-
ous spawning grounds, and another large-scale swarm for migration to the
ocean.
Some important characteristics of Swarm and similar frameworks are:

• Providing re-usable software designs, in addition to re-usable code. This
characteristic makes frameworks especially valuable for users, like most



g-r May 17, 2004

SOFTWARE FOR INDIVIDUAL-BASED MODELS 271

ecologists, who are not experienced software designers. These re-usable
software designs do not limit in any way the design or capabilities of
the IBM itself.

• Providing a common software organization and terminology. Key as-
pects of an IBM’s software can be described concisely by, for exam-
ple, listing what swarms are included, what kinds of agents are in each
swarm, and what kinds of schedules are used and what actions are on
each schedule. Modelers familiar with the framework can rapidly un-
derstand each others’ code.

• Being designed as a laboratory for experimenting on IBMs, not just
implementing them. Swarm provides a number of sophisticated tools
for collecting data on an IBM and performing manipulation experiments
(some illustrated in Figure 8.1). These include GUIs and a very powerful
and unique tool: “probes” that allow users to select any model object
(including simulated individuals), then observe and even manipulate the
object in the midst of a simulation.

• Users code the specific behaviors of the entities in their model using an
object-oriented programming language (Java or Objective-C for all the
current implementations of Swarm). However, Swarm provides library
code that reduces the effort needed to program behaviors.

• Promoting user communities that share ideas and code. One of the
greatest benefits of Swarm, in our experience, is that it was developed
and is used by very clever people who put a great deal of thought into the
very modeling and software issues that individual-based ecologists must
deal with. Swarm users interact via email lists and annual conferences,
and routinely share software, ideas, and programming help.

• Being extendible downward into specialized frameworks. Users can write
re-usable code classes that extend the framework to provide more tools
for specific kinds of IBM (Bruun 2001). For example, Swarm users have
written additional libraries to interact with geographical information
systems and to support ecological IBMs.

8.4.4 Summary for Software Platforms

Selection of an appropriate platform is one of the most important decisions
in the process of designing and implementing software for an IBM. Unfor-
tunately, when modelers have not investigated alternative platforms their
default choice has very often been to write code entirely “from scratch”.
This approach maximizes the amount of code that must be written and
tested, and makes the modeler fully responsible for the software’s design,
instead of taking advantage of existing designs and code.
Why do so many scientists (not just ecologists) tend to write models in

languages like Basic, C++, or FORTRAN when so many other platforms
would provide more capabilities for less work? One reason is the energy
required to learn a new platform. The effort to learn a new platform may
seem even greater if it includes identifying and selecting among a number
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Figure 8.1 Swarm graphical interfaces for observing and experimenting with the
“CluBoids” model of Huse et al. 2002b (see also Section 6.2.3). The
animation window (“CluBoid World”) shows the location, direction,
and speed of each CluBoid: the displayed line segments point in the
direction the CluBoid is moving and segment length is proportional to
speed. The control panel (upper right) allows users to stop and re-start
execution, or (by clicking “Next”) to execute just one time step. The
“ModelSwarm” window is a Swarm probe to several model parameters–
it allows the user to change the number of CluBoids and the size of the
model space before simulation begins. Similarly, the “ObserverSwarm”
window is a probe controlling an additional observer tool: whenever
the user clicks the “startTakingPictures” button, the software starts
writing a “picture” of the animation window to a graphics file after
every time step. These pictures can later be made into a movie of the
simulation for use in presentations or web sites. The “ParameterSpace”
window provides probes to parameters for the CluBoids themselves: at
any time, parameter values can be changed via this window. Finally,
the “CluBoidSpace” probe allows the user, at any time, to execute a
method that sends a selected number of the CluBoids to a specified
location in the space (e.g., “send: 20 fishToX: 10 Y: 5”).
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of alternatives, when none are established as a standard. And we cannot
go to the bookstore and find a shelf full of books on agent-based simula-
tion platforms or (usually) take a class on them from our computer science
department. However, there are introductory and reference guides for plat-
forms like EcoBeaker, RePast, StarLogo, and Swarm; there are users of these
platforms at many universities; and a small but growing number of schools
do indeed provide classes on them. A second reason seems to be that many
scientists see programming as part of the creative process of modeling and
fear that using a specialized platform would take away this opportunity to
think about their model in a very low-level way. In fact, the platforms we
discuss do not reduce the modeler’s need to think about their IBM: every-
thing that is unique about a particular IBM must still be programmed from
scratch. But the platforms let modelers focus just on what is unique about
their model while spending much less effort on the common, non-unique
aspects of its software.
The high-level simulation environments like AgentSheets, EcoBeaker, and

NetLogo have great advantages as long as the platform is compatible with
the IBM’s formulation. These platforms should be considered for any IBM.
In fact, the potential to use these platforms is yet another good reason why
simplifying an IBM “to the threshold of pain” (Section 2.3) may result in
learning more instead of less: if you can squeeze your IBM into a high-
level simulation environment, you can be busy doing ecology with the model
much sooner. For more complex IBMs, frameworks and libraries like Swarm
can greatly reduce the model design and programming effort while providing
essential observer tools and imposing no limitations on the kind of model that
can be implemented. As important as these programming benefits are, the
non-programming benefits of widely used platforms—ease of describing and
communicating models, standardized software designs, diverse and talented
user communities—are at least equally important.

8.5 SOFTWARE TESTING

A thorough, aggressive testing program is, like selecting an appropriate plat-
form, one of the most important strategies for successful and efficient soft-
ware development. Minimizing the amount of code we have to write and test
is a primary consideration in selecting a platform, but many IBMs will still
require a significant programming effort. This section focuses on effective
testing of the code we must write.
Unfortunately, testing (also often referred to as verification: verifying that

the software faithfully implements the model’s formulation) is a critical area
of software engineering that few ecologists have experience in. A familiar
sign of the naive modeler is the attitude that as long as the code was written
carefully and compiles without error, and the output looks reasonable, there
are probably not any important problems. This attitude is never productive
and often leads to disaster. Early in the code development and testing pro-
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cess, errors tend to be major, widespread, and easy to find—for example, a
key equation coded incorrectly so it always produces the wrong result. Later,
errors tend to be subtle, affect results only under special circumstances, and
be difficult to detect. It is important to remember that there is practically
an infinite variety of states an IBM’s code can attain during execution; errors
that occur only rarely (e.g., only in a few individuals, under special circum-
stances) are common but require special techniques and determination to
find. And it is not safe to assume that seemingly minor or rare errors have
negligible effects on model results.
The only productive attitude for IBM developers to have towards soft-

ware testing is that errors are inevitable and must be searched out. We
discuss testing early in this chapter to emphasize that testing needs to oc-
cur throughout software development. Goals of the testing process are to:
(1) find errors as early as possible—to minimize the time and money wasted
using erroneous code; (2) search comprehensively for errors throughout the
code and throughout the software development process—because many er-
rors only occur under special circumstances and because each change to the
model and software can introduce new errors; and (3) document the testing
process—to help make it is efficient yet complete and to provide credibility
with software-savvy reviewers and clients.
Like other kinds of model analysis (Chapter 9), software testing should

be treated as a research process with a clear experimental strategy. Testers
should design experiments, predict the outcomes of those experiments, col-
lect data from the IBM software, compare observed outcomes to predicted
to identify discrepancies that are likely due to errors, and finally explain dif-
ferences between predicted and observed outcomes. In its later stages this
testing process is linked to the cycle of analyzing the model itself (Chapter
9): we look for unexpected results, then attempt to determine whether they
are due to software errors or model formulation problems, or whether they
are valid and interesting results. However, in testing the software we much
search very deeply into model, not just examine general results. Testing can
be time-consuming but can also be a fun and creative kind of detective work.

8.5.1 Testing Methods

A hierarchical approach to software testing is efficient because it finds the
major, obvious errors early in code development while comprehensively test-
ing code as it is completed. The following hierarchy of code testing methods
are the minimum necessary to provide reasonable assurance that an IBM’s
software is ready to be used. (Even very simple models implemented in high-
level platforms should undergo these tests, except probably the systematic
tests against an independent implementation; but the tests will be easy.)
Our experience has been that the first three testing methods—code reviews,
spot checks, and pattern tests—typically find most of the errors that have
widespread effects on results, but the final systematic tests invariably find
additional errors even in IBMs of modest complexity. We also discuss when
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in the modeling cycle these testing methods are appropriate.
Code reviews.—Code reviews are the first line of defense against major

programming errors and poor software design, so they need to take place
throughout the modeling cycle. Whenever a programmer finishes drafting
each part of the IBM’s code, it is immediately reviewed by someone else. If
someone other than the modeler writes the code, then the modeler conducts
these reviews. If the code is written by the same person writing the model
formulation, then the reviewer needs to be someone else familiar with (or
willing to get familiar with) the software platform and the IBM. The reviewer
directly compares the code to the model’s written formulation to look for
mistakes, but also thinks about the overall design (see also Section 8.7).

Visual tests.—These tests are exactly the “test flights” John Holland de-
scribes in the quote in Section 8.2. Observing behaviors from the GUIs is
an easy and absolutely essential way to test for errors in coding (and, just
as importantly, in the model formulation and input data; Grimm 2002). In
every new model we have implemented in Swarm, there has been at least one
very important error, missed in careful code reviews, that was immediately
detected from the GUIs.
Visual tests are conducted simply by running the model and observing its

behaviors. Modelers should spend time playing with the model, running it
under a variety of conditions and looking for anything unexpected. Because
visual tests are so easy and so important, they should be conducted every
time a model’s software is modified; in fact, they should be conducted every
time any change is made to the model, including use of new input data or
parameter values. Modelers should develop the habit of carefully scrutinizing
an IBM’s execution visually before using the results for any kind of analysis.
A good example of visual testing is from a model of juvenile salmon mi-

grating down a large river (an early version of the model of Anderson 2002).
Salmon movement was modeled as resulting from the river’s two-dimensional
velocity field plus a component due to random swimming. As soon as we
executed the movement code, we noticed from a GUI that the salmon tended
to drift toward the inside of a river bend, which (as any canoeist knows) is
unexpected. This tendency was clearly caused by under-prediction of move-
ment in the Y (north) dimension when the Y component of velocity was
low, and under-prediction of movement in the X (east) dimension when the
X component was low. Consequently, we immediately diagnosed the error:
the code was truncating instead of rounding off the fishes’ location coor-
dinates. This error had strong effects on model results but was extremely
unlikely to have been detected except by the GUI. Such experiences are the
rule, not the exception, in coding IBMs.

Spot checks.—Spot checks verify a few selected model calculations by com-
paring results to those calculated by hand. For classical models, spot checks
alone can be sufficient to show that major parts of a model are coded cor-
rectly; for testing an IBM, however, they are of important but limited use-
fulness. Spot checks are most important as an early test for major and
widespread errors, especially in how equations are coded. Spot checks can
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be conducted for each piece of code as it is implemented or modified.
Extreme input tests.—Whenever visual tests and spot checks are con-

ducted, they should include “extreme” values of parameters and input data,
which tend to expose subtle implementation problems. Examples of extreme
input include setting parameters to very high and low values and to zero (be-
cause zeroes often cause funny things to happen), and testing input data sets
(e.g., for weather) containing extreme values. Extreme input tests should
be part of testing and calibrating each submodel (Section 7.6.3), not just
testing the final software. Our natural tendency is to avoid exposing our
code to risky situations that could illuminate its faults, until we remember
that the sooner we find the faults the better off we are.

Systematic tests against independent implementations.—Comparing out-
put from two completely independent implementations is generally consid-
ered the only way to test code for a complex model with acceptable complete-
ness. (Even this approach is not completely reliable because different pro-
grammers tend to make the same mistakes; Knight and Leveson 1986.) This
sounds like doubling the programming effort, but compromise approaches
can be very effective with little additional programming.
Systematically testing key parts of an IBM’s code against a separate im-

plementation is essential because this is the only way to test the code over a
sufficiently wide range of model states. For example, many IBMs have pro-
cesses that depend on different factors under different conditions. Growth
of a plant might be limited sometimes by temperature and sometimes by
light availability; an error in how temperature affects plant growth will not
be apparent when growth is limited by light. In many IBMs there are also
many different pathways through the code—different orders in which differ-
ent parts of the code are executed. Software testing needs to sample these
multiple pathways with reasonable thoroughness.
When software reliability is of utmost importance, it is common for two

(or even more) teams to independently program the entire model and then
compare both intermediate and final model results. However, this effort
is not always justified for ecological models. The following process is an
efficient way to conduct systematic code tests for most IBMs; it can test all
the separate submodels but not the full IBM. While the process is relatively
easy and inexpensive, our experience is that it typically finds a small number
of sometimes-important errors, even after the other testing methods have
been completed.

1. Use the test code developed during the model formulation process (Sec-
tion 7.6.3) as the independent implementation of each submodel. We
typically use spreadsheet software for test codes, with columns for all
the inputs, intermediate calculations, and final results for the sub-
model. For example, the feeding and growth test spreadsheet for a fish
model starts with columns for the fish and habitat variables driving
growth (fish size, temperature, water depth and velocity). Calculation
of growth requires calculation of a number of intermediate results like
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food intake rate, the temperature effect on metabolism, and the total
metabolic rate; these intermediate results are each coded in separate
columns. Each spreadsheet row models an individual fish.

2. Program the IBM software to write output files reporting the input
variables, key intermediate results, and final result for the submodel
being tested. For the fish growth example, the code would write one
line of output for each fish on each simulated day, and this line would
report the fish size; temperature, depth, and velocity; food intake rate;
metabolism temperature factor; total metabolic rate; and daily growth.

3. Run the IBM using test input that forces the model over a wide range
of conditions, including extremes. For the fish growth formulation, the
model might be run over 20 days in which temperature varies over
the full range a fish might ever experience (including 0 ◦, using a wide
variety of fish sizes and depths and velocities. It is extremely impor-
tant (and easy) to generate a wide variety of test cases—we typically
examine tens of thousands of results to test one submodel thoroughly.

4. Compare both intermediate and final results from the IBM software
and the test code. The IBM output file is imported into the spread-
sheet that contains the independent implementation. The spreadsheet
is then used to reproduce the IBM’s calculations, and to calculate the
difference between results calculated by the IBM and calculated by the
spreadsheet. For the fish growth example, spreadsheet columns would
be added to calculate the percent difference between the IBM software
and the spreadsheet in calculated values of intermediate (food intake,
temperature effect, total metabolic rate) and final (growth) results.
Differences that cannot be attributed to computer rounding error (e.g.,
differences with absolute value greater than 0.001%) are then identified.

5. Finally, undertake the detective work to explain the differences found
between implementations. Often, differences due to an error are small
(only 0.01 of one percent or less between the two implementations),
or occur in a small minority of cases. However, such differences do
indicate that there are potentially important errors to be identified
and corrected. Most errors can be explained quickly, but occasionally
it requires a substantial investigation to figure out an especially subtle
error. Occasionally, errors are found in the software platform itself.
One Swarm user, when independently checking results, even discovered
errors caused by the computer chip.

When in the modeling cycle should this intensive level of testing be con-
ducted? The answer is: before any significant investment (of time, money,
credibility) is made in analyzing or using the IBM’s results. Early prototyp-
ing and model design (e.g., implementing simple “null” models; Section 2.2)
may not require this level of software testing, but it is a mistake to postpone
comprehensive software testing until an IBM is “finished”. Remember that
the purpose of these tests are to save time and effort by finding mistakes
as early as possible, so they should be completed before the cycle of model
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analysis, testing, revision, and parameterization (Chapter 9) is entered in
earnest. Parts of the software that been tested comprehensively need not be
retested unless they have been altered. However, when an IBM reaches the
stage of the modeling cycle where we test and revise alternative versions of
key submodels (as in theory development; Chapter 4), the submodel code
will need to be thoroughly retested each time it is significantly revised. The
keys to keeping re-testing from becoming painful (or, worse, neglected) are
automation and documentation.

8.5.2 Automation and Documentation of Testing

Automation and documentation of software testing go hand in hand: both
help make testing (and, especially, re-testing as an IBM is revised) efficient
and reproducible. Automating parts of the testing process instead of con-
ducting them entirely by hand may take more effort initially but will save
substantial work as parts of the software are re-tested during the modeling
cycle. By “automation” we of course do not necessarily mean creating a
giant program that does all of the software testing for you. Instead, there
are simple yet effective tricks to make specific code tests easier and more
reproducible. Examples include:

• Archiving special input data sets used for testing;
• Providing permanent code that creates optional debugging output files;
• Creating and archiving spreadsheets (or similar programs) that test the
debugging output as discussed in Section 8.5.1;

• Creating special programs that “test drive” the IBM’s submodels by
making them execute over wide ranges of input.

Any little technique that makes it easier to repeat and reproduce software
tests should be considered, especially for testing code that is likely to be
revised.
Automation can also make it easier to document software testing. Most of

the value of testing software is lost if the tests are not documented. Docu-
mentation should include logging the kinds of tests that were conducted, on
which pieces and versions of the code (and which versions of the formulation
they implement), using exactly which parameter values and input data, on
what dates, and by whom. Test records, such as the IBM outputs that were
tested, methods used to automate the tests, and the code providing an in-
dependent test implementation, should be archived. This information can,
for example, all be put in a spreadsheet file; each time a new version of the
IBM is tested, the spreadsheet can be copied and updated.
One reason to document code tests is to make testing more efficient. Tests

are often repeated to determine whether some change had the expected effect
(e.g., did an apparent problem go away after fixing what the programmer
hoped was its cause?). Often, such tests must be repeated in exactly the same
way, and without adequate documentation it is too easy to get confused by
whether differences in test results are due to the code change being tested
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or due to differences in how the test runs were performed. Documentation
also helps the modeler keep track of what code has and has not been tested,
making it less likely that code is unnecessarily re-tested or accidentally used
without testing.
The second essential reason to document software tests is to record the

methods and software used for testing so they can be re-used or improved
in the future. Documentation is also, of course, very important for pro-
viding assurance to the model’s clients that software quality was given due
attention.

8.6 MOVING SOFTWARE DEVELOPMENT FORWARD

The right platform and a good testing program alone are not sufficient for
avoiding all the common traps that ecologists can fall into while developing
an IBM’s software. In this section we describe several additional strategies
for keeping software development from bogging down.

8.6.1 Keep Model Formulation and Software Development Sepa-
rate

Model formulation and software development are part of the same model-
ing cycle: changes in formulation are inevitably identified during software
development, and model testing and analysis lead to revisions and software
changes. However, formulating an IBM and producing its software need to
be treated as two separate jobs. The first reason for this separation is to
make sure both jobs are done well. When formulating an IBM, a modeler
needs to be focused on biology and the modeling concepts presented in chap-
ters 2-5; and when implementing an IBM, a programmer needs to be focused
on the software engineering issues discussed in this chapter. Especially, the
modeler needs to avoid making model design decisions simply because they
are computationally convenient instead of being biologically justified.
A second concern is the utmost importance of having a written description

of the model that accurately and completely matches the software. Espe-
cially when modelers write their own software, there is a strong temptation
to explore formulation ideas by writing them directly in the code instead of
designing them in a written document and in test code (discussed in Chapter
7). It then becomes very difficult to keep the written description accurate;
after the modeler moves on to other tasks and forgets what changes were
made, no one knows exactly what the code is supposed to be doing. When
the same person writes both the model and its software, that person must
be able to switch back and forth between these two roles without mixing
them.
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8.6.2 Collaborate with Software Professionals

The question of whether ecologists building IBMs should collaborate with
software professionals can be a difficult one. (The term “software profes-
sional” is vague, potentially ranging from self-taught programmers to those
with extensive training and experience in engineering or computer science.
For an IBM project, professionals should at least have expertise in designing
and implementing object-oriented software for complex models.) Collabora-
tion can take many forms, but here we focus on the value of a programmer
and modeler working together to produce software for a particular IBM.
There are many advantages to this kind of collaboration, especially for com-
plex IBMs or research programs developing a series of IBMs:

• A programmer’s expertise can greatly improve the software’s reliability
and usability while reducing the time needed to produce it.

• Instead of spending their time learning software skills and writing code,
the ecologists have much more time to focus on formulating, testing, and
conducting ecology with the IBM—tasks that are also time-consuming
(Chapter 9).

• Modelers are more likely to focus on ecology, not programming, while
formulating the model.

• At least two people are involved in code development, which has many
benefits. These include sharing ideas, forcing the code to be clear and
well-organized, identifying ambiguities and mistakes in the model for-
mulation quickly, and keeping the project from collapsing if one key
person leaves. “More than two eyeballs on the code” is a rule software
developers live by.

• Funding agencies often encourage interdisciplinary collaboration, espe-
cially in fields like IBE where the collaboration seems natural and pro-
ductive. IBE projects are likely to offer opportunities for research in
software engineering or computer science as well as ecology.

On the other hand, ecological modelers often do produce their own soft-
ware, for valid reasons. (In Section 8.8 we mention some not-so-valid reasons
why ecologists have chosen not to collaborate with software professionals.)
In the absence of generous funding there may be no alternative. When an
IBM can be implemented in a high-level platforms with little or no “from
scratch” programming, there may be little need to work with a software
professional. And collaborating with a programmer can be frustrating if the
programmer does not have enough time to keep up with the modeler.
Our experience has been that software for IBMs of at least moderate com-

plexity has been completed successfully by ecologists alone, but the proba-
bility and degree of success increases with the level of support from software
professionals. Successful implementation of many IBMs requires software
skills well beyond those of typical ecologists, which has certainly been a
limitation to the success of IBE. This is in no way a criticism of ecologists—
instead, we are saying that ecology is progressing to the point where we
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require specialists to help build our tools. Learning the skills and tools to
design and build IBM software cost-effectively may not be a good use of
an ecologist’s time or a project’s resources. (On the other hand, it may be
very worthwhile for an ecologist dedicated to individual-based approaches
to invest in developing software skills—as long as the ecologist really learns
modern software design and development skills, not just how to program.) At
several universities, departments (not yet in ecology, in the U.S., as far as we
know) have hired software staff to support researchers that use agent-based
models by (1) helping design and code models, (2) producing software tools
that expand what researchers can do themselves, and (3) enhancing grant
proposals by demonstrating the ability to conduct research cost-effectively
via interdisciplinary collaboration.
We have worked successfully with programmers in two ways. The first

way is hiring a programmer to write the first prototype software for a model
and, at the same time, teach us how to use the platform. Often, one or two
weeks of intense collaboration is enough to get a project off the ground and
make the ecologist fairly competent with a new platform.
However, for sustained high productivity on a major IBM project or pro-

gram, integrating the following software development cycle into the overall
model cycle has worked well. Note that in this cycle the ecologist developing
the IBM remains fully in control of, and responsible for, the software. The
modeler must understand the software platform well enough to read the code
and check it, but need not be a competent programmer.
First, the modeler designs the first draft or prototype of an IBM by at-

tempting to write out the draft formulation in full detail. The goal (unlikely
to be met completely) is to specify the draft model so thoroughly it can
be implemented unambiguously by a programmer. In addition to specifying
the model’s formulation, the modeler also develops an observer plan that
identifies the model outcomes that need to be observed and how.
Next, the programmer implements the draft model from the formulation.

This typically involves collaboration between programmer and modeler in
designing the software’s structure and organization, user interfaces, etc. This
step also inevitably involves the programmer identifying ambiguities and
errors in the model formulation; the modeler corrects them. Interactions
between modeler and programmer are frequent as unexpected decisions must
be made, the modeler reconsiders parts of the model after working out the
implementation details, new observability needs are identified, etc. The
products of this step are not only draft software, but also a more complete
and well-considered model formulation.
As the code is drafted, the modeler reviews it thoroughly with the objec-

tives discussed in Section 8.5.1 and 8.7.1. And, as the code is produced and
reviewed, the modeler (not the programmer) prepares the software’s written
documentation (see Section 8.6.4). This job reinforces the modeler’s famil-
iarity with the code and lets the modeler design the software’s input and
output files and other user interfaces.
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After one or several cycles of code review and revision indicate that obvious
mistakes have been found, cycles of testing and revision of both formulation
and software can begin. The modeler should be the person with primary
responsibility for designing and conducting code tests, because the modeler is
ultimately responsible for the IBM and because the code should be tested by
someone other than the person who wrote it. Finally, as discussed in Section
8.7.5, software maintenance and evolution requires collaboration between
modeler and programmer even after a model code is put into use.
This development cycle may seem cumbersome at first, but if the partic-

ipants are dedicated to the collaboration it can be highly productive while
assuring that the modeler gets software with the necessary capabilities and
quality.

8.6.3 Design Software to Resemble the System Being Modeled

The ecological system being modeled should serve as the primary metaphor
in software design. When an IBM is implemented in an object-oriented plat-
form, this practice reduces the conceptual differences between the software,
the model, and the system being simulated. In deciding what parts of a
model should be coded in what classes, and what variables should be stored
in what objects, we continually think about what happens in the real world.
Consider an IBM of prey and predator fish in a lake. Somewhere in the
software the locations of the fish must be stored. Metaphorically it makes
no sense that a lake would “know” the locations of the fish in it; it makes
more sense to assume the fish themselves know where they are in the lake.
So instead of the lake object storing locations of all the fish in it, we design
the code so the fish objects each store their own location. Considering an
environmental variable like temperature, it makes no sense for temperature
to be a fish variable: fish have no control over temperature. Instead, it makes
sense that temperature is modeled by the lake, and if fish need to “know” the
temperature they would “sense” it from the lake—fish objects would send a
message to the lake object that returns the current temperature value.
(However, compromises are common and metaphors are sometimes am-

biguous. Sometimes we do have a habitat object keep track of the location
of the organisms in it. That way, a fish can find out from the lake how many
other fish are nearby instead of having to ask each other fish where it is.)

8.6.4 Make Multiple Representations of the Model and its Soft-
ware

There are many different ways to represent a model and its software, even
beyond the written formulation and computer code that normally are the
two most important model descriptions. Using a variety of representations,
in human and computer languages and graphics, has benefits such as direct-
ing more thought to the code’s design before coding begins, helping organize
the coding process, and making it easier to fix and revise code. Multiple rep-
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resentations of a model and its code also are essential for communicating the
model among research team members and to the IBM’s clients. The impor-
tance of multiple representations is obvious to anyone who has experienced
the frustration of attempting to use, test, modify, or review an incompletely
documented model.
The following ways of representing a model and its code are all common

and well worth considering, especially for more complex IBMs.
Detailed model formulation.—Chapter 7 addresses why and how we pre-

pare a written formulation, which attempts to completely describe a model
in human language.

Test code for submodels.—During development of an IBM’s formulation,
simple test codes are prepared to test the submodels (Section 7.6). These
submodels are important independent descriptions of the submodels that
can also be used in software testing (Section 8.5.1) and to communicate
the model. If someone wants to understand how we model some particular
process, giving them a spreadsheet or similar implementation of the process
is a powerful way to explain the formulation.

Flow charts; class hierarchy and entity relationship diagrams.—Flow charts
are widely used to design and describe the general sequence of events in a
computer model. They can represent an entire simple model, or to separate
parts of a more complex model. Or one chart can represent the high-level
processes and show only major submodels, while other more detailed flow
charts show what happens within each submodel.
In OOP, several types of diagram are often used to show what kinds of ob-

jects are in a model and their relationships to each other. A class hierarchy
diagram shows what classes are subclasses and superclasses of each other,
information that is helpful for users that just need to understand the model
but essential for anyone working with the code. Entity relationship diagrams
show what the various kinds of objects in a model do and how they inter-
act. As we discuss in Section 7.7 (see figures 7.1 and 7.2), diagram-based
object-oriented design techniques such as Universal Modeling Language and
Object Modeling Technique can be a natural way to link how we think of the
ecosystem we are modeling (e.g., as depicted in influence diagrams; Section
2.3), the IBM’s formulation, and its software.
In general, these kinds of diagrams are useful for developing and com-

municating an IBM’s overall software design but they are not well suited
to describing an IBM in full detail. Diagrams detailed enough to represent
all characteristics of most IBMs would be harder to understand than verbal
descriptions.

Working computer code.—The working code of the full IBM is of course
the most important representation of the model because it is what produces
output for analysis. But well-written code (Section 8.7) in a platform like
Swarm that provides “shorthand” for many modeling functions can also be
a surprisingly clear and concise, as well as thorough, description of an IBM.

Software documentation.—Written documentation of the working software
is well worth the effort of producing it, for any IBM. Software documentation
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can describe how to install and execute the code, how to prepare input files,
the exact meaning of output, and where in the code each model equation
or assumption is represented. Software documentation supports model users
and facilitates code maintenance and revisions. Even if only one or two
people use and modify the code, maintaining up-to-date documentation helps
avoid mistakes and wasted time. Experienced programmers can remember
the times they thought “I’ll remember how to do this. . . ” (e.g., how to
un-do some tentative change in the code) and then found themselves, a few
months or even days later, laboriously reading source code, spending much
more time trying to figure out what they did previously than it would have
taken to document the change.
In documenting the software (as in documenting the model formulation)

it is important to write down not just how the code was designed but why.
Often a piece of code is designed, perhaps after much trial and error, in a
way that works well but seems counterintuitive. If the reasons for the design
are not documented, the programmer is likely to review the code months
later, see that it seems counterintuitive, and then waste considerable effort
trying to “fix” it.
There are several software packages to partially automate the produc-

tion of software documentation; doxygen and Javadoc are popular exam-
ples. These packages do not automatically write up a nice description of
your software; but they do things like produce a nicely formatted document
from comments placed at the start of each key method. At a minimum they
can be useful for creating a list of the classes and methods that need to be
documented.

Model and software revision records.—These records (discussed in Section
8.7.5) maintain a useful history of the modeling cycle, documenting what
changes were made, when, why, and by whom.

8.6.5 Implement Observability and Analysis Tools Early

When we think of both software development and IBE as cycles driven by
simulation experiments, it becomes clear that we need good tools for observ-
ing and analyzing the IBM from the start of software development (Grimm
2002). Preparing an observer plan as an IBM’s objectives and formulation
are determined is a way to ensure that observability receives the attention it
deserves in software design. An observer plan identifies all the model outputs
needed for three purposes: testing the software, testing and understanding
the model’s formulation, and conducting the modeling experiments and eco-
logical research the model is intended for. The plan then addresses, for each
such output, the observability issues discussed here.
First, analyzing an IBM typically requires looking at results from a variety

of views, not all of which can be anticipated before analysis starts. For
example, the modeler may realize during analysis that summary data on
the weight of individuals needs to be broken out by sex as well as age, or
that the individuals using each habitat type need to be examined separately.
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Designing software from the start so that the modeler can choose new output
views (relatively easy in some platforms) will save time and avoid frustration.
A second important observer design issue is selecting spatial and temporal

resolutions for each output. To avoid overwhelming amounts of output,
graphics or file output can be updated at intervals greater than the time
step of the IBM: a model with a daily time step could print output once per
week. Graphical outputs can use multiple spatial resolutions; an example
is code we designed for an IBM of queen conch (a large, snail-like, marine
invertebrate). Because daily movement of individual conch is very small
compared to the extent of the simulated space, we provided one display
showing conch density in the model’s large grid cells but allowed users to
zoom in and observe the individual conch locations in selected cells. (This
was easy in Swarm.)
Another major step in designing observer capability is determining how

to observe each kind of model result. The following three kinds of observer
tools are almost always valuable.

Summary statistics.—Typical summary outputs include the mean size of
individuals, broken out by variables such as species and age; the distribution
of habitat area over one or several variables (e.g., how much habitat area
there is at each of 10 levels of food availability); and distributions of indi-
viduals over habitat types or conditions (e.g., mean density of individuals in
habitat of each level of food availability). These outputs can be displayed
graphically as the IBM executes, but analysis almost always requires post-
processing this kind of output: putting IBM output files into other software
for graphical and statistical analysis.

Tracing individuals.—Tracing the state of selected individuals can be use-
ful for software testing and for understanding how and why individuals ex-
hibit the behaviors they do. This kind of observation requires reporting the
individuals’ state variables (size, location, etc.), the habitat conditions they
experience, and enough of their internal variables to understand behavior.
One approach is to have the software write this output for all individuals,
but the resulting quantity of output may make model execution and anal-
ysis difficult. Swarm’s “probes” allow the user to select model individuals
(e.g., via mouse clicks on a GUI) and output selected variables from those
individuals.

GUIs.—GUIs, especially animation windows, are essential for observing
patterns over space and time—patterns are much more easily interpreted
visually. For spatial models, GUIs showing habitat and individuals over
space and time (usually, a map of habitat with individuals overlain, updated
every time step; however, the “space” on which individuals are displayed
can be in dimensions other than geographical ones) are a rich source of
information on the model. In addition to benefits already discussed, GUIs
are often the only effective way to observe interactions among individuals,
and between individuals and their habitat; detect emergent behaviors; and
identify unusual or “outlier” individuals that may be especially interesting
or important. Another absolutely essential benefit of well-designed GUIs
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is promoting understanding and belief in a model to its clients. Clients are
often wary of a complex “black box” model, but when they see that an IBM’s
behavior is observable and realistic, their interest and belief grows rapidly.
In Chapter 9 we discuss analysis of IBMs to test, understand, and learn

from them. Many analyses (e.g., exploring uncertainties and robustness)
require execution of many model runs. Software tools that automate such
model analyses—generating the parameter or input values, executing the
simulation (often, without the graphics for additional speed), and recording
or even analyzing results—can be very worthwhile. It is best to include such
tools from the start of software development because they will be useful for
even preliminary analyses of the IBM.

8.7 IMPORTANT IMPLEMENTATION TECHNIQUES

This section describes some techniques that we have learned from software
professionals and found very useful in actually programming IBMs once the
software has been designed. In this implementation phase, the focus remains
on making the software useful for science while avoiding opportunities for
undetected errors.

8.7.1 Obtain Critical Reviews of the Code

It should not be surprising to scientists that peer review is a common and
highly valued practice in software development. Peer review of code provides
the same kinds of benefit that review of journal articles provides. First, re-
view is an essential parts of the code testing process (Section 8.5.1). Second,
review is often a source of valuable ideas for improving a code. Finally,
and perhaps most importantly, programmers (like researchers) that know
their work will be reviewed are much more likely to write code that is well-
organized and self-documenting (Section 8.7.2). Without reviews, the temp-
tation to cut corners in coding style, documentation, and testing is a major
risk to producing reasonably mistake-free code. Code “clean” enough to be
reviewed is also essential to the model’s credibility: one of the most frequent
criticisms of IBMs is that models are fully defined only by their code and
the code is unavailable or unreadable.

8.7.2 Use Defensive Programming Practices

“Defensive programming” is a software term meaning to program with testa-
bility and reliability as the primary concern. We learned these practices from
talented and experienced programmers, but they are not always taught (and
are sometimes contradicted) in the kinds of introductory programming train-
ing that ecologists are likely to have experienced. Most of these practices
have the goal of making a model’s code easy to read and understand, or
“self-documenting”. Self-documenting code increases the ease and quality of
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many parts of the software development process: debugging, code reviews,
implementation of formulation changes, code publication, and code re-use
and sharing.

Use simple and clear logic.—A favorite saying of experienced program-
mers is that “code should be written for people, not computers”. Novice
programmers sometimes take pride in writing “elegant” code that has as
few statements and variables as possible, so computer resources and exe-
cution times are reduced. However, the speed of accomplishing IBM-based
research is much more likely to be limited by the time it takes people to
review, test, and de-bug a code than it is by machine execution time, and
these human processes are more rapid and less painful if the code is written
clearly and simply. Instead of designing a code for execution speed from the
start, experienced developers first write a code so it is easy for people to
review and test. If, and only if, execution time is found to be a problem
after the code is put into use, steps can be taken to improve execution time
(Section 8.7.4).

Use descriptive names for classes, methods, and variables; and sentence-
like code statements.—Modern programming languages and platforms allow
names of variables, methods, and classes to be long and descriptive. Us-
ing names that convey useful information (a variable’s meaning, resolution,
units, etc.; for example a variable named habitatDailyMeanTemperatureC)
may take a bit more typing, but the information it contains can make it
much easier to understand and check the code. Well-designed names can
even allow code statements to read like sentences. For example, even readers
unfamiliar with the programming language (Objective-C) are likely to figure
out that the purpose of the following statement is to initialize the weight of
a model deer using a random sample drawn from a normal distribution.

[aNewDeer setWeightTo:
[normalDistribution

getSampleWithMean: deerInitialWeightMean
withVariance: deerInitialWeightVariance] ];

Programming students are sometimes taught to use comment statements
generously to explain their code’s function. However, excessive comments
can be a problem when they take the place of, or distract from, code state-
ments that explain their own function. The reader may accidentally “check”
the code by following the logic in the comment statements instead of in the
executable statements.

Defend against run-time errors.—Even after a model code has been tested
extensively, erroneous results can result from run-time errors. Especially in
complex codes, run-time errors can be common yet difficult to detect unless
a specific effort is made to check for them. Causes of run-time errors include
uninitialized variables or parameters, division by zero, truncation in integer
arithmetic, variable overflows and underflows, and invalid or corrupt input.
In fact, a reviewer pointed out to us that the above code for initializing a

deer’s weight will cause run-time errors. Drawing initial weights randomly
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from a normal distribution, no matter how small the variance, will eventually
produce a new deer that has a negative weight or is bigger than its mother.
So we always follow the random draw with an “if” statement to make sure
the initial weight is within a reasonable range.
The best protection against run-time errors is defensive programming tech-

niques such as:
• Liberal use of code that checks for error conditions during execution, for
example, by making sure the denominator is non-zero before completing
a division;

• Avoiding unnecessary use of public, global, and pointer variables;
• Code that checks for uninitialized variables and invalid or missing input
data;

• Knowing how the software platform handles conditions like divide-by-
zero and variable overflows (which do not always cause execution to stop
in some programming languages!); and

• Using double-precision (or even larger) floating point variables when
overflows and underflows are a risk.

Even though techniques like check statements may slow the model’s exe-
cution, the delay is negligible compared to the cost of errors that are found
late or not at all.

8.7.3 Select a Good Pseudo-random Number Generator

Stochastic processes in IBMs are simulated using “pseudo-random” num-
bers produced by random number generator software. Modelers need to
be aware that random number generators vary widely in quality, and poor
generators can induce important biases or artifacts in simulation results
(Fishman 1973; Ripley 1987; Wilson 2001; Gentle 2003). Unfortunately,
many software platforms that can be used for simulation models (program-
ming languages, spreadsheets, etc.) are likely to have built-in generators of
poor or unknown quality. (For an interesting diversion, try to find out what
generator is built into your favorite spreadsheet, statistical software, or pro-
gramming language.) Also unfortunately, the performance of a generator
may depend on a computer’s hardware. These problems are well known
among software engineers and simulation modelers, so modelers that do not
address random number quality in their IBM’s software are likely to have
their work criticized. Modelers need to at least know and document which
generator their platform uses, and replace it if it is substandard. The effects
of random number generators on model results are easily explored by try-
ing several generators. One benefit of a good software platform is providing
quality pseudo-random number generators.

8.7.4 Reduce Execution Time—if Necessary

Throughout this chapter we state our belief that the progress of an IBE
project is far more likely to be limited by how well the software is designed
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and tested than by how quickly the code executes. To facilitate the modeling
cycle, software should be designed initially to facilitate its review and testing,
without undue regard for execution speed. Many IBMs execute sufficiently
fast with no further work to reduce execution time. However, execution
speed is likely to be a significant issue for IBMs with large numbers of ob-
jects (many individuals or many habitat units) or whose individuals perform
many complex calculations. Often the number of computations increases
more than linearly with the number of objects in the model, for example if
an individual has to interact with neighbouring individuals (Hildenbrandt
2003).
The following are among the software engineering techniques that can

speed up execution of an IBM’s code, once the code and the model have
been tested and are ready for use. These techniques are listed in approxi-
mate order of increasing difficulty and risk of introducing errors. All these
techniques should be used cautiously, for example by running standard test
simulations to verify that model results are not affected.

Using a faster computer, or more computers.—Buying a faster processor
(or dual processors) can be the easiest, safest, and most cost-effective way to
improve performance. The cost of a new desktop computer is often a bargain
compared to the time and risks involved in trying to speed up the software.
Also, doing research with an IBM always involves simulation experiments
that require many model runs (Chapter 9). Simply executing different runs
on different processors (in different computers or in a cluster) is often a
simple, very effective way to produce results faster.

Reducing graphics and file output.—For some IBMs, the GUIs can sig-
nificantly increase execution time. A version of the software that bypasses
the GUIs can be created and used once the model has been thoroughly
tested. Platforms that specifically support non-graphics (or “batch”) exe-
cution modes have the advantage of letting graphics be turned off without
otherwise touching the code. Our experience has been that models with in-
dividuals conducting numerous complex calculations benefit little from non-
graphics modes because the graphics updates account for little of the total
execution time. Other IBMs that have individuals doing few calculations
over many time steps can be speeded up significantly by turning off graphic
displays. Writing unnecessarily large amounts of output to files can also slow
execution, sometimes considerably.

Avoiding slow algorithms.—The computer simulation literature is filled
with algorithms for common tasks (for sorting, random number distributions,
and just about anything that more than one person might use). These
“numerical recipes” are thoroughly tested for speed as well as reliability
and certainly will perform better than home-made algorithms (yet another
reason to never program anything we do not have to!).

Profiling to focus code improvements.—“Profilers” are software that re-
ports data on how a code executes, allowing the programmer to identify the
parts of the code that use the most time. Profilers are available for common
programming languages and so can be used with code library platforms. Of-
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ten, a significant portion of the total execution time is spent in a few small
parts of the code. Once identified by the profiler, these parts of the code can
be speeded up using techniques such as those discussed next.

Avoiding slow math operations.—Mathematical operations that use Tay-
lor series (e.g., logarithms, exponentials, powers) are much slower than other
operations and sometimes can be avoided. For example, the statement
cellArea = length * length executes much faster than using the power
operator (“ˆ”): cellArea = length^2.

Reducing method calls.—In OOP languages, calling one method from an-
other (or “messaging”) is relatively slow. Heavily used parts of the code
can often be made faster by combining methods to reduce messaging. This
approach especially requires care because it can make a program harder to
understand and more vulnerable to errors during future modifications.

Reducing creation of new objects.—Creating new objects is also slow. OOP
codes can be full of small objects that are created then dropped as needed.
Speed can be increased by re-using such objects instead of dropping and
re-creating them—as long as it is clear that there are no artifacts left from
the previous use. Bigger objects with several variables should not be re-used
due to the risk and time involved in preparing them for re-use.

Bounding decision processes.—In some IBMs, much of the computation is
used in evaluating decision alternatives, for example calculating the fitness
each individual would expect if it made a decision in each of several alter-
native ways. If clearly bad alternatives can be eliminated with a few quick
calculations, considerable speed-up can be obtained. This technique must
be used with great caution to avoid causing individuals to make bad choices
in some circumstances—even rare bad choices can have significant effects on
IBM results. Remember that with this technique the actual model, not just
its software, is being altered.

8.7.5 Accommodate Software Evolution and Maintenance

Section 8.3.6 describes some of the ways we must expect an IBM’s software
to change during and even after a research project, and the serious problems
that result if we do not take steps to accommodate and manage change.
Primary among these steps are documentation of the software and its re-
vision history (Section 8.6.4). “Version control” software is widely used in
software development to partially automate the documentation and manage-
ment of code changes. Each code file is checked into a repository and must
be checked out again for editing. The version control software keeps track
of what changes were made and when, documenting the history of changes
and allowing them to be reversed.
Version control software by itself is not a practical way to document revi-

sion history. Keeping a simple log of changes—what was changed, by whom,
and why—in both the model formulation document and the software docu-
mentation makes it much easier to re-create history.
Another important technique is periodically creating official release ver-
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sions of the model when major changes are completed, and whenever the
model is used for purposes (e.g., publications, management decisions) that
may require results to be reproduced in the future. A release version should
include complete documentation of the model’s formulation, the code that
matches the formulation, all the input and parameter files, example output,
and documentation of the code and its testing. A setup program that au-
tomates installation helps avoid such mistakes as replacing some but not
all program and data files, and wraps the whole release in a tidy package.
Producing and archiving release versions is worthwhile even if the model is
used by only one or two people: it is a simple way to guarantee that results
can be reproduced in the future, even if the need is unanticipated.

8.8 SOME FAVORITE SOFTWARE MYTHS

After working with both ecological modelers and software professionals (many
specializing in agent-based simulation software) for many years, we cannot
resist listing some common misperceptions by ecologists about software and
the software development process. These ‘myths’ mainly result from the
unfortunately low exposure of most ecologists to modern software engineer-
ing; the classical models that ecologists have traditionally used do not require
much software expertise. Here are some of the misconceptions we have found
common (and sometimes discovered ourselves, the hard way) and why they
can be counter-productive.

I know how to program in FORTRAN (or C, Java, . . . ) so I can im-
plement my model myself, from scratch.—This statement is analogous to
saying “I know spelling and grammar, so I can write a novel.” One problem
with this myth is that software for an IBM requires a competent design,
and software design is quite a different skill from programming. The second
problem is that the modeler rejects a priori the many benefits of software
platforms that are now available. Experienced developers never write code
from scratch when existing code is available—learning to use existing li-
braries or platforms is faster, cheaper, and safer.

I shouldn’t use a programmer to develop my software because it is too
much work to explain the model. . . and besides, many important modeling
decisions are made during programming.—The most unproductive and dan-
gerous habit of modelers that develop their own software is writing the model
directly into code, without first formulating and documenting it in written
form and in simple test codes. A model that is accurately described only
in its software lacks important elements of science: the model cannot be
reviewed and is certainly not reproducible (unless the code is exceptionally
simple and clear, and is published). With models of any complexity, the
modeler too easily loses track of what the code is supposed to do, making
it worthless until the modeler goes back and deciphers and documents their
own code. A model needs to be fully documented on paper anyway, and
this documentation is what the programmer can work from. Working out
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modeling details on paper and in test codes is more efficient than working
them out in the final software: it lets the modeler focus on biology instead
of programming, avoids spending time testing and de-bugging code that is
then thrown away as the formulation is refined, and encourages the modeler
to document why formulation decisions are made.
Some modelers clearly hesitate to work with a software professional be-

cause they fear losing control over the software and model. This fear would
be legitimate if the modeler expected to simply hand the formulation to a
programmer and get final code back. However, under the development cy-
cle we describe in Section 8.6.2, modelers remain deeply involved in, and
responsible for, code development.

Low-level programming languages are better because they run faster.—If
execution speed was the sole software design consideration, a good software
engineer would indeed implement an IBM in a low-level, non-object-oriented
programming language like FORTRAN or C. However, the rate at which we
can produce good science using an IBM is almost never limited just by
the software’s execution speed. Far more important is the time required to
develop and test the software, and having the tools to test and experiment
with the IBM easily and thoroughly. Higher-level platforms are designed to
reduce software development times while providing the tools to test and use
the IBM efficiently.

I don’t think there are any important bugs in the software.—From exten-
sive experience with IBMs of various complexity, we can assure modelers that
their model is almost certainly not bug-free until a comprehensive search for
bugs is completed and documented. If the modeler cannot provide compre-
hensive evidence that there are no important bugs, the code is not ready for
use.

GUIs are just doo-dads that slow the model’s execution.—GUIs are indeed
sometimes used as gimmicks to entertain users while a model runs. However,
most IBMs (especially spatially explicit ones) produce important results that
can only be understood using visual output. For many IBMs, GUIs are
essential for understanding, testing, and communicating results. Whether
to use GUIs should no longer even be an issue because modern platforms
make GUIs available with almost no extra effort.

My IBM is unique so I must design and write the code from scratch.—A
surprising number of IBMs have been implemented with no attempt to find
out what software tools or platforms were available to help. The attitude that
there is nothing to learn from others is rarely productive and has never been
true for IBM software. When Huston et al. (1988) published their landmark
paper that inspired interest in IBMs, books on discrete-event simulation
theory and software had already been around for many years (e.g., Fishman
1973; Zeigler 1976). Now, there is indeed much to learn from the experience
of others; for example, Swarm has had an active user community since at
least 1997. The amount of literature, theory, and software now available
for implementing IBMs is far too great to ignore, and no IBM is so unique
that it cannot benefit from being implemented in an agent-based modeling
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platform. These tools do not take away the creative process of implementing
a model; in contrast, they let modelers focus on the unique aspects of their
model and spend less time on mundane tasks.

8.9 SUMMARY AND CONCLUSIONS

Individual-based modeling requires a level of sophistication about software
that few ecologists have been prepared for by their academic training or expe-
rience. This chapter may seem intimidating—we recommend many practices
that ecologists experienced only with simpler models might think excessive.
However, the long history of simulation modeling makes it clear that projects
are very unlikely to meet their objectives if they start without a solid un-
derstanding of, and planning for, the inevitable software challenges. Several
large, early programs in IBE were far less productive than expected because
software (developed from scratch) consumed more resources than expected
without providing the reliability and experimentation capabilities needed to
do science. Individual-based approaches are routinely criticized as irrepro-
ducible because software is inadequately tested and documented. At the
same time, though, many IBMs have been developed quite smoothly and
successfully, often by scientists that started with little knowledge of software
but were smart enough to seek out the right tools and help. Clearly, software
is not an insurmountable problem for a well-managed project. Our goal is to
help individual ecologists and ecology as a whole prepare for, manage, and
reduce the software challenges posed by IBMs.
Most of what we say in this chapter can be summarized in four points.

• Software development for IBMs is not just a matter of ‘implementing’
the model so it executes on a computer; we must also develop a labora-
tory for observing and experimenting on the implemented model.

• Few ecologists start with the software engineering skills needed for most
IBMs; these skills are different from just knowing how to program. Po-
tentially successful ways to proceed include taking the time to learn
the software skills, collaborating with software professionals, and keep-
ing the IBM simple enough to implement in a high-level platform that
requires little software expertise.

• There are many resources for making software development more likely
to succeed; these include specialized platforms, simulation theory and
literature, and user communities. Skilled developers avoid designing or
programming anything they do not have to.

• Testing software continually and thoroughly may seem onerous, but for
IBMs the consequences of not testing are far worse. The same is true
of documenting a model and its software thoroughly.

What can ecological modelers and research program managers do to en-
sure that software development moves an IBM project forward instead of
eating up all its resources? It should be clear that software development
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Can the IBM be implemented
in a high-level ABM platform?

Yes
Modeler implements IBM

in high-level platform

No
Is modeling project large,
e.g., with multiple models

or multiple modelers?

Yes
Use ABM framework; software

professional implements the IBMs
and extends the framework

No
What software support

resources are available?

Software professional
Use ABM framework; manager decides

whether professional writes all code,
writes prototype, or supports modeler

Programming help and training
Modeler implements IBM in

ABM framework

Figure 8.2 Decision tree summarizing recommendations for choosing a software
platform and the role of software professionals. The recommendations
are from the project manager’s perspective, with the goal of provid-
ing the essential software capabilities and quality as cost-effectively as
possible. This figure is only a general guide, with exceptions likely; for
example, a modeler already skilled in a procedural programming lan-
guage might best use it for a very simple IBM that can be thoroughly
tested and analyzed without graphics. Note that the modeler’s (i.e.,
ecologist’s) programming skills are not an important decision factor:
even if modelers are software experts, their time may not best be spent
on model implementation. The terms “high-level ABM platform” and
“ABM framework” are defined in Section 8.4.

needs to be planned carefully from the start of the project. Key planning is-
sues are (1) identifying the observer and experimentation capabilities needed
to test the software and meet the study’s research objectives; (2) selecting an
appropriate platform; (3) deciding who will be responsible for the software’s
overall design, who will do the programming, and who will independently
review the design and code; (4) designing and conducting a hierarchical and
comprehensive software testing process; and (5) implementing documenta-
tion, version control, and release management procedures. The second and
third of these steps are typically the most important and difficult decisions
in getting started with software, so we summarize our recommendations for
them in Figure 8.2.
Especially important is starting a project with a realistic projection of the

resources needed to do software development adequately, and updating this
projection as work proceeds. If it appears that software is consuming more
resources than expected, and nothing can be done to improve efficiency, then
the scope of the model and research must be reduced. No science can be
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conducted unless there are resources to produce competent and thoroughly
tested software and then to analyze and learn from the IBM. Our next
chapter is about what to do with an IBM once its software is usable, and
the first point we make in that chapter is that the all-important analysis
phase also often requires more time and resources than anticipated.
As soon as a project starts, following software quality procedures is of ut-

most importance. Assume the code will be reviewed and published. Know
that mistakes are inevitable and need to be found as soon as possible. Be
paranoid about run-time errors. Document software tests assuming review-
ers will demand “proof” that your results are valid and not the artifact of
code bugs. Remember that the credibility and productivity of your work
depends on software quality.
There are also things we need to do, not just for our current research

project, but to help ourselves and others in the future by promoting the
maturation of individual-based approaches to science. Of primary impor-
tance is joining the rapidly growing community of scientists that promote
and use agent-based simulation and simulation platforms. The Swarm De-
velopment Group’s user community (www.swarm.org) has been especially
valuable to us and many others, even those who do not use Swarm software.
A second very important thing we need to do is use common software tools.

The more we use the same platforms, sharing and contributing software and
financial resources, the more rapidly we will reach the point where IBMs
require no more specialized software expertise than conducting statistical
analyses or analyzing spatial data now does.
Finally, institutions that conduct and teach IBE can promote this app-

proach by providing more software support. Ecologists who choose to use
IBMs will need less training in mathematics but more in simulation technol-
ogy. Productivity can be enhanced by providing resources such as program-
mers, training classes, and interdisciplinary collaboration with the software
community.
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Chapter Nine

Analyzing Individual-based Models

A model, once it is running reliably on a computer, is like a
laboratory waiting to be used.

Anthony Starfield, Karl Smith, and Andrew Bleloch, 1990

9.1 INTRODUCTION

Analyzing a computer model means studying the model, once it executes, to
understand and improve its performance and then to solve the problems the
model was designed for. One consequence of IBMs being less simple than
classical models is that IBMs are not as easy to understand and learn from.
In fact, some ecologists believe simulation models and IBMs are so hard to
understand that they are not useful: if a model is just as complex as nature
itself, why not just study nature instead? Avoiding just this problem was our
primary goal in Part 1: readers of chapters 1 to 4 know that a well-designed
IBM is not as complex as nature itself. A well-designed IBM captures the
essence of an ecological system with respect to a particular problem and
contains little else.
There are more reasons why IBMs are easier to analyze than natural sys-

tems. Everything in an IBM can be completely observed and even manipu-
lated. With simulation models we can implement any experimental design we
can imagine—including manipulation of the ‘organisms’ themselves—while
collecting whatever data we want. Compared to field and laboratory exper-
iments, simulation experiments are easy and free from ethical and logistical
constraints; they allow us to examine temporal and spatial scales that are
not feasible for real systems (often we simulate thousands of years, repeat-
edly); and they allow us to examine conditions (a changed climate, perhaps)
that are very difficult to mimic in physical systems.
Our point here is that understanding and learning from IBMs requires

special effort, but can be quite efficient and productive. IBMs are like the
physical microcosms used in laboratory ecology. Great effort goes into plan-
ning and building the microcosm—the container, the environmental compo-
nents like soil and light, the organisms, and the instrumentation needed to
observe the individual- and system-level processes of interest. Yet the ecolo-
gist knows that building the microcosm is just the start: experiments must
be designed and conducted before anything is learned. When an IBM is
built, the modeler is likewise just ready to start doing ecology. This chapter
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is about what to do at this point.
We start with an overview of the analysis phase of the modeling cycle,

identifying four major steps in analyzing an IBM. Then we describe some
general strategies for making analysis efficient and a number of specific analy-
sis techniques. In Section 9.4 we discuss techniques that are unique to IBMs.
Sections 9.5 through 9.9 address techniques that are also used for other kinds
of models; we strongly recommend that ecological modelers become familiar
with the simulation literature (e.g., Ripley 1987; Kleijnen and Groenendaal
1992; Law and Kelton 1999; Fishman 2001) for a more complete understand-
ing of these techniques. While there is relatively little literature on analysis
of IBMs, analysis of simulation models in general is a highly developed field;
almost anything we do can benefit from established methods and software.
Before we start, we need to warn beginners in modeling not to underesti-

mate the amount of work it takes to thoroughly analyze an IBM. Analyzing
an IBM may take ten times longer, or more, than developing the model. In
the modeling cycle (Section 2.3), the tasks preceding analysis are primarily
tool-building; the analysis task is when we start conducting science, learn-
ing about the IBM and the system it represents and drawing conclusions
of general interest. Analysis should start as soon as a simple draft model
is implemented, and proceed as a cycle of testing and revising parts of the
IBM, then testing and revising the whole IBM, and finally using the IBM
to address ecological problems. Each of these steps can require extensive
experimentation and, often, the return to earlier modeling cycle tasks. The
analysis task should be the longest, but most exciting and productive, part
of an IBM project.

9.2 STEPS IN ANALYZING AN IBM

To understand all the reasons why we need to analyze an IBM, think of all the
reasons scientists are skeptical about a “black box” model even if the model’s
formulation is described in great detail. Does the software actually do what
the formulation says? Is the formulation “right”? Why should anyone believe
the model’s predictions—would the model produce similar results (or lead to
similar conclusions) if different parameter values or assumptions were used?
And how did the results arise—what were the individuals doing that caused
the system’s responses? In this section we discuss what different kinds of
analyses are needed to address these kinds of concerns. Analysis, testing,
and revision are described in Section 2.3 as the second-to-last of six tasks in
the modeling cycle; here, we break this task into smaller steps that each have
their own objective. The exact kinds of analysis, and the best methods, vary
among projects, so we provide general guidelines that modelers should find
easy to adapt to their projects. Some kinds of analysis can be skipped for
some projects—for example, if an IBM uses individual traits or submodels
for environmental processes that are already well-tested in similar contexts,
then they may not need further analysis. And some analysis techniques can
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be useful for different analysis objectives: sensitivity or robustness analysis,
for example, may help validate an IBM’s formulation, find good parameter
values, and understand the ecosystem being modeled.
Following are the four analysis objectives that usually need to be addressed

in developing an IBM and applying it to a theoretical or applied ecological
problem. These objectives can be treated as separate steps in analyzing an
IBM.

Software Verification.—Before we can analyze an IBM itself, we must
analyze its software to verify that the computer program faithfully imple-
ments the model’s formulation. This kind of analysis—often called “software
verification”—is treated extensively in Section 8.5 so we do not address it in
this chapter. However, modelers must remember that the subsequent analy-
sis steps invariably produce changes to the model’s formulation and software,
and each change requires documentation and an appropriate level of testing.
Software verification is part of the modeling cycle, not a one-time job.

Model Validation and Theory Development.—After software verification,
the next analysis task is usually testing and improving the model’s design
and formulation. Traditionally, this analysis task is called “validation”: es-
tablishing how valid the model is for the problems it is intended to solve.
Note that the goal is establishing how valid the model is, not whether the
model is or is not valid: we should establish a number of clearly defined
criteria for evaluating an IBM, but rarely is it useful to define a specific
standard for accepting or rejecting a model. Instead, we can think of vali-
dation as assembling evidence and building a case for why the IBM is valid
for its intended application, or as delineating the applications for which the
IBM is, or is not, useful.
Because IBMs can be structurally rich, with population behavior arising

from traits of the individuals and their simulated environment, validation
needs to proceed from the bottom up (Section 9.3.3). First, we can test
those underlying parts of an IBM that do not include emergent behavior
arising from interactions among individuals and their environment. These
underlying parts typically include submodels representing the environment
and non-behavioral traits of the individuals. For example, validation can
start with showing that an IBM’s submodel for food production, and the
submodels for how an individual feeds and grows, all produce reasonable
results.
Next, developing theory for key individual traits is likely to be a critical

part of validation. A cycle for developing and testing theory is presented in
Chapter 4, so we do not pay special attention to theory development in this
chapter.
Only after we have tested lower-level components can we undertake a

meaningful validation of the full IBM. At this stage, we might typically
parameterize the IBM, undertake systematic analysis of sensitivity and ro-
bustness, examine how well alternative versions of the IBM reproduce a
variety of observed patterns, and see whether the model can make successful
independent predictions (all these kinds of analysis are discussed below).
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Parameterization.—Validation of many classical ecological models, and
some IBMs, is largely a matter of parameter fitting: the models are simple,
so their validity depends mainly on finding parameter values that adequately
reproduce observed data. However, the validity of many IBMs depends as
much or more on the model’s structure and mechanisms than on parameter
values. Therefore, we treat parameterization as a separate analysis step.
This step, also called “calibration”, involves finding good values for parame-
ters that cannot be evaluated independently during formulation of submodels
(sections 7.5, 9.4.2). Section 9.8 discusses parameterization techniques.

Solving Ecological Problems.—The final analysis step is of course to ad-
dress the problem the IBM was designed for. This kind of analysis may
involve contrasting alternative versions of the IBM to see which best ex-
plains observations of a real system, understanding the system dynamics
that arise under a variety of conditions, or predicting system responses to
environmental management options. These analyses often involve taking an
IBM apart and putting it back together in different ways, as illustrated in
sections 9.4.4 and 9.4.5. This final analysis step is the most important, but
its conclusions will be greeted with skepticism unless the IBM’s credibility
is built through the previous steps.

9.3 GENERAL STRATEGIES FOR ANALYZING IBMS

This section presents three general analysis strategies that are particularly
valuable for IBMs. These strategies not only cope with, but actually take
advantage of, the greater complexity of IBMs.

9.3.1 The Main Strategy: Simulation Experiments

The basic, most productive strategy for analyzing simulation models such as
IBMs is suggested by the quotation from Starfield et al. (1990) with which
we started this chapter: we must think of an IBM as a laboratory system
upon which we experiment to gain scientific understanding. But how do
scientists develop understanding? We design controlled experiments which
give us, step by step, insights into how the system behaves. We usually
start with very simple experiments, with the system’s complexity reduced
so much that we easily can predict the outcome of the experiment. Then we
carefully add degrees of freedom to the system, incrementing its complexity
while still formulating hypotheses that are easily tested with experiments.
Our predictions will sometimes be correct, but often they will not be, which
then makes us design new experiments and continue on learning.
This is also exactly how IBMs must be analyzed: by carefully designing

and performing controlled simulation experiments. When a model first runs,
it is fun and useful to simply play around with it, exploring how it reacts
to changes in parameter values, initial conditions, or assumptions. But it is
important to stop playing around before long and ask: what do I want to
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know about the model, and how can I design experiments so that I learn
what I want to know?
The experimental approach to analyzing IBMs corresponds to the induc-

tive inference approach to science first attributed to Francis Bacon and ad-
vocated by Platt (1964), which we also referred to in Chapter 4. When we
have a working IBM the cycle of posing alternative hypotheses and then
designing and conducting experiments to test the hypotheses is often just
what we need to make rapid progress. When, for example, we are developing
IBE theory using the cycle in Chapter 4, we use our IBM to find the model
of individual behavior that best explains population-level phenomena. We
pose alternative theories for the individual behavior as the hypotheses to
be tested, implement each hypothesis in the IBM, identify some patterns as
the “currency” for evaluating the hypotheses, and then conduct simulations
that determine which hypotheses fail to reproduce the patterns. If instead
we are using the IBM to understand the cause of some particular system
dynamic—cycles in population abundance, for example—we can pose alter-
native hypotheses for the cause: perhaps environmental fluctuations, den-
sity dependence in reproduction, or density-dependent competition among
adults. Then we can design simulation experiments that attempt to exclude
each hypothesis as an explanation: if we hold environmental conditions con-
stant and the cycles still occur, then environmental fluctuations are excluded
as the sole explanation.
However, we need to be aware that system dynamics such as cycles are

often caused by complex interactions among processes like environmental
fluctuations, reproduction, and competition. This possibility means that if
we identify three potential explanations for some dynamic, and then con-
duct two experiments that exclude two of the explanations, it is risky to just
assume that the third explanation must be right. Instead, we also need to
test the third explanation because the dynamic could be caused by mecha-
nisms more complex than we assumed. When simple “either-or” questions
(e.g., “are populations regulated by bottom-up or top-down processes?”) do
not have clear answers (and they rarely do in IBMs and ecosystems), we
must design more clever experiments that ask and answer more enlightening
questions.
The rest of this chapter assumes that the primary way modelers go about

analyzing IBMs is by conducting these kinds of simulation experiments.
Once a modeler starts hypothesis-testing experiments with an IBM, the
power and fascination of this strategy becomes very evident. Often an IBM
can be used in this way to analyze many problems other than the ones it
was originally intended for. The analyses of a trout IBM by Railsback et al.
(2002; which originated as a graduate class project) began with the objective
of testing the IBM’s ability to reproduce population-level patterns observed
in real trout. However, the authors also analyzed the causes of the patterns.
For example, density dependence in the size of juvenile trout (real trout were
smaller at the end of their first summer when density was higher, a pattern
reproduced in the IBM) was hypothesized by the ecologists who observed it
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in the field and laboratory to be due to feeding competition (Jenkins et al.
1999). However, that hypothesis was excluded in the IBM simulation exper-
iments, during which growth and density were positively related. Railsback
et al. then hypothesized three alternative explanations and showed that two
of them were also not supported by the simulation results. Considerably
more study would be required before these conclusions could be applied to
the real trout, but the simulation experiments certainly indicate that the
original, most intuitive, hypothesis must be questioned. The simulation ex-
periments also suggest field studies that could test alternative hypotheses.
(This kind of analysis rapidly develops belief in the “inverse Occam’s razor”:
simple, obvious explanations for the behavior of a complex system are very
often wrong.)

9.3.2 Analyzing From the Bottom Up

There is little sense in analyzing an IBM’s system-level behavior before de-
veloping confidence that the model’s individual-level behavior is acceptable,
and there is no reason to expect individual behavior to be acceptable be-
fore the environmental processes that drive individual behavior have been
tested. It seems self-evident that bottom-up models like IBMs must be val-
idated starting with the bottom levels that system-level behaviors emerge
from. Yet one of most common reasons for IBMs failing to develop credibil-
ity (besides the failure to analyze the model at all) is attempting to analyze
the system level without first testing the validity of individual behavior.
The very bottom of most IBMs is a representation of the individuals’

environment, because the behavior of individuals depends in part on envi-
ronmental conditions. Therefore, model analysis should start with testing
and validating how the environment is simulated. Then individual behavior
can be analyzed. Especially important is testing behavior that arises from
the individuals’ key adaptive traits, because the most interesting and im-
portant system dynamics arise from these adaptive traits; this problem is
addressed using the theory development cycle of Chapter 4. Often, it is very
effective to start analyzing individual traits by contrasting the behavior of
isolated individuals with the behavior of individuals interacting with each
other.
An obvious problem with this bottom-up approach is that higher-level

processes affect lower levels in many IBMs: not only do system dynamics
arise from individual behavior, but individual behavior is affected by sys-
tem dynamics. If individuals adapt their feeding behavior to the availability
of food, and food availability depends on consumption by all individuals,
then an individual’s feeding behavior will be affected by population density.
In some IBMs, even the bottom-most environmental processes can be af-
fected by how individuals use resources: food production may be a function
of food consumption by individuals, for example. However, the strategy of
controlled experimentation can easily overcome this problem: we can design
experiments that isolate behavior at one level well enough to test it con-
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vincingly. These experiments can use unrealistic scenarios (Section 9.4.5)
such as freezing reproduction, mortality, and growth so food consumption is
constant.
The bottom-up analysis strategy is important for efficiency, keeping us

from wasting time analyzing system behaviors when they are adversely af-
fected by problems at lower levels. However, this strategy is even more
important for an IBM’s credibility with reviewers and other “clients” of the
model. To keep skeptics from saying that “a model with that many param-
eters can be calibrated to produce whatever results you want”, the modeler
must show that the IBM was instead parameterized and tested at all lev-
els, using many kinds of information; and that system behaviors arose from
environmental and individual-level traits that were analyzed independently
before system behaviors were examined.

9.3.3 Analyzing Model Structure Separately

The fact that uncertainty occurs both in model structure and in parame-
ter values is a well-known problem in model analysis. How do we know if a
model’s inability to produce some expected result is due to problems with the
model’s equations and rules or with its parameter values? Simple classical
models cannot be tested or analyzed meaningfully until their parameter val-
ues are fit to data, so effects of structural uncertainty can be examined only
by parameterizing and analyzing alternative model structures (e.g., Mooij
and DeAngelis 2003). However, this approach can mask some of the effects
of model structure. By fitting each alternative model to the same data, the
alternative models are to some degree forced to behave similarly. How do we
know whether parameter-fitting hides underlying problems with the model’s
structure? These problems are often viewed as intractable; but for IBMs the
strategy of pattern-oriented modeling offers a way to at least partly separate
analysis of structure from analysis of parameter values.
With IBMs that are rich in structure and process, we can follow a model

analysis strategy that lets us analyze an IBM’s structure before parameter-
ization, separating the analysis of structural and parameter uncertainty to
some extent. This strategy is simply the one described in chapters 3 and
4—use observed patterns to test and contrast alternative model designs, but
this structural analysis is done before the IBM is calibrated or parameterized
in detail. As the IBM is designed, parameters are given the best values that
can be determined without calibrating the full model. Then the IBM’s struc-
tural validity can be assessed by testing its ability to reproduce a variety of
patterns that capture the structural essence of the system being modeled.
These patterns can be qualitative, but the tests can use clear and quantifi-
able criteria for whether the IBM reproduces the patterns: Do trends go in
the right direction? Does some expected response happen or not? If some
version of an IBM unexpectedly fails to reproduce some of the test patterns,
additional analysis can determine whether the failure is due only to a poor
choice of parameter values. Full calibration and parameterization can pro-
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ceed after this pattern-oriented analysis has identified the most valid model
structure.
Highly mechanistic IBMs that have been shown by pattern-oriented anal-

ysis to be structurally realistic can often be used to address many problems
with little or no detailed parameter fitting. In fact, our experience (includ-
ing the trout model described in sections 1.2 and 6.4.2 and the beech forest
model described in sections 1.2 and 6.8.3) indicates that if an IBM produces
reasonable behavior—reproducing general, qualitative patterns observed in
the real system—only for a narrow range of parameter values, there is likely
something wrong with its structure. (However, we still often use calibration
to reproduce detailed patterns; Section 9.8.) The strategy of conducting
pattern-oriented analysis of an IBM’s structure first can let us understand
and reduce structural uncertainty before addressing parameter uncertainty.
This ability can be very important for demonstrating that an IBM is more
than a black box that can be calibrated to produce any desired results.

9.4 TECHNIQUES FOR ANALYZING IBMS

Now that we have established an overall strategy of analyzing IBMs by
conducting simulation experiments, how do we implement this strategy effi-
ciently? Are conventional model analysis techniques the best for IBMs? In
this subsection we discuss a variety of analysis techniques, some unique to
IBMs and some not.

9.4.1 Currencies for Contrasting Model Versions

The technique of contrasting alternative versions of an IBM is used fre-
quently in the three analysis steps: validation and theory development, pa-
rameterization, and solving problems. If we need to know which theory for
an adaptive trait of individuals is best, we implement alternative theories in
different versions of the IBM and see which performs best. To find the best
parameter values, we run the IBM with alternative values and see which
produces the best results. To determine which ecological processes are im-
portant in the system we are studying, we run different versions which each
have different processes turned off. Contrasting model versions requires a
currency or standard—we cannot determine which model version is “best”
without defining “best at what?”. Here, we look at what currencies can be
used and conclude that the best currencies for analyzing IBMs are not the
ones most commonly used for other population models.
All the types of currencies described below require that we first define sum-

mary state variables which provide a summary description of the state of the
system. We must use appropriate summary state variables because the full
state of an IBM—all properties of all individuals and of their environment—
obviously is not a practical currency for any purpose.
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9.4.1.1 Observed patterns

Anyone who has read chapters 3 and 4 already knows what we recommend
as the most important currency for contrasting model versions: the ability
to reproduce a variety of patterns, at various levels and in various types of
output, that have been observed in the real system represented by the IBM
and that capture the system’s essential characteristics with respect to the
problem the IBM addresses. Their greater “richness”—complexity in model
structure and in the kinds of results they produce—is the reason why IBMs
are more of a challenge to analyze and understand. However, we can take
advantage of that richness by using the many different kinds of results that
IBMs produce as currencies for analysis.
One of a modeler’s important jobs is therefore to assemble patterns for

use in analyzing the IBM. To do a comprehensive job of collecting patterns,
modelers can look at all the different types of results their IBM can produce
(individual behaviors; spatial distributions of individuals; relations among
population variables, or between population and environmental variables; see
also the example IBMs in Chapter 6) and look for observations corresponding
to these results. Sometimes an IBM produces striking patterns, inspiring us
to scan the empirical literature to see if those patterns have been observed
in nature, and sometimes striking observed patterns that we discover in the
literature will make us look again at the model to see if it produces those
patterns. In addition to striking patterns (or in their absence), a variety
of weak or general patterns can contain sufficient information to test and
calibrate IBMs (Wiegand et al. 2003).
Especially valuable are observed patterns of individual and system re-

sponse to variables that are inputs to the model (environmental variables,
initial conditions, etc.). For example, a disturbance event might have been
observed to evoke specific responses. The modeler can easily vary the inputs
and attempt to reproduce these patterns. Ideally, modeling projects are
conducted in collaboration with field research, so types of patterns partic-
ularly powerful for improving the model can be identified and evaluated in
the field. Assembling a wide variety of patterns is especially important when
some patterns are used to parameterize the IBM, because other patterns can
then be used to test the parameterized model.
Using patterns as a currency for analysis does not necessarily mean we

need quantitative methods for evaluating the precise fit of simulated vs. ob-
served pattern. Instead, we can define clear criteria for whether qualitative
patterns are met (e.g., “the relation between mean weight and population
density, measured at the end of each simulated year, has a negative slope”);
this approach is often adequate and even preferable, especially in the ear-
lier stages when we are analyzing the IBM’s structure and theory. It is
often better to contrast alternative model structures and traits via the ques-
tion “which version reproduces more of the qualitative patterns” than via
“which version reproduces the patterns more quantitatively”. Why? Quan-
titative assessment of pattern fit is not very meaningful until the IBM has
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been parameterized carefully, yet we need to contrast model versions be-
fore undertaking detailed parameterization. We must also be careful not
over-emphasize matching patterns that are themselves uncertain. If two
competing versions of an IBM are ‘tied’—both qualitatively reproduce all
the patterns used to contrast them—then it is best, if possible, to break the
tie by finding additional patterns that have the analysis ‘power’ to falsify
one of the two versions.

9.4.1.2 Census Data

Many ecologists automatically think of goodness-of-fit to observed census
data as the primary currency for model analysis: the best model (or best
parameter set) is the one that most closely reproduces a time series of ob-
served population abundance. The main reason for using this currency is
simply that a census time series is the only output of many classical models.
There is also excellent literature on statistical analysis of model fit to ob-
served census data (e.g., Smith and Rose 1995, Haefner 1996; Hilborn and
Mangel 1997; Burnham and Anderson 1998; Kendall et al. 1999; Turchin
2003), including techniques for stochastic models (e.g., Waller et al. 2003).
However, using goodness-of-fit to census data as the only currency in

model analysis has important limitations. The most obvious is that IBMs
produce many kinds of output, so goodness-of-fit against only one or two
summary population variables is an incomplete measure of model perfor-
mance. Another well-known problem is that models with many parameters
potentially can be forced, via calibration, to match different data sets. Mod-
els that are highly stochastic (as many IBMs are) pose another challenge: we
must deal with the variability in model results, which also reminds us that
census data are also variable and uncertain. Waller et al. (2003) recommend
using Monte Carlo analysis of stochastic models to determine whether the
data appear consistent with the model, the inverse of the usual goodness-
of-fit question. However, with this approach the degree of fit depends on
how stochastic the model is: the more randomness is in the model, the more
variable its results will be and the less likely it becomes that data will be
found incompatible with the model results.
The most important limitation of goodness-of-fit to census data as an

analysis currency is that it provides little understanding of structurally rich
models like IBMs: whether the fit is good or poor, we learn nothing about
what parts of the model are good and not so good. Especially, we learn
nothing about behavior of, or variation among, the model’s individuals—
two of the defining characteristics of IBMs.
Census data do, however, often contain patterns that can be useful for

analyzing IBMs. We can look at census data for patterns such as ranges in
abundance, relations between abundance and environmental conditions, and
the frequency of events such as population spikes or crashes; and include
them in pattern-oriented analyses.
Despite its limitations for contrasting model versions, analyzing an IBM’s
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population-level fit against observed census data is sometimes important,
especially for calibration to find good parameter values once the model’s
structure has been analyzed. Validation against observed census data is
an important last model analysis step for those IBMs that need to make
quantitative population-level predictions, for example in population viability
analysis (e.g., Wiegand et al. 1998). Reviewers of such models traditionally
think of fit to census data as the primary standard of model validity; whether
or not we agree with this standard, we often need to evaluate it. However,
it should be clear to the modeler (and probably reviewers) that this kind
of validation is meaningful only after the model’s structure and lower-level
behavior have been tested successfully.

9.4.1.3 Variability in Results

When contrasting model versions, important insights can often be obtained
from looking at the full range of variation in simulation results— especially,
variation among individuals—instead of looking only at mean values. For
example, the mean age and size of individuals in an IBM may be reasonable
while a small number of individuals grow to completely unrealistic ages and
sizes. In this case, the modeler would need to decide whether the unreal-
istic individuals are an important problem, considering the IBM’s purpose.
Variation in many dimensions (over space and time; among individuals) is a
fundamental characteristic of IBMs and must be reflected in the currencies
used for analysis.

9.4.1.4 Stability Properties and Diversity

Two currencies—stability properties and diversity—are so fundamental to
ecology that addressing them is often worthwhile (Grimm et al. 1999b; Van
Nes 2002). The main stability properties studied in ecology are constancy
(or its inverse, variability), resilience, persistence, and—to a lesser extent—
resistance (or its inverse, sensitivity). These properties never can be assigned
to systems, but only to clearly defined summary state variables describing
the system, to specific types of disturbances, and to certain spatial and
temporal scales (Grimm and Wissel 1997). If an IBM is used to understand
“stabilizing” mechanisms (a common issue in ecology), the analysis must
first define a specific “ecological situation” to which it applies, a specific
stability property, and a specific characteristic of the IBM’s population to
which the stability property is applied. Then, versions of the IBM can be
contrasted to see which contain mechanisms conferring more vs. less of the
specific stability property.
Likewise, deducing mechanisms that enhance or reduce diversity is a com-

mon topic of ecological analysis. Most often, the diversity of species is of
concern, but the spatial diversity (heterogeneity) of the biotic and abiotic
environment (structural diversity; Tews et al. 2004) is also a common topic.
As with stability properties, the diversity of a system can be analyzed using
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an IBM by carefully defining a specific context and definition of diversity,
then looking at how that measure of diversity changes among versions of the
IBM (e.g., Savage et al. 2000). The two currencies stability and diversity
can also be used simultaneously to study the stability-diversity relationship,
one of the most persistent (and diverse) issues in ecology.
For both stability properties and diversity, it is important to be open to

both sides: to identify mechanisms that both increase and decrease stability
properties or diversity. All too easily, ecologists assume that stability and
diversity are inherently good, or that simulated systems with higher stability
or diversity must be more realistic; these assumptions are of course nonsense.

9.4.2 Independent Analysis of Submodels

The difficulty and uncertainty in analyzing an IBM can be greatly reduced by
treating many parts of the model as independent submodels. This technique
is important for counteracting the belief that IBMs are hopelessly uncertain
because they have so many parameters. Any part of an IBM’s formulation
except its general structure and the adaptive traits of its individuals (their
rules for making context-specific decisions) can be tested, parameterized, and
validated by itself, often using pattern-oriented approaches. One advantage
of this technique is that analysis of submodels can often use information that
is not useful for testing the full model. Even more importantly, analyzing
submodels independently means that analysis of the full IBM can focus on
the model’s general structure and behaviors arising from adaptive traits.
This technique is discussed more fully in Section 7.2.

9.4.3 Early Analysis of Extremely Simple Patterns

One productive way to get started with analysis of the full IBM is to test its
ability to reproduce some extremely simple patterns. This technique can be a
way to make the playing-around phase of analysis more productive: identify
some very basic things the IBM must be able to do, and then test whether
the IBM actually does them. It is essential that these simple patterns include
some at the individual level: it is very easy and tempting to start analysis
by looking only at whether population results are reasonable, but many
problems are most easily identified by looking at the individual level. Some
examples of very simple patterns that could be useful at the very start are:

• Do individuals exhibit their adaptive behaviors with any success? Or
do they often make decisions that are clearly bad for themselves?

• Do individuals have reasonable values for basic state variables? For
example, does growth occur? Are mortality rates reasonable, or do
individuals all die very soon or not at all?

• Is there variability among individuals in behavior, or are they all doing
the same thing?

• Does the population neither go extinct nor increase without limit? Or
does the population rapidly move into an unrealistic state?
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A second round of analysis could follow, with incrementally higher stan-
dards for acceptable individual and population behavior. This technique is
very efficient for finding major problems quickly. The modeler also gains
some experience with simulation experiments, and quickly learns whether
the IBM’s software has the kinds of observability (Section 8.3.3) needed to
do analysis.

9.4.4 Model Simplification

Because an IBM’s complexity is what makes its analysis difficult, why not
make analysis easier by reducing the model’s complexity? This suggestion
seems obvious but it has not been followed as often as it should have. Perhaps
once we have worked so hard putting so many things into our model, we feel
compelled to analyze all those things at once. This compulsion is likely
strongest for “naively realistic” models (Section 2.1) that are too complex in
the first place. However, setting some of an IBM’s complexity aside can help
analysis and validation proceed efficiently by letting us understand other
parts of the model more easily. This technique can be useful both when we
are simply exploring an IBM’s behavior and when conducting more rigorous
simulation experiments.
Model simplification is most beneficial when used to take a stepwise, con-

trolled approach to analyzing an IBM, examining simplified versions of the
model first. Van Nes (2002; Van Nes et al. 2002) provides a good example: he
started analysis and calibration of a multi-species fish model by first turning
off processes such as predation and food competition so they could exam-
ine each species by itself. Other tricks include turning off most individual
behaviors so the analysis can focus on one behavior at a time, and turning
off some system dynamics to focus on individual behaviors—for instance,
effects of demographic variability can be bypassed by not letting individuals
die or reproduce (e.g., Fahse et al. 1998, Section 6.6.3).
In many IBMs, there is one key process that produces the behavior of

greatest interest. The bottom-up analysis strategy (Section 9.3.3) can be
implemented by turning that key process off and first analyzing the lower-
level processes that drive it. For example, a final objective of the wood-
hoopoe model described in sections 1.2 and 6.3.1 was understanding how
spatial population dynamics depends on scouting forays by members of the
multiple social groups making up the population. The modelers first an-
alyzed simulations of a single social group to completely test the model
implementation and fully understand the group-level dynamics. Only then
were multiple groups simulated and the full model analyzed.

9.4.5 Unrealistic Scenarios

The review of IBMs by Grimm (1999) found that there seems to be a psy-
chological barrier to analyzing model scenarios that cannot occur in nature.
This barrier is understandable: the purpose of the model is to provide a
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structurally realistic representation of a system, and it requires a lot of work
to achieve and prove structural realism. Then, after all this work, it seems
destructive to intentionally simulate extremely unrealistic situations. But
analyzing unrealistic scenarios (including unrealistic parameter values) is es-
sential for understanding IBMs. In fact, the ability to simulate things which
cannot occur in nature is one of the most powerful advantages of IBMs com-
pared to studying nature directly: if we want to test the hypothesis that
Process A causes Pattern B, we simply reach into our IBM and turn Process
A off and see whether Pattern B still occurs. Deutschman et al. (1997),
for example, wanted to know whether spatial processes are important in the
SORTIE forest IBM, so they simply eliminated effects of space from the
model and re-ran their simulations (Section 11.5.2).
A second example of using unrealistic scenarios is the analysis by Jeltsch

et al. (1997b; Thulke et al. 1999) of the wave-like pattern of rabies dispersal
among red fox in Europe. Initial IBM simulations suggested the hypothesis
that this pattern is caused by the small fraction of juvenile fox that disperse
long distances before finding a new territory. These juveniles dispersed far
into the region uninfected by rabies, then appeared to generate foci of in-
fection that spread and merged into a new peak of the traveling wave of
infection (Figure 9.1). This hypothesis could easily be tested in the IBM
by simply preventing young fox from dispersing long distances. Indeed, this
unrealistic scenario with no long dispersal did cause the wave-like spreading
pattern of rabies to disappear.
A final example of the power of unrealistic scenarios is the analysis by

Railsback et al. (2002) of the “−4/3 self-thinning power law”. This “law”
says that in animal populations the mean weight of a population’s age classes
varies with the −4/3 power of the number of individuals in the age classes
(Begon et al. 1986). The extent to which this law applies to real populations,
and why, has been a source of debate among ecologists. The self-thinning
relationship has been hypothesized to be a population-level consequence of
the fact that an individual’s metabolic rate (and hence its food demand)
varies with its weight to the 3/4 power. To test this hypothesis, Railsback
et al. used an IBM for a simple and unrealistic simulation experiment: vary
the parameter for how metabolic rate varies with weight from its realistic
value of 3/4, and then see if the population’s self-thinning relation between
weight and abundance responds as predicted by the hypothesis. (The self-
thinning relation did not respond completely as predicted.) This very direct
analysis of the self-thinning power law was possible only in an IBM because,
of course, we cannot control the metabolic characteristics of real organisms.
These examples are from the final analysis phase, in which we use the

IBM to understand natural systems. However, unrealistic scenarios can be
useful throughout analysis. Modelers should never hesitate to “play god”
and unrealistically manipulate individuals and their environment if it helps
test hypotheses in simulation experiments.
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Figure 9.1 Snapshots of the wave-like dispersal pattern of rabies among red fox,
as produced by the model of Jeltsch et al. (1997b). (a) Results of the
full model, including long-distance migration of young fox. (b) Results
with long-distance migration deactivated. The panels show the grid of
600 × 300 home ranges: home ranges with rabid fox are black, empty
ranges are white, and ranges with healthy fox are grey. The graphs
display rabies density averaged over the Y dimension. (After Jeltsch et
al. 1997b.)

9.4.6 Multiple Observation Perspectives

In Section 5.10, we discuss three different perspectives from which an IBM’s
results can be viewed: those of an omniscient observer, an individual in the
simulation, and a “virtual ecologist” that simulates how a real field ecologist
might collect data in the system being simulated. The omniscient perspec-
tive is used by far the most: we take whatever observations we want from
the whole model and analyze them. However, the other two perspectives
can be valuable during analysis. Especially, it is often necessary to take the
individual’s perspective: selecting one individual from the IBM, looking at
what data that individual “knows” about itself and its environment, and
what decisions it makes and how. This perspective of the individual is of-
ten essential for developing the understanding and credibility of individual
behavior that must be obtained before system-level analysis can be mean-
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ingful. The virtual ecologist perspective allows testing an IBM’s ability to
reproduce field observations that have known biases (Berger et al. 1999;
Tyre et al. 2001).

9.5 STATISTICAL ANALYSIS

It is tempting to say that statistics should be used for analyzing IBMs just
the way that they are used in analyzing field data. Statistical techniques used
in field ecology indeed are often very useful in analyzing IBM results. How-
ever, there is a fundamental difference between field and individual-based
ecology that affects how we use statistics. In field ecology, data are usually
“static”: once we have completed the field study and started the analysis
it is difficult or impossible to collect more data, so we must depend on sta-
tistical analysis to draw inferences and conclusions. Using IBMs, however,
there is almost no cost to conducting more experiments or more replicates.
We are not dependent on analyzing a fixed data set to learn what we can
from an IBM; instead, we can simply continue our cycle of posing hypotheses
and conducting experiments to test them. Once armed with a working IBM,
the individual-based ecologist has more powerful techniques than statistical
analysis alone.
Still, statistics have many applications in analysis of IBMs, which we dis-

cuss here. First, we issue two warnings. We make no attempt to discuss
specific methods for statistical analyses, only how the analyses might be
used. And our examples in this section focus on methods (especially re-
gression) that assume observations are independent, but many outputs from
IBMs are not independent over space or time; so time series and spatial
methods that consider dependence are sometimes more appropriate.

9.5.1 Summarizing Simulation Results

Perhaps the most basic use of statistics is summarizing data, which is es-
pecially necessary for IBMs because IBMs produce results distributed over
individuals, time, and space. In fact, for most IBMs it would be impossible
to present, analyze, or (sometimes) even store results without summarizing
them statistically. However, we repeat one caution from Section 9.4.1: the
full range of results is often very important for analyzing IBMs, so caution
should be used in summarizing results. Variances, maximums, and minimum
values often should be examined in addition to means or medians. Magnus-
son (2000), addressing ecological data in general, makes the important point
that, as an alternative to statistics, graphs can be designed to provide an
informative yet concise summary of results.
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9.5.2 Contrast of Treatments

Many field and laboratory experiments are conducted by creating several
replicates of each of several treatments (in which one or several independent
variables are manipulated), then using hypothesis-testing statistics to ana-
lyze for significant differences among treatments. The same approach can be
used to analyze an IBM: treatments (or “scenarios”, a term used in simula-
tion modeling) are each different versions of the IBM or use different input;
and “replicates” are generated by using different random number sequences
for the stochastic events in the IBM. Figure 9.2 provides an example.

Elevated turbidity Elevated turbidity,
reduced food

Baseline * –

Elevated turbidity –
(a)

Elevated turbidity Elevated turbidity,
reduced food

Baseline – –

Elevated turbidity *
(b)

Figure 9.2 Example traditional study design applied to an analysis of turbidity
impacts, using the trout IBM of Railsback and Harvey (2002). Stream
turbidity reduces feeding ability but also reduces predation risk; and
is also likely to reduce availability of trout food. Three treatments are
used: “Baseline” conditions for an undisturbed stream; “Elevated tur-
bidity”, with baseline values increased by 20 turbidity units, typifying
a moderately disturbed stream; “Elevated turbidity, reduced food”, in
which turbidity is increased 20 units and food availability decreased by
20%. A “–” indicates that the treatment identified in the top row of the
table produced trout abundance significantly lower than the treatment
in the left column; and “*” indicates a lack of significant differences.
Scenarios were contrasted using analysis of variance followed by Bon-
ferroni t test for differences among means, with α = 0.05 and five
replicates of each treatment. For abundance of adult trout (a), only
the combination of elevated turbidity and reduced food availability pro-
duced a statistically significant decrease in abundance. For juveniles
(b), the turbidity increase by itself significantly reduced abundance,
but the additional effect of reduced food was not significant.

When we are analyzing how IBM results respond to a continuous indepen-
dent variable, the sensitivity analysis approach we discuss in Section 9.5.3
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has advantages over contrasting discrete scenarios. However, we often need
to contrast results from scenarios that are inherently discrete. When we are
contrasting alternative theories for individual behavior, for example, each
theory is a discrete treatment, and we need ways to contrast these treat-
ments. For example, Railsback and Harvey (2002) used analysis of variance
followed by t tests to contrast population-level results from three versions of
an IBM, each version having a different theory for how fish select habitat.
There are several potential pitfalls in using traditional hypothesis-testing

statistics to analyze IBM scenarios. The primary problem is that analysis
conclusions depend on several arbitrary assumptions, including the choice
of how many replicate simulations are used for each scenario (statistical sig-
nificance can easily be increased by generating more replicates), the α value
chosen to define significance, and (sometimes) the degree of difference among
scenarios (e.g.,two scenarios that contrast food production rates of 0.5 vs. 1.0
are less likely to be significantly different than two scenarios that contrast
rates of 0.5 vs. 5.0). Another kind of arbitrariness is the degree of variabil-
ity among replicate simulations of the same scenario, or how much “noise”
there is in simulation results. We can change the level of variability among
replicates by changing assumptions in our model about what processes are
stochastic and how (Section 5.8); and the more stochasticity we include,
the less likely we are to find statistically significant differences among treat-
ments. Another problem is that statistical significance does not necessarily
indicate biological significance. (Ecologists savvy in experimental design will
no doubt note that each of these problems corresponds to a similar problem
with hypothesis-testing statistics in analysis of data from real systems; Suter
1996; Magnusson 2000.)
Fortunately there are ways to supplement (or altogether replace) statis-

tical analysis of discrete treatments in an IBM: using a variety of model
results—different state variables describing different aspects and hierarchi-
cal levels of the system—to build a case for whether there were important
differences among treatments. A first (and sometimes sufficient) step is sim-
ply to present the degree of difference among scenarios in key outputs. We
can simply execute a reasonable number of replicates for each treatment,
then present the results of all replicates graphically and use our judgement
to decide how important the differences are (e.g., Figure 9.3). We can also
examine many types of results to develop a full and convincing picture of
the differences (or lack of differences) among scenarios. For example, how
big were the differences among scenarios in not just one but all the key
population-level results? Did individuals behave differently? Were there dif-
ferences in spatial or temporal patterns? Did different processes dominate
the system’s dynamics (e.g., did different kinds of mortality dominate in dif-
ferent scenarios)? This comprehensive approach to contrasting treatments
is more convincing than depending only on statistics.
Although hypothesis-testing statistics are of limited value for understand-

ing differences among IBM scenarios, they can still be useful for communi-
cating these differences. Statistical analyses can communicate key results in
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Figure 9.3 Graphical comparison of IBM scenarios. The IBM of Railsback and
Harvey (2002) was used to predict the average abundance of (a) juvenile
and (b) adult trout under two discrete scenarios. Scenario 1 includes
simulation of cannibalism, the risk to juvenile trout of being eaten
by adults. Scenario 2 removes this process from the IBM to see if it
has important effects. Twenty replicate simulations were conducted
for each scenario; each plotted point is the mean abundance for one
scenario. (Points are “jiggled” along the X axis to make them visible.)
When analyzed statistically, using the same methods as for Figure 9.2,
the two scenarios were significantly different for both juveniles and
adults. However, if only 10 replicates are used, the scenarios are not
significantly different for juveniles.

a familiar and concise way. However, our experience has been that reviewers
are touchier about the potential pitfalls discussed above when statistics are
used to analyze IBMs, perhaps because some ecologists are uncomfortable
with the whole idea of “data” generated by a simulation model. One way
to use statistics effectively without risking a battle over methods and in-
terpretation is to use simple statistical analyses (e.g., t-tests) to highlight
differences (or the lack of differences) that are obvious and explained by
other kinds of analysis.

9.5.3 Quantifying Relationships

A variety of regression-based methods are commonly used to identify and
parameterize relationships between model inputs and outputs, a type of
sensitivity analysis. Developing these relationships is often a more infor-
mative alternative to the traditional scenario-contrast experimental design
discussed in the previous subsection. Instead of testing for significant dif-
ferences between a small number of scenarios, it is often just as easy to
use many scenarios to develop a continuous relationship between indepen-
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dent and dependent variables. Instead of experiments simulating population
abundance with food values of 5 and 10, we can simulate 20 food values
from 1 to 20. This design not only allows us to determine whether food
has an effect on abundance; it allows us to determine if there is a significant
relation between food and abundance, what shape that relationship has, and
(cautiously!) how much of the variation in abundance was caused by food
vs. stochasticity vs. any other factors varied in the simulation experiment.
Another example is the analysis of a brown bear IBM by Wiegand et al.
(1999), in which habitat quality was varied over a wide range to examine its
effects on bear abundance.
These sensitivity relationships need not be univariate or linear; Figure

9.4 is an example analysis of how a simulated trout population responds to
variation in both water turbidity and food availability. In fact, a compre-
hensive analysis of how simulation results vary with a variety of inputs can
be used to develop a “meta-model” of an IBM: a statistical model of some
of the IBM’s system-level behavior (Kleijnen and Groenendaal 1992). A
meta-model can help understand and communicate an IBM by summarizing
the model’s response to key parameters, and can be used (cautiously!) as
a simplified version of the IBM for other analyses that require very large
numbers of simulations.
Parada et al. (2003; Mullon et al. 2003) demonstrate another, innovative

use of regression techniques to analyze IBMs. They started analysis with
simple versions of their IBM and used regression techniques to determine
which parameters explained most of the variation in the IBM’s output and
which parameters had little effect. The parameters with little effect were
then kept constant in the analysis of the next model version, which included
additional processes and structures. In this way, the number of parameters
that had to be analyzed in detail could be kept nearly constant while the
model’s complexity was increased.
In addition to relating IBM results to input or parameter values, statistical

analysis can be used to look for relations among different outputs of an IBM.
For example, we may need to examine the relation between the number of
individuals and their growth rate (is growth density-dependent?), how the
abundances of competing species are related (is inter-species competition
strong?), or how the abundance of adults is related to the number of juve-
niles of the same generation (is mortality density-dependent?). These kinds
of questions can be addressed, cautiously and not conclusively (remember,
correlation does not imply causation), using regression analyses.

9.5.4 Comparing Results to Observed Patterns

There is a rich literature on statistical methods for comparing model results
to one kind of observed pattern: time series of census data (Section 9.4.1).
The inverse parameterization technique discussed in Section 9.8 is an ex-
ample of formalized analysis methods that require quantitative comparison
between IBM results and observed patterns other than demographic time
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Figure 9.4 Example bivariate sensitivity analysis of the trout IBM. The average
adult (a) and juvenile (b) abundance of adult trout were predicted for
48 combinations of stream turbidity and food availability. These graphs
show that simulated trout abundance is highly sensitive to turbidity,
and especially to the combination of elevated turbidity and decreased
food availability. In contrast to the three-treatment statistical analy-
sis of the same issue (Figure 9.2), the sensitivity analysis shows that
turbidity increases of greater than 20 units cause sharp decreases in
abundance. In fact, juvenile abundance drops to zero at turbidities
elevated by 25 units or more because adults cannot accumulate enough
energy to reproduce. This sensitivity analysis shows that one conclu-
sion that could be drawn from Figure 9.2—that elevated turbidity has
insignificant effects on trout abundance unless accompanied by a sub-
stantial decrease in food availability—is clearly not robust.

series. These methods require a computer algorithm to determine how well
each version (typically, a set of parameter values) of an IBM fits patterns
observed in the real system. When the observed patterns are actually field
data (e.g., census time series), comparing IBM results to observed patterns
can require statistical methods because there is uncertainty in the observed
patterns as well as stochasticity in IBM results. To determine whether re-
sults for a version of the IBM do or do not match the observed pattern—or
to quantify how well the pattern is matched—we need statistical analysis
that considers the uncertainties.
Several general approaches to statistical comparison of results to patterns

are possible. Uncertainty can be ignored by simply comparing the mean
of several replicate IBM runs to the observed pattern (as in the analysis of
a bear IBM by Wiegand et al. 1998; 2003). Stochasticity in IBM results
can be considered by evaluating the range of results produced by replicate
simulations; a model version could, for example, be determined to “match”



g-r May 17, 2004

ANALYZING INDIVIDUAL-BASED MODELS 317

an observed pattern if the data defining the observed pattern fall within this
range of results. In addition, statistical methods such as bootstrapping can
be used to estimate the uncertainty in the observed data that constitute the
pattern. Then IBM results can be determined to match the pattern if the
results fall within confidence intervals around the observed data.

9.5.5 Inferring Causality?

A paradox of statistical analysis is that methods very useful for quantifying
relationships also tempt us to infer the cause of the relationship when we
should not (Huff 1954). With field data, statistical relationships may seem
like the only clues we have to explain the cause of observed events. However,
even in field studies statistical relationships by themselves are usually not
the best information for determining causality; Suter (1996), for example,
instead advocates a “weight of evidence” approach. This is just the approach
suited for analysis of IBMs. When we find relationships between inputs and
outputs of an IBM, we should not simply assume that the input caused the
output response. Instead, we get busy with our detective work, designing
simulation experiments to provide strong evidence for what processes gave
rise to the relationship.

9.6 SENSITIVITY AND UNCERTAINTY ANALYSIS

Sensitivity analysis (SA) and uncertainty analysis (UA) are special kinds of
simulation experiments designed to analyze a model in standard, rigorous
ways. These analyses use many model runs to examine how results vary
as inputs—often, parameter values—are varied. Formalized SA and UA
are widely used in simulation modeling (examples in ecology include Bartell
et al. 1986, Drechsler 1998, Rose et al. 1991), and techniques for it are
covered extensively in the simulation literature (e.g., Vose 2000; Gentle 2003;
Saltelli et al. 2004). A comprehensive SA and UA, examining all parameters,
is often considered a thorough analysis for simple ecological models; these
techniques can be valuable for analyzing IBMs as well, but their practicality
and sufficiency can be limited.
SA has the objective of evaluating, in a comprehensive and quantitative

way, how a particular output of a model responds to variation in selected
parameters or inputs. SA can be useful for analyzing and understanding
both a model and the system represented by a model. In analyzing a model,
SA provides information on what parameters or inputs are most important
for calibration, validation, and revision; and also on what parts of the model
might be removed because they have little effect. For analyzing the system
represented by a model, SA can predict what kinds of change (perhaps via
management or natural disturbance) the system is more or less sensitive
to. Drechsler (1998) and Rose (1989) provides guidance for SA of complex
ecological models.
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Uncertainty analysis (UA) estimates how likely certain model outcomes
are. Probability distributions are specified by the modeler for selected model
inputs that have particularly important or uncertain values. Then a value
is drawn (either randomly or systematically) from the distribution for each
input and the resulting simulation executed; this process is repeated until
the relative probability of different model results can be estimated.
Both UA and SA require the modeler to make a number of assumptions.

For many IBMs it is infeasible to analyze sensitivity or uncertainty for all
parameters and input data, so the modeler must decide which to include. For
UA, the modeler must also specify probability distributions for the selected
inputs, a task that requires a great deal of analysis or judgement by itself. In
SA, the modeler must decide whether to examine sensitivity over very limited
ranges (which allow linear modeling of sensitivities) or over very wide ranges
(which provides a more comprehensive picture of model response).
SA and UA have not yet been widely applied to IBMs; among the examples

are Jaworska et al. (1997), Huth et al. (1998), Sutton et al. (2000), and Pitt
et al. (2003; Section 6.3.3). Perhaps these techniques have been used rarely
because individual-based modeling offers plenty of other challenges, but also
perhaps because the techniques provide a limited view of a complex model.
Although SA and UA can help us understand an IBM, they are a reversion
to “black box” modeling: we look at what goes in and comes out without
trying to understand what is going on inside the IBM. In deciding how to
use SA and UA, we must make a difficult tradeoff: should we use traditional
SA and UA techniques to examine the effect of many different inputs on only
one or two outputs? (And which outputs should they be?) Or should we use
other techniques discussed in this chapter to develop a more comprehensive
understanding of how only a few inputs affect the whole IBM?
Our advice is to consider SA and UA as potentially powerful tools that

deserve consideration when planning the analysis of an IBM, especially for
IBMs that are simple enough that most or all parameters and inputs can be
examined. These kinds of analysis are especially important for models used
to support management decisions, because they help managers decide how
much confidence to have in predictions. Even for more complex IBMs, SA or
UA can help identify parts that deserve more or less analysis. However, for
several reasons SA and UA will not be sufficient by themselves for analyzing
many IBMs. First, a comprehensive analysis of all parameters or inputs
is computationally infeasible for complex IBMs. Second, these techniques
do not address the primary reason we use IBMS: to understand how system
dynamics arise from individual traits. Finally, the same kinds of analysis can
be included in the more comprehensive framework of robustness analysis,
which we discuss next.
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9.7 ROBUSTNESS ANALYSIS

The term ‘robustness analysis’ is used in different ways in many fields; here
we use it to describe a general strategy of analyzing how robust the outcomes
of an IBM are to changes in inputs or assumptions. Conceptually, robustness
analysis (RA) is just the inverse of SA, but we discuss RA separately because
analyzing and communicating the robustness of a model is more strategic and
less of a “black box” approach than traditional SA. The power of terminology
must not be underestimated: sensitivity is usually a negative property of
a model—we usually hope to prove that sensitivity is low—and analyzing
negative properties is not much fun. Robustness, however, is a positive
property which we like to communicate to others because it enhances the
significance of our model.
Like UA and SA, RA can be used both to understand a model and to

understand the system represented by the model. When analyzing an IBM’s
behavior, the purpose of RA is to identify model results—and, more impor-
tantly, the mechanisms producing the results—that are so robust to changes
in parameters and model structure that they are likely to be of general sig-
nificance. Then, once we have confidence in an IBM, we can use RA to
predict how robust certain characteristics of the modeled system are to spe-
cific impacts or management practices. Before we discuss ways to do RA,
the following examples illustrate what RA is and why it is used.

9.7.1 Examples

Example 1: Tree-grass Coexistence in Savannas.—Jeltsch et al. (1996; 1997a)
developed a spatially explicit model of semi-arid savannas, with the objec-
tive of understanding the spatio-temporal structure of savannas and to devise
livestock grazing guidelines. Once the first model version was built, analysis
focused on the two main patterns that define savanna ecosystems: the long-
term coexistence of trees and grass, and the wide separation of individual
trees. These two patterns occur in virtually any semi-arid savanna and are
thus robust to changes in biological and environmental factors, including
properties of the species involved. Therefore, the savanna model needs to
reproduce the two patterns in a very robust way.
Jeltsch et al. (1996) showed that the first model version could reproduce

the savanna patterns but only for a very limited range of parameter values.
This lack of robustness indicated that the model did not capture all the
essential mechanisms of savanna dynamics. Exploration with the model
predicted that tree-grass coexistence in savannas requires soil micro-sites
where the probability of tree establishment is high. Subsequent field studies
identified and quantified mechanisms that generate such microsites. When
these processes were added to the model, it reproduced the two savanna
patterns very robustly.

Example 2: Spread of Rabies in Fox.—The IBM describing the wave-like
spread of rabies among red fox (Section 9.4.5; Jeltsch et al. 1997b) has a
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hybrid structure: some elements are very coarse (e.g., rules for what spatial
units have healthy, infected, and infectious foxes), while others are detailed
(the individual-based description of fox dispersal). The model reproduces
the observed wave-like pattern amazingly well, but the robustness problem
was to show that this result was not highly dependent on parameter values.
This problem was important because most parameter values were educated
guesses. Model analysis showed that, indeed, the model’s ability to produce
the wave-like pattern was very robust with respect to parameter values.
This robustness was effectively documented and communicated by a matrix
of figures, each presenting the sensitivity analysis of one parameter and one
specific output variable of the model (Figure 4 in Jeltsch et al. 1997b). The
main features are easy to grasp: the curves in all subfigures have broad
sections parallel to the x-axis indicating that sensitivity of particular model
outputs to changes in particular parameters is low. Clients of the model thus
learn within a few seconds that the wave-like dispersal pattern reproduced
by the model, and therefore other insights gained with the model, are a
robust feature of the structures and processes built into the model.

Example 3: Management of a Fish Population.—This example examines
robustness characteristics of the ecological system being modeled, not of the
IBM itself. Sutton et al. (2000) developed an IBM for the problem of how
to manage stocking of hatchery fish to increase fish growth and survival in a
lake. They used the IBM to identify good stocking strategies, then analyzed
these strategies in the IBM (using Monte Carlo techniques) to determine
how robust each strategy was to natural variation in the physical environ-
ment and in availability of prey. This analysis predicted that one particular
management strategy would be most successful over a wide range of condi-
tions. Similarly, Drechsler (1998) systematically checked the robustness of
the ranking of different management options tested in a PVA model.

9.7.2 The Questions of Robustness Analysis

These quick examples show that RA is more of a general attitude and strat-
egy than a specific technique. How RA is actually done depends on the
details of the IBM and the problem the IBM is designed to solve. In general,
RA can be thought of as attempting to answer the following questions while
analyzing an IBM.

How Robust are the Model Results?—This question just establishes the
goal and attitude of RA, but is critical to think about because the most
important element of RA is simply thinking in terms of robustness. The
word “robust” implies forceful manipulations, whereas the word “sensitivity”
intuitively refers to minute changes: a robust character is able to withstand
extremes, whereas a sensitive character responds strongly even to minor
annoyances.

What Patterns is the Model Supposed to Reproduce?—To analyze robust-
ness, we must clearly define what outcome of the IBM we are analyzing the
robustness of. The outcome of interest is usually a general pattern—perhaps
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a type of adaptive individual behavior, or an observed system behavior as in
the above examples, or even more general and conceptual patterns like sta-
bility properties or diversity. Or the pattern may be a time series of observed
population data, in which case it is important to remember that the observed
data also is uncertain. It might be useful to show, during model validation,
that an IBM can reproduce a specific, precise set of observed data; but it
will probably not be useful to show that the IBM robustly reproduces these
specific data exactly. If there is some way to estimate uncertainty in the
data (how would the data be different with different initial or environmental
conditions—or observation techniques?), then we can analyze how robustly
the IBM predictions fall within the uncertainty bounds of the observations.

How Large is the Parameter Space In Which the Patterns Are Repro-
duced?—Often, the range of parameter values over which the IBM repro-
duces the expected patterns is the most important indicator of robustness.
If this range is small, but the patterns ubiquitous, then the model is likely
to lack (or poorly represent) an important mechanism. On the other hand,
some real patterns may actually be observed under only a small range of
conditions. For example, forests show a pattern of trees dying in strips only
if there is a clear gradient in the system, as on mountain slopes. Thus, in
the model developed by Jeltsch and Wissel (1994; Jeltsch 1992), which re-
produces the strip pattern for a restricted range of parameters, the pattern
has the same level of robustness as in a real forest.
This kind of analysis can often be conducted using techniques similar to

conventional SA: selecting which parameters to analyze and their ranges,
then conducting simulations over these ranges. Some cautions are in order.
Interactions among parameters are likely in IBMs, so examining robustness
to only one parameter at a time is risky. And, of course, in RA we are inter-
ested in broad ranges of inputs, not sensitivity over short ranges. The need
to look at parameter interactions over broad ranges means that many sim-
ulations may be needed for a thorough exploration of the parameter space,
making efficient techniques such as Latin hypercube sampling (McKay et al.
1979; Rose 1989; Gentle 2003) likely to be necessary. However, when the
patterns of interest are qualitative or difficult to quantify (e.g., spatial or
temporal patterns), the results of each simulation require human interpre-
tation. As a practical consequence, the robustness of an IBM’s ability to
reproduce such patterns can often be analyzed only coarsely.
We should not wait until formal analysis of a “finished” model to look

at parameter robustness. An informal evaluation of parameter robustness
can be critical at the very start of model analysis, even still in the “playing
around” phase. If preliminary exploration shows that critical patterns and
behaviors arise only in a very restricted parameter region, we can quickly
start trying to find out what is structurally lacking or wrong.

How Robust is the Ranking of Management Alternatives?—When IBMs
are used to support management decisions, the model outcomes of interest
are often a ranking of decision alternatives. The IBM is used to predict
what would happen if each of several management alternatives are followed,
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and then to identify the “best” alternatives and exclude unacceptable ones.
The robustness question is therefore how robust the ranking of management
alternatives is to uncertainty in model inputs (including parameters) and
assumptions. A general strategy for this problem has been proposed and
explored by Drechsler et al. (2003; see also Drechsler 2000). First, the an-
alyst identifies plausible ranges of input values and assumptions. Second,
the analyst creates scenarios that are each a combination of values for the
different inputs being examined. The scenarios may be generated randomly
or by using more systematic techniques such as Latin hypercube sampling
(McKay et al. 1979; Rose 1989; Gentle 2003). Then, for each input scenario
the model is used to rank the management decision alternatives. These
rankings are then tabulated over all the input scenarios and analyzed to de-
termine whether they were robust with respect to the input scenarios. Were
one or two alternatives almost always best (or acceptable) no matter which
combinations of parameter values or model assumptions were used?
The primary advantage of this ranking approach to robustness analysis

is that it focuses directly on the ultimate use of the model. Intermediate
analyses such as defining the model’s sensitivity to each parameter or input
are not needed, making the approach much more feasible for IBMs with
many uncertain parameters. Instead, the model input scenarios can include
(at least initially) only parameter values at the extremes of their plausible
ranges.

How Robust is the Model to Changes in Structure?—Often we are also
interested in how robust results are to the model’s structure: how does an
IBM’s ability to reproduce expected patterns depend on what entities, vari-
ables, and mechanisms are in the model? Obviously, we can address this
question by contrasting versions of the IBM with alternative structures. Pa-
rameter robustness can also provide important clues to structural robustness:
if the patterns of interest are reproduced over a smaller range of parameters
than we think they should, we then look for structural things that need to
be added (or changed) to make the model more robust. On the other hand,
if the range of successful parameters is very large, we can simplify the model
step by step to find a version that is simpler yet still robust.

How Can the Model’s Robustness be Communicated?—Establishing an
IBM’s credibility is a major goal of RA, so results must be communicated
effectively. For IBMs, RA is especially important to communicate because it
counteracts the widespread belief that IBMs are inherently subject to error
propagation and extreme sensitivity to initial conditions. Documenting and
communicating analysis of structural robustness is also especially important
because this analysis shows that the IBM’s level of complexity is not arbi-
trary but instead carefully limited to what is essential. As with any kind
of analysis, visual presentation of results is often most effective. Of course,
statistical quantification can also be useful for summarizing RA results, but
combining statistics with figures helps clients understand the analyses easily.
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9.7.3 Robustness of Highly Variable and Sensitive Systems

A final topic concerning RA is how it can be used when the system being
modeled is itself nonrobust. Our discussion of RA up to here has assumed
that the system behaviors we analyze are robust, but we do not want to imply
that more robustness is always better. Ecosystems can have behaviors that
are highly sensitive to seemingly small events and may jump from one state
into another with little provocation. Some examples are dramatic abundance
changes in lower trophic levels when top levels are manipulated (e.g., the lake
study of Lammens et al. 2002), forest dynamics driven by fire (Savage et al.
2000), and the Wadden Sea’s tidal flat ecosystem that is highly driven by
environmental and biological events such as winter ice, storms, and episodes
of extreme macrobenthos recruitment (Grimm et al. 1999a). How do we
show that we can model such systems usefully?
The key to RA of such systems is to perceive the high variability and sensi-

tivity as a pattern itself and to characterize this pattern with as much detail
as possible. For example: what are the mean, variance, and extremes of key
state variables in the real system? What does the frequency distribution of
fluctuations look like? Are there factors known to strongly moderate the vari-
ability and sensitivity of the real system? And we should look hard for ob-
served system-level patterns that are consistent and predictable, even if they
are very simple and general. High-level system properties (e.g., measures of
diversity or stability of some system characteristics) may be predictable even
when many system dynamics are not. For example, Savage et al. (2000) used
an IBM to look at how disturbance levels (lightning strike rates) affect forest
dynamics. They analyzed both very sensitive, unpredictable outcomes (e.g.,
developmental pathways; relative abundance of different species) and more
consistent outcomes (e.g., a diversity index; patterns of abundance among
guilds of early- and late-successional stage species). When we find robust
patterns in highly variable systems, models can be analyzed in the same,
pattern-oriented way as more robust systems.

9.8 PARAMETERIZATION

Most models include some parameters with values that are not well known.
These parameter values are then determined indirectly via calibration: tun-
ing the unknown parameters until model output fits some observed data.
Indirect parameterization is routine and easy for models having few param-
eters and simple structures: a quick, often ad hoc, exploration of how model
results respond to the parameters can identify useful values. Because IBMs
often have many parameters, and parameters can have complex and interact-
ing effects on output, this manual calibration approach may be unproductive.
In fact, the potential for “error propagation”, in which the effects of small
changes in parameter values are magnified by the model’s interactions, has
led some to doubt whether IBMs can be parameterized in any meaningful
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way. By now, however, so many IBMs have been analyzed that we can con-
clude that the error propagation concern is rarely justified. In this section we
discuss methods that can be used to indirectly estimate values for uncertain
parameters by comparing model results to observations.
First, we should be aware that manual calibration may work for complex

IBMs. Being structurally rich and having many parameters does not auto-
matically mean that an IBM responds to parameter values in complex ways,
or even that many parameters must be calibrated. The more structurally
realistic an IBM is, the more parameters can be evaluated directly using
many kinds of information (sections 7.5, 9.4.2), so a model with many pa-
rameters may still only have a few that must be estimated indirectly. And
ecological systems have many negative feedbacks—e.g., competition for re-
sources limits population density, energetics limit growth—that can keep a
structurally realistic IBM from being particularly sensitive to parameter val-
ues. The trout IBM described in sections 1.2 and 6.4.2 provides an example.
After—but not before—a successful theory was developed for this IBM’s
key adaptive trait (how trout select their habitat each day), a coarse cali-
bration of growth and abundance to the limited available data turned out to
be surprisingly straightforward (Railsback and Harvey 2002). Four param-
eters were particularly uncertain yet important: the density of two kinds
of food and the risk of two kinds of predation. Each of these parameters
was found to have relatively independent effects on the four major results of
interest: one food parameter affected only juvenile growth while the second
food parameter affected juvenile and adult growth; one predation parameter
affected juvenile survival while the second affected adult survival. There-
fore, observed growth and abundance of both juveniles and adults could be
matched by manually calibrating these four parameters. The coyote IBM
of Pitt et al. (2003; Section 6.3.3) needed no detailed calibration at all to
closely reproduce a number of observed patterns.
However, some IBMs have many uncertain parameters or parameters with

complex, interacting effects on results. These models require more system-
atic techniques for indirect parameterization. In the modeling literature
there are many techniques and software tools for the indirect parameter es-
timation problem. Statistical techniques using Bayesian and maximum like-
lihood techniques (Hilborn and Mangel 1997) are widely used to fit model
parameters; Mooij and DeAngelis (2003) provide an example application
of maximum likelihood techniques to parameterization of an IBM. Other
widely used parameterization approaches use nonlinear optimization to find
parameter values that minimize differences between model results and data.
In addition to computational and conceptual challenges (e.g., gradient-based
optimization techniques not working for discrete and stochastic models),
these techniques are not well-suited for looking simultaneously at a variety
of model outputs at both individual and system levels, which is important for
analyzing IBMs. However, the potential applicability of these conventional
calibration methods to IBMs has not yet been explored; there are almost
certainly many ways they could be applied to IBMs.
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In the remainder of this section we summarize a technique for indirect pa-
rameterization that is particularly well suited to IBMs because it can cope
with complex interactions and stochasticity, and can calibrate parameters
against a variety of observed patterns of different types and at both individ-
ual and population levels. This approach is simply a rigorous application of
the pattern-oriented parameterization process described in Section 3.3 (Step
4). We illustrate this technique with an analysis by Wiegand and co-workers
(Wiegand et al. 1998; 2003; Wiegand et al. unpublished manuscript ; see also
Hanski 1994, 1999), but the technique is similar to a conventional calibration
method called “inverse modeling” or “Monte Carlo filtering” (e.g., Rose et
al. 1991 applied a similar technique to a food web model; Saltelli et al. 2004
provide techniques for Monte Carlo filtering).
The general concept of the inverse modeling technique is to execute many

simulations while varying the value of uncertain parameters over wide ranges,
then to identify the combinations of parameter values that produce accept-
able simulation results by excluding the simulations that fail to pass some
‘filters’. The filters are patterns observed in the ecological system of interest.
Wiegand et al. (unpublished manuscript) used inverse modeling for an IBM
of grassland dynamics, in which the individuals are grass tufts that grow,
shrink, die, compete with each other for resources, and reproduce; with rain-
fall being the primary environmental process affecting the individuals. Their
analysis had several objectives: (1) finding valid values of parameters con-
sidered to be particularly uncertain; (2) examining the IBM’s uncertainties,
sensitivities, and robustness; (3) identifying any opportunities to simplify the
model by removing unimportant processes; and (4) demonstrating a way to
make analysis of IBMs more rigorous and reproducible.
In analyzing the grassland model, Wiegand et al. used the following general

steps. These steps could be followed in analyzing other IBMs for similar
objectives (see also Wiegand et al. 2003; Schadt 2002; Section 6.4.1). The
analysis starts as soon as a complete draft version of the IBM has been
completed and implemented in software, the software tested, and preliminary
analyses (of the type discussed in Section 9.4.3) conducted to identify and
correct any obvious problems with the IBM’s structure.

1. Find values for as many parameters as possible using independent anal-
ysis (Section 9.4.2). Identify the remaining parameters which have
highly uncertain values. In the grassland IBM, there were nine such
uncertain parameters.

2. Identify ranges of potential values for the uncertain parameters (the
minimum and maximum values to be considered). Decide how many
values within the parameter ranges to examine. Wiegand et al. de-
cided to divide each parameter’s range into 21 equal intervals, with the
midpoint of each interval used as a potential parameter value.

3. Create a collection of model parameterizations (each ‘parameterization’
being one set of parameter values for one model run) that represents
the full range of values and combinations of values for the uncertain



g-r May 17, 2004

326 CHAPTER 9

parameters. Wiegand et al. used Latin hypercube sampling to represent
the parameter space with 63,194 parameterizations, far fewer than the
∼1012 possible combinations.

4. Define a set of observed patterns that serve as the ‘filters’ that separate
acceptable from unacceptable parameterizations. This step requires not
only identifying a number of observed patterns that represent different
processes (especially, processes that depend on the uncertain param-
eters) at both individual and system levels, but also defining explicit
criteria for whether a model run does or does not “match” the pattern.
Wiegand et al. used a stability property, persistence, as a primary fil-
ter: parameterizations that caused the grass to die completely were
excluded from further analysis because the real grassland is highly per-
sistent. They identified five more observed patterns to filter the remain-
ing parameterizations. These patterns generally required “reasonable”
values of outputs like growth rate and diversity of tuft sizes, and re-
producing specific events (e.g., a post-drought die-back). The criteria
for matching these patterns were all ‘yes-no’ values: a simulation result
either did or did not match each pattern.

5. Design an environmental scenario representing the conditions under
which the filter patterns were observed. The filter patterns used by
Wiegand et al. were all from one 19-year field data set, so the environ-
mental scenario used input data from the same period.

6. Run simulations for all the model parameterizations, saving not only
the output variables used to evaluate the filter patterns but also output
representing other important model predictions for use in the sensitivity
and uncertainty analyses (Step 8).

7. Identify the parameter combinations that reproduce all the filter pat-
terns. From these combinations, identify—if possible (see the lynx
IBM, Section 6.4.1)—the range of “good” values for each parameter.
A further analysis possible at this point is to analyze the IBM’s param-
eter robustness as we discuss in Section 9.7. Signs of low robustness
include only a few parameterizations passing all the filters, and good
values for any parameter falling within a narrow range.

8. Analyze parameter sensitivity and uncertainty in the simulation output,
using conventional techniques. Wiegand et al. (unpublished manuscript)
calculated Spearman rank correlation coefficients for the combinations
of uncertain parameters and model outputs as an index of sensitivity;
and calculated the standard deviation of outputs as a measure of un-
certainty. These analyses used results only from the parameterizations
that passed the pattern-oriented filter.

9. Finally, analyze structural robustness. In the grassland model, some
of the uncertain parameters had possible values near zero that essen-
tially turn whole processes off. The parameter filtering results were
examined to determine how many successful parameterizations turned
some process off. Such parameterizations indicate that the process was
not essential to reproducing all the patterns and so potentially could



g-r May 17, 2004

ANALYZING INDIVIDUAL-BASED MODELS 327

be eliminated from the IBM. (The sensitivity and robustness analyses
also provide clues about what structural elements of the IBM might be
unnecessary; Section 9.7.2.)

This pattern-oriented inverse modeling technique does have some limi-
tations. As with all systematic and statistical analysis techniques, inverse
modeling requires some arbitrary assumptions that affect its conclusions.
These include choosing the filter patterns and how they are quantitatively
defined, the parameters to treat as uncertain, and the range and number of
values analyzed for each uncertain parameter. The technique cannot find
the “best” parameter value, only ranges of good values. (There may in fact
be no single “best” value for some parameters.) And, of course, the compu-
tational requirements limit the analysis’s precision for particularly large and
complex models.
Other limitations of inverse modeling are more specific to IBMs and pattern-

oriented analysis. First, this technique could be difficult to use with patterns
(e.g., qualitative spatial patterns) that cannot readily be evaluated by a com-
puter. Second, the technique may not always be the best way to use pat-
terns to test a model’s structure. Before this technique is applied blindly,
the pattern-oriented approaches we discuss in Chapters 3 and 4, and above
in Section 9.3, should be given full consideration because they might help
refine the IBM’s structure before parameterization is conducted. Finally,
the various filter patterns must all occur in the same model run, or else
the technique must be modified so that different patterns observed under
different conditions (e.g., plant dynamics in rich vs. poor soils) can be used
together as filters. Nevertheless, inverse modeling using the protocol of Wie-
gand et al. has proven powerful and seems particularly useful when extensive
data sets contain—in a coded form—empirical information about unknown
parameters.

9.9 INDEPENDENT PREDICTIONS

Finally, we address what many consider the “gold standard” in model anal-
ysis: using the model to make independent predictions that are then tested
against field observations. (This step is also often referred to as “val-
idation”.) By “independent”, we mean predictions of patterns or vari-
ables that were not considered in designing and calibrating the model (e.g.,
Rykiel 1996). Using a model to make independent predictions, then find-
ing or collecting data on the real system to test those predictions, can be
the most convincing demonstration that the model captures the system’s
essential characteristics.
Testing an IBM with independent predictions is just another kind of

pattern-oriented analysis—testing the model’s ability to reproduce observed
patterns—except that we use patterns that were not used to design or pa-
rameterize the IBM. Independent predictions can be tested against existing



g-r May 17, 2004

328 CHAPTER 9

data, or used to design new field studies specifically to test the predictions,
or even tested against patterns gleaned from the literature. The models de-
scribed in Section 1.2 were chosen as examples in part because they illustrate
use of independent predictions. The BEFORE beech forest IBM was tested
against field observations of the amount and spatial distribution of coarse
woody debris (Rademacher and Winter 2003), processes not used to develop
and parameterize the model. The trout model was analyzed by its ability to
predict a wide range of population-level patterns, at diverse sites, that were
found in the literature (Railsback et al. 2002).
Analyzing a model by its ability to make successful independent predic-

tions has its limitations. First, while this technique may be very powerful for
validating an IBM, it may also tell us little about the system and problem
we designed the model for. For that reason, we often do not bother with
independent predictions until after the other analyses are completed and
we are thinking about what else the IBM might be useful for. Second, the
precision of the predictions and tests must be compatible with the IBM’s
purpose and design: predictions that are too precise may not be upheld sim-
ply because some processes of the real system were intentionally left out of
the IBM, and predictions that are too general may not be convincing. Fi-
nally, there is always a strong possibility that a model perfectly good for one
system and problem may not be able to make accurate predictions for other
systems, conditions, or problems. The solution to these potential problems
is the same as for pattern-oriented analysis in general: use a wide range of
predictions and observations to make a convincing overall case instead of
focusing too much on comparing one particular type of model output to one
set of observations.

9.10 SUMMARY AND CONCLUSIONS

New modelers often see building a model as their main task, but analyzing
a model is every bit as essential as building it. We might learn things in
the process of building an IBM, but the odds of learning things of general
interest—and convincingly communicating them to others—are low unless
we undertake systematic analysis of the model.
What do we mean by analyzing an IBM? Analyzing a model means doing

research (often, closely following the inductive scientific method of posing
and testing hypotheses) on a model to learn about its behavior and to learn
about the system the model represents. Objectives of this research typically
include verifying that the software does what we want it to (covered in
Chapter 8), finding good model structures and theory for individual traits,
finding good parameter values, and finally solving the problems we designed
the model for in the first place and learning something about ecosystems.
Model analysis requires time and resources, often much more than required

to build the model. Therefore, if time and resources are limited (and they
always are) then a model’s scope and complexity must be sufficiently limited
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to make sure analysis can be completed. But when we start model analysis
as early as possible and integrate it with model development (i.e., make the
modeling cycle really a cycle) we push the modeling process forward and
make it more efficient. Analysis helps us rapidly find the problems that
must be fixed before progress can be made and helps us start learning from
the model as soon as we can.
Several overall strategies make analysis of IBMs more efficient, and some of

these are quite different from strategies used for other kinds of ecology and
even for analyzing other kinds of simulation model. The most important
strategy is to base analysis on carefully designed simulation experiments.
Perhaps the greatest advantage of IBE is that experiments are cheap, easy,
and fast. Instead of feeling constrained to analyzing whatever data first
comes out of our model, we should continually be playing an all-powerful,
omniscient, and often destructive god in the virtual universe we created.
Powerful analysis requires that we are creative, i.e. create organisms, envi-
ronments, and interactions so that we learn, step by step, how the full model
works. To understand our IBM, we should freely re-wind and re-run time,
move mountains, manipulate the physiology and behavior of one individual
or whole populations, and observe anything anywhere. And instead of de-
pending on observed correlations to infer why something occurred, we should
build convincing cases from many different kinds of evidence.
Other analysis strategies cope with the greater complexity and structural

richness of IBMs. These strategies use the pattern-oriented methods we
discuss in Chapter 3 to take advantage of the many kinds of information
available. With IBMs we can use qualitative pattern-oriented analysis to
quickly get a feel for whether the model’s structure captures the essence
of the system and problem we are modeling. A final strategy seems obvi-
ous but is easily neglected: analyze the bottom levels—individuals and their
environment—before trying to understand and test system-level results. Un-
til we develop confidence that the individual traits we put in an IBM produce
the adaptive behaviors we expect them to, there is no benefit to studying
the system behaviors that emerge.
An exciting example of experimental analysis of an IBM is the explo-

ration by Deutschman et al. (1997) of the SORTIE forest model. This
example is especially valuable because the experiments were captured as
“movies” that can be viewed in the on-line version of the paper (currently at
www.sciencemag.org/feature/data/deutschman/). To understand the model
itself and real forest dynamics, Deutschman et al. fearlessly altered major
elements of the model’s structure, traits of individual trees, and forest man-
agement practices; and then looked at how these alterations affected specific
patterns of forest diversity. From the example experiments in this paper
(discussed in Section 11.5.2), it is easy to imagine whole sequences of rig-
orous, hypothesis-based simulation analyses delving deeply into a variety of
model dynamics and forest management issues.
Model analysis is what turns modeling into a cycle, telling us if, and how,

a model needs to be changed before we can use it to solve problems. When



g-r May 17, 2004

330 CHAPTER 9

analysis tells us our model is ready to use, we then do more analysis to
learn about the system and problem we modeled. Then we are ready to
move on to the final phase required to do science: communicating what
we learned to our fellow scientists. Model analysis and communication are
closely linked. Convincing other to accept the results of our IBM-based
research requires communicating the analyses we did to demonstrate the
model’s validity and the robustness of our results. This final communication
phase of the modeling cycle is what we address next.
But before proceeding, we offer a final caveat about analyzing IBMs. If

we do analysis well we will gain some understanding of how the model works
and why, and under which conditions the model reproduces certain patterns
observed in real systems. All this analysis takes a great deal of effort and
creative thinking, and can indeed be a major scientific achievement. How-
ever, we must never forget that we are experimenting with a model, not the
real world. We understand the model, and we have some evidence that the
model captures essential features of its real counterpart, so indeed we learn—
indirectly—something about the real world. But the real system may still
work differently from the model system because it includes mechanisms and
structures we neglected in our model. It is natural for all scientists to fall in
love with their models over time and treat them as reality (Crick 1988). But
the insights we gain about the real world with an IBM are always indirect
and should always be open to falsification by new observations. We must
see our modeling effort as part of a larger cycle of science, with field stud-
ies to test whatever we think we learned via modeling. The strongest case
we can make, in demonstrating a model’s validity and its value to science,
is showing that the model helps devise new, independent predictions which
are then tested and upheld by new observations and experiments in the real
world.
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Communicating Individual-based Models and

Research

Some [papers] contain model descriptions so incomplete or vague
that independent checking of the results is impossible. Occasion-
ally this obfuscation seems deliberate.

Diane Beres, Colin Clark, Gordon Swartzman, and Anthony Starfield,
2001

10.1 INTRODUCTION

As we progress through the cycle of building and analyzing an IBM, we
finally feel like we have learned important things that need to be communi-
cated to the “clients” of our research: the scientific community, our sponsors,
the agencies that manage the ecosystems we study, etc. Along the way we
discover many differences between IBE and traditional ecology—we often
address different problems, use a different kind of theory and a different
conceptual framework, and use many kinds of information in our IBMs in-
stead of relying only on classical models or field studies. Now it is time to
look at one last difference: IBE often poses unique challenges to scientific
communication.
Communication—especially, incomplete model description—has always been

a concern with IBMs. For many IBMs the only complete description has
been the computer program (Lorek and Sonnenschein 1999; Ford 2000), but
computer programs are a very poor means of communication: they are too
long, often camouflage important concepts in complex detail, and are in lan-
guages foreign to most readers. Papers were published with only a verbal or
graphical metadescription of the IBM (Ford 2000). But clients know that
such metadescriptions are incomplete so they are left wondering whether the
reported results could really be reproduced. Ideally, an IBM is so interesting
that it “hooks” readers and makes them want to apply it themselves to new
questions. How can we convince our clients that an IBM is trustworthy and
even suitable for them to use themselves? Or will IBMs always be considered
too complex to be reproducible or reusable?
Communication is thus an important challenge that needs to be considered

throughout an IBE project. This chapter presents some of the issues that
scientists have encountered in publishing early work with IBMs (and with
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agent-based models in other fields). Being aware of these issues should help
scientists navigate the communication process by preparing for the obstacles
likely to be encountered. This chapter may also help reviewers and editors of
IBE work understand ways in which IBE is different and ways to accommo-
date those differences. While its main focus is on journal publication, this
chapter is also intended to apply to such other forms of scientific communi-
cation as proposals, presentations, reports, and web sites. First we set the
stage by identifying four types of IBE work that are likely to be published.
Then we address what historically has been the biggest communication chal-
lenge: describing an IBM with adequate completeness within the constraints
imposed by most outlets. Next we discuss several reviewer concerns that are
particularly common with IBM-based publications. Finally, we address the
very important links between software implementation and communication:
ways to communicate executable models and other software aspects of our
IBE work.

10.2 TYPES OF IBE WORK TO COMMUNICATE

Over the life of an IBE project, four general kinds of work are likely to be
worth communicating to other scientists via presentations and publications.

Model descriptions.—Publications that simply describe a model’s formula-
tion (Chapter 7) can be useful for two purposes. First, they make innovative
modeling approaches available for others to evaluate and use. Second, pub-
lishing a model description by itself facilitates later publications focussed
on model applications (Section 10.3). If a model description is sufficiently
innovative or interesting, it may be publishable in a modeling journal such
as Ecological Modelling or Natural Resource Modeling. An alternative is to
publish the model description in a “grey literature” report that meets the
requirements for being cited in journal articles. Journals typically allow re-
ports to be cited only if it is reasonable to expect that future readers will
be able to find the report; many research institutions have report series
that meet this requirement. Such reports can avoid the length limits and
some of the hassles of journal publication. Another alternative, increasingly
available, is documenting the IBM in a digital appendix to a model applica-
tion or analysis paper (discussed below) published in a journal that accepts
extensive digital appendices. Among journals currently accepting digital
appendices are those of the Ecological Society of America and most on-line
journals such as Conservation Ecology. Finally, making model descriptions
available on a web site can be convenient for both author and reader, an
approach that may be suitable to supplement technical reports or confer-
ence presentations. However, web sites are generally not citable in journal
publications.

Management applications.—This kind of work describes how a model was
applied to an ecological management problem. Typically, a model appli-
cation publication describes (1) the parts of the model that are especially
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important to the application, (2) the management problem, (3) how the
model was applied, and (4) results of the applied analysis. Model applica-
tions are often presented in technical reports, conference presentations, or in
ecological management journals (e.g., Biological Conservation, Conservation
Biology, Conservation Ecology, Ecological Applications, Journal of Applied
Ecology).

Modeling and research method discussions.—Publications that analyze
methodological issues in designing and using IBMs can be very valuable,
especially because IBE is so new and undeveloped. Appropriate forums for
this kind of communication include ecological and modeling conferences and
journals. Making computer techniques and software available to others can
be among a project’s most important contributions to ecology (Section 10.6).

Model-based analyses.—This category includes ecological research that
uses IBMs as a tool. Examples are development of IBE theory and explain-
ing how population dynamics emerge from individual traits and interactions.
Research of this type should be communicated through the same outlets as
other basic research: ecological conferences and journals.

10.3 COMPLETE AND EFFICIENT MODEL DESCRIPTION

Probably the most common and difficult problem in communicating IBE is
providing an adequate description of the IBM without exceeding a journal’s
page limit, the time available for a conference presentation, or the patience
of readers and listeners. Many reviewers and readers understand that a
complete model description is necessary because the results of an IBM can
depend on any of its assumptions. A common criticism of IBMs has been that
they are not truly reproducible unless described in complete detail, which
they rarely are in publications. But it is rarely feasible to fully describe an
IBM within a journal article or conference presentation, especially when the
focus of the article or presentation is on an application of the model. It is
quite common for reviewers to say both that (1) they lack confidence in an
article’s conclusions because some key parts of the IBM were not described
in sufficient detail, and (2) the description that was provided was too lengthy
and boring.
Often the only way to deal with the model description dilemma is to

publish a detailed description of the IBM separately, then cite this descrip-
tion in subsequent work. When available, the alternative of publishing the
model description as a digital appendix to an article has the advantages of
making it as easy as possible for readers to obtain the description. Even
when a complete description of an IBM is published separately, a journal
article still usually must summarize the parts of the IBM most relevant to
the current work—typical readers want to know that they could read a full
description of a model, but few want to actually read the description (just as
most readers of equation-based models are happy to know that they could,
in principle, solve the equations themselves, but do not). Every communi-
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cation describing research based on an IBM will need to include at least a
succinct description of model elements most relevant to the research.
One reason why describing an IBM can be painful to readers is a specific

problem we can do something about: there is no standard format for de-
scribing IBMs. A standard format makes reading and understanding easy
because readers are guided by their expectations. In their valuable article
on scientific writing, Gopen and Swan (1990) explain how understanding is
facilitated when writers take readers’ expectations into account: readers are
better able to absorb information if it is provided in a familiar, meaningful
structure. When ecologists read a paper describing a traditional model, they
expect to see several equations and definitions of the variables, then a table
of parameter values. But when ecologists—especially the majority who have
never built an IBM—start reading an IBM-based paper they start without
such expectations of a familiar structure.
What is a meaningful structure of information for describing an IBM? It

would be frustrating to read a detailed description of a model before first
knowing its purpose; readers would have no idea why some things are in
the model while others are ignored. Likewise, readers need to know what
types of entity (e.g., individuals, habitat units) are in the model and what
state variables characterize these entities before they can understand details
of the model’s processes. Instead, a structure that promotes understanding
starts with fundamental information and builds into detail. Therefore, we
can help readers understand our IBMs efficiently by always using a familiar,
meaningful structure: a standard protocol that provides the information
readers need in an order that allows them to easily build understanding.
We propose the following seven elements as a standard protocol for de-

scribing IBMs. To promote its use we call it the PSPC+3 protocol (after the
initials of the four most important elements—purpose, structure, processes,
concepts—and “+3” as a reminder that the protocol consists of three further
elements). This protocol is very similar to the contents we recommend for
an IBM’s written formulation (Section 7.1), so a formulation document fol-
lowing those recommendations conforms to the PSPC+3 protocol. (It is also
similar to the model description elements of the “Protocol for Model Dis-
closures” proposed by Beres et al. 2001.) However, the protocol is designed
primarily with journal publication in mind.

1. Purpose. What problems is the IBM designed to address? This ques-
tion may be particularly important if the IBM was originally designed
for problems other than the topic of the current publication.

2. Structure. What kinds of entity (habitat units, individuals, etc.) are
represented in the IBM? What state variables represent these enti-
ties? What environmental variables (e.g., weather, habitat, distur-
bance, management) drive the modeled system? What temporal and
spatial scales—extent and resolution—are used?

3. Processes. What environmental and individual processes (e.g., food
production, feeding, growth, mortality, reproduction, disturbance events,



g-r May 17, 2004

COMMUNICATING INDIVIDUAL-BASED MODELS AND RESEARCH 335

management, etc.) are included? Which state variables do they affect?
At this stage, a verbal, conceptual description of the processes and
their affect is sufficient; the main purpose of this element is to give a
concise overview. Details of the submodels describing the processes are
presented in element (7).

4. Concepts. These are the relevant items from the checklist of Section
5.11. What essential system dynamics emerge from individual behav-
iors? What traits model those behaviors? How do individuals interact
with, and what information do they have about, each other and their
environment? How are any collectives represented? How is time mod-
eled, and how are concurrent events scheduled? How are data collected
from the IBM for testing, understanding, and analyzing it?

5. Initialization. How are the model’s entities created at the start of a
simulation?

6. Input. What input data are used to represent environmental conditions
over space and time, or as other inputs? How were data obtained?

7. Submodels. How is each process in the IBM modeled? What specific
assumptions, equations, rules, and parameter values were chosen, and
why? How were submodels tested and calibrated?

Elements (1)-(4) provide the basic information readers need to quickly
grasp the IBM’s structure and processes and its nature as a system of adap-
tive individuals. Elements (5)-(7) provide the detailed information needed
for complete understanding and reproducibility.
The PSPC+3 protocol can be followed in any kind of communication

or publication, but the focus and level of detail of each element must of
course be customized. For a document intended as a complete description
of an IBM, then of course all elements deserve equal and full attention. For
journal publication of research that used the IBM, then the protocol must
be focused only on the most relevant parts of the model’s design; complete
details and even the less relevant major assumptions will need to be relegated
to an appendix or separate document.
Following the PSPC+3 protocol—explicitly addressing each of its seven

elements—routinely will give readers the familiar context they need to under-
stand IBMs (and other bottom-up simulation models) with more efficiency
and less pain. Using the protocol is one more step we can take to alleviate
the concern that IBMs are too complicated to be useful for science.

10.4 COMMON REVIEW COMMENTS

Reviewers of model-based publications express similar concerns many times:
is the model described completely and accurately, was the software tested
thoroughly enough, how sensitive are results to assumptions and parameter
values, how well do results match observations? Experienced modelers an-
ticipate these comments, and in fact much of this book deals with common
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concerns like these. However, several additional concerns are commonly ex-
pressed by reviewers of papers based on IBMs, in the recent experience of
our colleagues and ourselves. At least until IBE becomes more established,
authors can anticipate the following three types of review comment.

10.4.1 Comparison of IBM Results to Classical Model Results

A remarkably common comment by reviewers and editors has been that
results from an IBM should be compared to results from a classical model—
a differential or difference equation model, or sometimes a matrix model.
Reasons for this request include:

• To “validate” the IBM—if both models produce similar results, then
readers may have more confidence in the IBM;

• To illustrate important differences between the two modeling approaches,
perhaps interpreted as weaknesses of the classical model if it produces
very different results; or

• To determine whether an IBM was really needed for the study, or
whether a “simpler” model could have sufficed (even though the clas-
sical models often require assumptions considerably messier than those
of the IBM).

This kind of comparison can certainly be interesting for questions that
can be addressed with both kinds of models. Comparing an IBM to a more
conventional model may also make it more likely a paper gets accepted in
an ecological journal, by providing a link to more familiar approaches.
However, we show in Section 6.6 that many attempts to compare IBMs

and classical models have ultimately been unsatisfactory because the two
kinds of model are so different. For many studies, the comparison would be
meaningless because IBMs are used to address questions that simply cannot
be addressed by classical models; a direct comparison would require simpli-
fying the IBM to the point it could no longer address the questions it was
originally intended for. In other cases, it may be necessary to argue that,
while a comparison of results to those from a classical model is feasible, the
comparison is an inappropriate distraction because the research has com-
pletely different objectives. And it is often not clear what a comparison
between IBM and classical model might “prove”—if results are similar, the
comparison certainly does not prove that both models are “right”; and if
results differ, the comparison does not tell us which (if either) of the two
approaches is better.
Finally, it is important to remember that IBMs can be tested against

the behavior of real organisms and ecosystems in many ways. We hope
that authors of IBE publications can successfully argue that they found it
more compelling to compare results of their IBM to reality than to other
models. As reviewers and editors become more familiar with individual-
based approaches, we expect their focus will rapidly change to comparing
IBM results to reality instead of comparing modeling approaches to each
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other.

10.4.2 Generality and Robustness of Results

A common opinion of simulation models in general, and IBMs in particular,
is that model results are so dependent on initial conditions, parameter values,
and site-specific input that they cannot be robust or of general interest. This
opinion may be encouraged by the mistaken beliefs that complex systems are
inherently very sensitive to initial conditions (a characteristic of dynamical
or chaotic systems, but not necessarily of complex systems or IBMs) and that
errors inevitably propagate and multiply. However, these concerns often have
some merit, and concerns about the robustness and generality of simulation
results are always legitimate. It is generally wise to anticipate these concerns.
The primary way to deal with this issue is to design studies so that they

address specific hypotheses (or patterns) in a way that produces information
about the robustness and generality of conclusions. These study design
issues are the focus of chapters 3 and 4. Journal editors have told us that
papers following a conventional hypothesis-testing format—building a case
that a particular IBE theory or result explains some particular observations
better than alternatives—are much more likely to be accepted and published,
especially in ecological journals instead of modeling journals.
The second way to address concerns about generality of results is to use

the robustness analysis methods presented in Section 9.7. Papers that take
simulation uncertainties, sensitivities, and robustness into consideration are
more likely to be accepted as making valid, general contributions. Robust-
ness or sensitivity analyses are also widely considered essential for accep-
tance of ecological management recommendations based on models (Bart
1995; Beres et al. 2001).

10.4.3 Readability

Making IBM-based publications concise and readable seems to be a chal-
lenge often noted by reviewers. Such papers tend to be innovative in many
ways so authors can be tempted to describe all the exciting new things about
their work. A more serious problem, though, is that IBE typically involves
more research steps than other kinds of ecology. For example, if a team
of ecologists has worked its way once through our IBE theory development
cycle (Chapter 4), a thorough communication of their work would need to
describe (1) the alternative theories posed as models for an individual trait
that contributes to population-level phenomena, and how these theories were
developed or identified; (2) the patterns of observed behavior used to test
the theories, and the field data or literature that document the patterns;
(3) the IBM used to implement and test the theories; (4) how simulation ex-
periments were designed to test the IBM’s ability to reproduce each pattern;
(5) results of the simulation experiments for each pattern and each theory;
and (6) the overall conclusions drawn from the simulation experiments. A
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single paper describing this work is likely to be long and complicated.
We can offer only common-sense suggestions for keeping IBE-based pub-

lications concise and readable. (1) Keep the paper tightly focused on its
specific objectives. (2) Do not attempt to fully describe the IBM in the pa-
per that describes experiments using it; instead, only summarize the IBM’s
most relevant parts and publish a full description elsewhere. (3) The stan-
dard Introduction-Methods-Results-Conclusions organization has the advan-
tage of familiarity, but it often is clumsy for IBE. An alternative organization
for the previous paragraph’s example publication might include an introduc-
tion, a short section describing the general analysis approach, a summary
description of the IBM, multiple sections that each contain the methods and
results for one of the pattern-oriented simulation experiments, and finally a
summary and conclusions section. (4) Try even harder than usual to make
the text clear, well-organized, and well-written.

10.5 VISUAL COMMUNICATION OF EXECUTABLEMODELS

A complete and unambiguous written description of an IBM is essential
for making the research based on the IBM reproducible, but it does not
make the research easily reproduced. The effort required to develop software
and input for an IBM usually discourages anyone from actually reproducing
IBE experiments from scratch. The same is true of any kind of science
requiring an elaborate apparatus. However, simulation research has a unique
advantage: once we have assembled and tested our apparatus we can easily
copy it and send it to others to use. We can provide clients with our IBM,
along with its documentation, and input files, so they can run the model
themselves. If they are very sceptical, they simply might want to see if the
model really produces the results we reported; or they might want to perform
their own experiments, perhaps to test the robustness of model results for
themselves, to better understand results by looking at additional outputs,
or to address new questions. Instead of forcing clients to either accept our
results on faith or re-build the IBM from scratch, we can let them test the
IBM as much as they want and to reproduce the simulation experiments, not
the simulator.
Equipping an IBM’s software with graphical user interfaces (GUIs; Section

8.6.5) makes it especially easy for others to run, understand, and experiment
with the IBM. GUIs facilitate what Grimm (2002) called “visual debugging”,
which includes many elements of communication. The benefits of making
an easily used, easily observed version of an IBM available to clients can
be dramatic. In our experience, graphic controls and displays can magically
transform an IBM from a black box into something that even modeling scep-
tics such as field ecologists can understand, evaluate, and develop interest
and belief in. Even our more model-savvy colleagues take more interest be-
cause the IBM seems more understandable and testable, and therefore more
useful for new experiments.
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Tools for visually communicating the computer-executable version of an
IBM include (Grimm 2002):

Graphical representations of state variables.—The goal is to make state
variables of all hierarchical levels of the model—usually, individuals and
population—easily observable. However, the gap between these two levels
often is so large that their mutual relationship is hard to illustrate. The
trick is finding intermediate state variables: individual-level state variables
aggregated to an intermediate level so that emergent system-level properties
are more easily observed and understood. Distributions of key individual
variables (size, age, etc.) provide such intermediate-level information, as do
summary statistics (e.g., mean, maximum, and minimum size) broken out
by categories of individual: age, sex, etc. During model development and
analysis, modelers can try displaying different intermediate state variables
to see which provide the best understanding of the system.

Input screens for changing model and control parameters.—Graphical screens
can let observers see and change parameter values, not only for equation co-
efficients but also for parameters that control execution. To keep clients
from feeling that parts of the IBM are hidden, all parameters should be
accessible—even those never changed during model analysis. It should be
possible to change any parameter at any time.

Input screens to select model versions.—Model analyses typically use sev-
eral different versions of an IBM—for example, implementing alternative
traits for a particular individual behavior. These different versions need to
be easily available so others can reproduce the experiments.

Input screens to manipulate low-level state variables and processes.—The
ability to select specific individuals (or other entities such as habitat cells)
and observe or manipulate their state variables during a simulation allows
users to perform powerful controlled experiments. Similarly powerful are
tools allowing users to execute specific low-level model processes, such as
telling one individual to execute one of its behaviors.

Control of random processes.—Conducting controlled experiments on an
IBM sometimes requires the ability to control the series of pseudo-random
numbers used to model stochastic processes; usually this is done by control-
ling how random number generators are used (Section 8.7.3). Sometimes
it is possible and helpful to have a version of an IBM in which stochastic
processes are replaced by deterministic equivalents.

Trace mode.—Individual model actions are controlled and executed step
by step by the user. Ideally, the user can manually execute a full time step
or even a single schedule action.

File output of raw data.—Graphical observation cannot provide complete
understanding of an IBM by itself. Clients will want to analyze the model
using other variables and analyses than the graphical outputs. Therefore, it
must be possible to write selected variables to output files.
To an ecologist, providing all these visual communication tools may seem

like an enormous software task. However, software platforms for agent-based
simulation (Section 8.4) were designed to support just this kind of commu-
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nication and can provide most of these capabilities with little additional
programming effort.
Even when we choose not to provide an executable version of an IBM

to clients, we can obtain some benefits of visual communication by mak-
ing “movies” of key model runs available (e.g., the digital appendices of
Deutschman et al. 1997; and Railsback and Harvey 2002). Screen graphics
from a model run can be captured as animation (e.g., .GIF) or movie (.AVI)
files—some software platforms provide this ability; screen capture programs
such as SnagIt can also be used. While movies do not allow clients to run
and test an IBM, the ability to “see” a simulation they provide can increase
interest and belief in a model.

10.6 COMMUNICATING SOFTWARE

The greater importance of software to IBE often extends even to commu-
nication. Here we briefly mention several kinds of software communication
that researchers may need, or choose, to conduct; these are discussed more
fully in Chapter 8.
First, it may be necessary or desirable to publish an IBM’s software—

usually, the source code that prescribes (in a programming language that
both people and computers can interpret) exactly how a model is imple-
mented; but sometimes also the executable code that allows others to run
the model (Section 10.5). Usually the only practical way to make an IBM’s
software available in conjunction with a publication is via the web, using
either the authors’ own site or a journal’s site for digital appendices.
Second, it is often beneficial to provide documentation of software testing

to reviewers and readers. Especially as ecologists become more savvy about
the software aspects of IBE, we anticipate greater need to provide evidence
that a model’s software has been tested thoroughly. Such evidence can
include very large files containing many thousands of test cases. As with
model code, the most practical way to make these files available is via a web
site.
Finally, practitioners of IBE can contribute to the science by publishing

new software methods and codes that others can use. Many projects will
produce new software techniques and re-usable code (especially, classes and
libraries of object-oriented code) that could benefits other modelers. These
benefits are especially likely for models implemented in one of the software
platforms specifically designed to support individual-based and agent-based
simulation (Section 8.4.3). Software conferences are important opportuni-
ties to both share and acquire useful software: some agent-based simulation
platforms have regular users conferences and there are general conferences
on software for agent- and individual-based modeling.
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10.7 SUMMARY AND CONCLUSIONS

For a new scientific approach like IBE, it is especially important and fun
to publish methods, theory, and applications. However, there are special
challenges to communicating IBE, some also due to the newness of IBE:
editors and reviewers are often interested in comparisons to classical ap-
proaches even if such comparisons are not appropriate; and (an issue not
discussed above) it can be difficult to find qualified reviewers. Other funda-
mental characteristics of IBE will always pose publication challenges. The
tendency of models, software, and the entire research process to be more
complex makes it difficult to communicate IBE thoroughly while still be-
ing concise and readable. Research using IBMs often combines aspects of
both modeling and field studies: after an IBM is developed, we conduct ex-
periments on it, collecting and analyzing observations of model individuals.
This combination makes it difficult to use the traditional communication
formats that readers are most comfortable with. And IBE is fundamentally
interdisciplinary: in the same publication, we may need to address issues of
a particular species’ autecology and population ecology, complex adaptive
systems, and software engineering.
IBE projects (and, especially, dissertation projects) are likely to benefit

from a scientific communication strategy that is implemented as progress is
made. A communication strategy could include the following tasks.

Maintain a project web site.—Many people now turn to the web for infor-
mation before they even visit the library. A web site has many advantages,
even for individual research projects: no other communication technique
makes it so easy to reach so many people with so much information. Web
sites are especially valuable for communicating informal, preliminary, or sup-
plemental information: publications that have been submitted but not yet
accepted, presentations, study site descriptions and photos, animations and
other graphics that illustrate simulations, and complete descriptions of the
IBM, its software, and the tests conducted to verify software quality.
Routinely updating its web site helps make your project appear active,

productive, and important. You can draw attention to your site by estab-
lishing links from the popular web sites that contain links to individual-based
modeling sites. (A bit of web searching will find these sites; current examples
are maintained by Craig Reynolds and the Swarm Development Group.)

Anticipate reviewer concerns.—Think about the issues discussed in Section
10.4 as you design your research and publications.

Publish a model description.—Publishing a document containing only a
complete description of your IBM helps keep subsequent, more important,
publications concise and readable. Section 7.1 lists important reasons to
maintain a thorough written description of an IBM, and one additional
reason is so this document can easily be turned into a model description
publication.

Make software and documentation available.—Chapter 8 addresses the im-
portance of software design and quality for the success of an IBE project.
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Communicating your efforts on the software front is an important way to
enhance your project’s credibility. Among the materials that you may want
to make available are the IBM’s source code, its executable code (preferably
equipped with GUIs), input files, software documentation, and documen-
tation of your tests of the software. Typically, the only practical way to
make such materials available is by posting them on your own web site or
by publishing them as digital appendices to a journal article. An alternative
to posting such materials where they can be freely downloaded is to post an
announcement that you will provide the materials upon request.

Publish modeling analyses.—This step is usually the ultimate communi-
cation goal of a research project: publishing the theoretical or applied anal-
yses that the project and IBM were designed for. The previous elements of
the publication strategy should make success at this step more likely. Even
within this step, you can follow a strategic approach by first publishing anal-
yses that test and validate the model and the theory it is based upon, and
then publishing applications of the model to basic or applied problems.

Communicate software products.—If your project produces useful software
or computational techniques, you can promote ecological science (and your-
self) by making these products available to others. Active publication of
software products is especially important for interdisciplinary projects that
include computer professionals: your project will be more likely to attract
talented computer scientists and software engineers if it provides them with
publication opportunities.
Naturally, we expect communication issues to change as IBE becomes

better established and as technology continues to change. How? First, it
seems reasonable to expect that as IBE becomes more commonplace there
will be less need for us to justify the approach and less expectation that
results from IBMs need to be compared to results from classical models to
be interesting or valid.
Perhaps the greatest change we anticipate should result (we hope, very

much!) from ecologists cooperating to establish and improve common for-
mats for describing IBMs. One common format is the PSPC+3 model de-
scription protocol we propose in this chapter: its widespread use will make
it easier to write—and read—descriptions that successfully communicate es-
sential characteristics of an IBM.
In the longer term, even greater advantages will result from use of common

software platforms for IBMs. Currently, other kinds of ecological model can
be succinctly described and executed in specialized software: matrix models
(in RAMAS software), mass flow models (in EcoPath), and simple IBMs
(in NetLogo or EcoBeaker). For IBMs, platforms like Swarm (Section 8.4.3)
already provide “shorthand” that makes it easier to describe models and
translate the description into working software. As we continue to improve
and adopt these platforms, we will approach the goal laid out in Section 8.1:
a common, concise language for describing IBMs in a way that we ecologists
can easily understand and that can be translated directly into the IBM’s
computer code.
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Finally, we anticipate that the trend toward digital communication will
continue to alleviate some challenges. Digital journals and digital appen-
dices to journal articles will make it easier to support our IBE research by
providing readers with complete model descriptions, software and evidence
of software testing, and graphical displays of simulation runs. Another form
of digital communication not yet exploited well by ecologists is on-line fo-
rums and “homes” for technologies such as IBMs. We hope that soon there
will be a small number of email lists and web sites where ecologists using
IBMs can go for information on theory and techniques, and where they can
share their results and methods with each other.
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Chapter Eleven

Using Analytical Models in Individual-based Ecology

A computer program is essentially a chunk of automated math-
ematics, and consequently many of the goals and methods of
computational modeling are shared with traditional mathemati-
cal modeling. The fundamental goal of both is to elucidate mech-
anisms and to make predictions.

Richard K. Belew, Melanie Mitchell, and David H. Ackley, 1996

11.1 INTRODUCTION

This book is about individual-based modeling and how it can be used, within
the framework of individual-based ecology, to address ecological problems.
Of course, other modeling approaches are widely used in ecology. In particu-
lar, analytical models that use mathematical formulations are the backbone
of classical ecology. Individual-based and analytical approaches are both
important tools for ecology, each designed for specific purposes and each
having specific strengths and weaknesses. Too often, modelers see alterna-
tive approaches as competing or mutually exclusive and get caught up in
unproductive debates over which approach is right or wrong. Instead, in
this chapter we explore the question of how individual-based and analytical
modeling approaches can work together. For the ecologist interested in rela-
tions between individuals and populations, are there advantages to thinking
about and using analytical models?
Individual-based modeling uses computer simulation, which in principle

imposes no limits on the complexity of ecological situations than can be de-
scribed. However, we have seen in this book how even well-designed IBMs
require considerable effort to implement, verify, analyze, understand, and
communicate. Analytical models, on the other hand, are based on mathe-
matics, mainly on ordinary and partial differential equations. The require-
ment of analytical tractability imposes a strong limitation on the complexity
of ecological situations that can be analyzed. In particular, many problems
concerning the effects of individual variability and adaptive behavior can-
not be addressed effectively with analytical models. Nevertheless, analytical
models have specific strengths which make them important for individual-
based ecologists to keep in mind and even use.
Therefore, in this chapter we summarize the most important benefits of

analytical modeling approaches, how these benefits can be used in IBE, and
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how the approaches are related to each other. We will not provide detail
on the rationale, techniques, and results of analytical approaches because
this information is presented in numerous monographs and textbooks, e.g.
May (1973, 1981b), Hallam and Levin (1986), Yodzis (1989), Wissel (1989),
DeAngelis (1992), Levin (1994), Gurney and Nisbet (1998), Roughgarden
(1998), Caswell (2001), and Murray (2002). Rather, we will show how in
some cases analytical approximations can be distilled from IBMs and how
analytical approaches can help, directly or indirectly, analyze and under-
stand IBMs. These topics are closely related to the subject of Chapter 9,
how to analyze IBMs; but the relation between analytical models and IBE is
important enough that we treat it separately. First, however, it is important
to understand in more detail the different types of existing models and their
specific purposes.

11.2 CLASSIFICATIONS OF ECOLOGICAL MODELS

Ecological models have been classified according to many different criteria.
Some criteria indicate whether a certain factor is included in the model or
not: whether a model is deterministic versus stochastic depends on whether
randomness is included; whether a model is spatially explicit depends on
whether space is included. A more fundmental criterion for distinguishing
models is the purpose they are designed for. In general, there are three
purposes of models: description, understanding, and prediction (Hall and
DeAngelis 1985). Descriptive (including statistical) models describe data in
an aggregated way and therefore allow relationships between variables to
be predicted. Descriptive models do not refer to understanding at all, but
nevertheless can provide important clues for explaining strong relationships.
Models intended for understanding are referred to as “conceptual” (e.g., Wis-
sel 1992a), “heuristic”, or “explanatory” (Hall and DeAngelis 1985). These
models are usually designed neither to describe specific systems nor to de-
liver specific, testable predictions. Finally, models intended for prediction
often try to mimic nature in more detail, leading to so-called “systems mod-
els” (see the discussion of “naive realism” in Chapter 2). Obviously, these
categories are not mutually exclusive: models are often used for more than
one of these purposes.
The distinction between statistical and other models is well-defined be-

cause statistics is a well-defined methodology. Classifying models by whether
their purpose is understanding or prediction is less clear-cut. An important
and widely used classification scheme was proposed by Holling (1966) and
May (1973), who contrast strategic and tactical models. Strategic models try
to ignore details while capturing the essential dynamics of a system (Mur-
doch et al. 1992). Strategic models are believed to provide general insights
because many different systems (e.g., different populations) are believed to
have the same “essence”. In contrast, tactical models focus on the detailed
dynamics of particular systems with the purpose of making specific predic-
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tions, often to address management problems.
The distinction between strategic and tactical models was introduced to

justify simple analytical models, which deliberately ignore detailed empirical
knowledge (see also Levins 1966; Levin 1981; May 1981b; Caswell 1988;
Wissel 1992a). This justification is important for dispelling the myth that
useful models must be “realistic” in the sense of including all known details.
The distinction between strategic and tactical modeling was certainly useful
at the time it was made: in the 1970s, tactical simulation models were not
designed for general understanding and strategic analytical models were not
designed to deliver testable predictions.
Today, however, the borders between strategic and tactical are more porous.

In the 1970s, both simulation models and strategic models were based on
equations. Today, most simulation models in ecology are bottom-up: individ-
ual-based or grid-based. Many bottom-up models are intended, as we show
in this book, to simultaneously provide both understanding and prediction.
Therefore, classifying models as top-down versus bottom-up has become
more useful than trying to distinguish between strategic and tactical mod-
els. Top-down models focus on the system level and are based on highly
aggregated state variables such as ecosystem function, population density,
or number of species. The main design criterion of top-down models is that
they can be formulated with equations.
Roughgarden et al. (1996) proposed a very useful classification of models

into three types. “Minimal models for ideas” are intended to explore a
concept without reference to a particular species or place. These models
are not intended to make testable predictions, or even to be applied to
specific real systems. Most early models of theoretical ecology are of this
kind; examples include Lotka-Volterra models, the logistic equation, Levins’
metapopulation model (Levins 1970), and community matrix models (May
1973). “Minimal models for a system” are intended to explain phenomena of
certain classes of systems or species, while ignoring many characteristics of
the real system in the hope they are not essential. These models are also not
designed for specific, detailed predictions. Today, most mathematical models
in ecology are of this type. Finally, a “synthetic model for a system” is a
synthesis of detailed descriptions of a system’s components. Early synthetic
models consisted of large sets of differential equations. Modern synthetic
models are bottom-up, representing many small spatial units or individuals
and their behavior. In contrast to minimal models, synthetic models do not
have system dynamics imposed by system-level equations; instead, system
dynamics emerge from the interaction of the components.
This chapter addresses use of minimal models. We nevertheless refer

to these as “analytical models” (AMs), the more common terminology. It
should be noted, however, that “analytical” refers to the formulation of a
model, not necessarily to its implementation. Many, if not most, contem-
porary analytical models are solved at least partly by using computerized
numerical techniques.
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11.3 BENEFITS OF ANALYTICAL MODELS

The strengths and weaknesses of IBMs and AMs are to a large degree in-
versely related. IBMs are designed for analyzing complex systems, but the
more complex IBMs are, the harder they are to formulate, implement, an-
alyze, understand, and communicate. AMs, on the other hand, have very
limited ability to deal with complex systems of autonomous individuals.
However, they are strong exactly in the ways that IBMs are inherently cum-
bersome.

Formulation.—The defining characteristic of AMs is being formulated in
the language of mathematics. This language is general, universal, unambigu-
ous, and concise. Computer programs, the ultimate language of bottom-up
simulation models, are just the opposite: many different programming lan-
guages, compilers and computers exist, all of which are outdated after a few
years; and verbal descriptions of computer code are often ambiguous and not
at all concise. (There are, as we discuss in chapters 5, 7, and 8, many “lan-
guages” for formulating simulation models but none are well-established.)
Furthermore, the apparent limitation that analytical models must be very
simple in fact can be a decided advantage: the analytical modeler is forced
to simplify and to ignore virtually every characteristic of the real system ex-
cept one or two factors considered most essential. Individual-based modelers
should also simplify as much as they can, but they must force themselves to
do so (Chapter 2).

Implementation.—By “implementation” we refer to the methods needed
to “run” a model and produce results. Very simple AMs are solved ana-
lytically, which implies all the advantages of the language of mathematics.
Most often, however, not the full model but an even more simplified scenario
(e.g., an equilibrium) is solved. For example, community models based on
generalized Lotka-Volterra models of competition or predator-prey interac-
tions are usually not solved numerically to obtain the population dynamics
of all component populations (but see Huisman and Weissing 1999; McCann
2000). Instead, a linear stability analysis of the equilibrium solution is per-
formed (May 1973). Thus, the need to solve AMs is another very strong
incentive to simplify. Today, analytical solutions of simplified scenarios are
often augmented by numerical solutions of some other scenarios that use
the full model. Like IBMs, the exact results of such numerical solutions de-
pend on the computer algorithms used, but (unlike for IBMs, yet) standard
algorithms and software are widely used.

Comprehensive understanding.—AMs are designed to capture the essence
of a system or a class of systems (e.g., May 1973), but the same is true for
IBMs (Chapter 2). The difference is that AMs also have the characteristic
of being easy to analyze and understand. According to Bossel (1992), typ-
ical minimal models have 2 to 5 state variables, whereas synthetic models
(forest models, for example) typically have 10-30 state variables. Having
few state variables means an AM has few parameters. Therefore it is pos-
sible to explore AMs fully by looking at wide ranges and combinations of
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parameter values. Moreover, closed formulas can often be derived; this tech-
nique clearly shows how state variables depend on one or more parameters.
As a result of these advantages, AMs are particularly useful for identifying
and understanding basic processes governing system dynamics, for exam-
ple negative feedback loops leading to equilibria or extinction thresholds in
metapopulations.

Communication.—Being entirely mathematical, the formulations of many
AMs are easy to communicate concisely and unambiguously. For more com-
plex AMs, however, solutions may require formidable mathematics or nu-
merical methods that are not easily understood by many ecologists.

Generality.—AMs that are “minimal models for ideas” are general in the
sense that they address concepts (e.g., density dependence of metapopulation
effects), not specific systems. “Minimal models for systems” are also general
in the sense that they describe classes of systems, not a particular system or
place.
All these benefits have made analytical modeling the dominant approach in

theoretical ecology, although there always been critical voices (Pielou 1981;
Simberloff 1981, 1983; Hall 1988, 1991; Krebs 1988; Grimm 1994; Weiner
1995; den Boer and Reddingius 1996). How can these benefits be combined
with strengths of IBMs such as the abilities to represent effects of adaptive
behavior and reproduce complex patterns? In the following two sections we
first describe how analytical modelers try to incorporate elements of IBMs
in AMs, and then how individual-based modelers can, at least indirectly, try
to adopt the benefits of AMs.

11.4 ANALYTICAL APPROXIMATION OF IBMS

One way that the benefits of AMs can be applied to IBE is by developing
analytical approximations of IBMs. Why build an IBM and then attempt to
approximate its population-level behaviors with an analytical model? First,
of course, this kind of research attempts to expand the ecologists’ toolbox by
expanding the range of ecological problems that can be addressed with AMs
to include those for which individuals must be considered. But perhaps
just as importantly, this research helps bridge the perceived gap between
individual-based and classical approaches to ecological modeling. Analyti-
cal modelers develop an interest in problems for which individuals are ac-
knowledged as important, and individual-based ecologists develop a better
understanding of potentially valuable mathematical techniques.
Much of the work on analytical approximation of IBMs has addressed

IBMs which include discrete individuals and explicit spatial distributions.
The research program underlying these approximations is characterized by
the title of an article by Durrett and Levin (1994): “On the importance
of being discrete (and spatial)”. The approximations provide insights into
which elements of the approximated IBMs contain an ecological “signal”, and
which are “noise”. Further examples of analytical approximations of simple



g-r May 17, 2004

352 CHAPTER 11

IBMs (or of other simulation models that address problems in which indi-
viduals are important) include Levin and Durrett (1996), Bolker and Pacala
(1997, 1999), Wilson (1998, 2000), Grünbaum (1998), Law and Dieckmann
(2000), Picard and Franc (2001), and Law et al. (2003). The volume edited
by Dieckmann et al. (2000) gives a comprehensive overview of examples and
techniques, in particular the so-called pair approximations (Sato and Iwasa
2000) and moment methods (Bolker et al. 2000, Dieckmann and Law 2000).
These methods try to capture the essence of the distribution of individuals
over time and space in second-order spatial moments and to formulate dy-
namical equations not only of the first moment (the common “mean-field
approximation”) but also of the second moment. Dieckmann et al. (2000)
also provide numerous examples of problems for which the mean field as-
sumption of traditional analytical models breaks down (e.g., Wissel 2000).
Often, this kind of research has followed a general protocol exemplified by

Bolker and Pacala (1997). First, a general problem is defined; Bolker and
Pacala addressed spatial pattern formation in single-species plant popula-
tions that experience density-dependent mortality, in uniform habitat. Sec-
ond, a simulation model is developed to more completely define the problem
and provide a baseline against which analytical approximations are com-
pared. Bolker and Pacala (1997) used a simulation model that was spatially
explicit and stochastic but not fully individual-based. Third, an AM that
addresses the problem is developed. In fact, more than one AM may be
developed using different degrees of simplifying approximation. Bolker and
Pacala developed and compared AMs using only a mean-field approximation
of spatial structure, a second-moment approximation, and a simplification of
the second-moment approximation; Levin and Durrett (1996) similarly com-
pared mean-field and second-moment approximations. Finally, experiments
are conducted (using the kinds of techiques discussed in Chapter 9) to com-
pare the AMs’ behavior to that of the simulation model. Bolker and Pacala
(1997), for example, compared their models by examining predictions of how
equilibrium plant density, and the spatial covariance of density, varied with
the parameter controlling the scale of density dependence. Conclusions can
then be drawn about the ability of the AMs to approximate the simulation
model and, therefore, to address the original ecological problem.
A second example analytical approximation of an IBM is by Flierl et al.

(1999), who addressed the phenomenon of aggregation in marine organisms.
We describe this example in some detail because it closely resembles the
IBMs of group living (fish schools, social animals) reviewed in Section 6.2.
Flierl et al. used an IBM as the baseline simulation model. In the IBM,

each individual i is characterized by its position xi and velocity vi which
change due to acceleration ai:

δxi = viδt,

δvi = aiδt+ δVi.

The term δVi represents stochastic variability in velocity. Acceleration is
modeled as driving velocity towards some preferred velocity V :
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ai = α (V − vi) .
Different assumptions can be made about the preferred velocity. For exam-

ple, the animals may try to move to higher concentrations of their neighbors,
described by a preferred velocity Vi:

Vi =
∑

W1 (xj − xi)

where W1 is a weighting function:

W1(z) =
{
V z (1− z · z) |z| < 1

0 |z| > 1 .

For thisW1 the resulting groups are very compact. An alternative weight-
ing function can be used to describe repulsion among individuals at short
distances:

W2 (z) =
{

3.3V z (1− z · z) (z · z − 1
4

) |z| < 1
0 |z| > 1 .

Flierl et al. (1999) simulated these and other simple IBMs and showed
how aggregations form and move.
The analytical approximation of this IBM starts with a simple bookkeep-

ing equation describing the change of the organism’s density ρ due to the
convergence or divergence of the flux of organisms, J :

∂

∂t
ρ = −∇ · J. (11.1)

Obviously, an appropriate model of J cannot be expressed as a function
only of the density but will also depend on the detailed shape of the proba-
bility distributions for the individual’s positions. Thus, in the case of social
animals with aggregation behavior, the spatial occurrence of individuals can-
not be explained only by the density ρ.
Flierl et al (1999) employed the following strategy to overcome this prob-

lem: they assumed a specific relationship between density and higher joint
probabilities of neighbors, for example that the distribution of neighbors is
random (Grünbaum 1994). Alternatively, more realistic relationships could
be measured from the IBM’s simulation. The assumption of randomly dis-
tributed neighbors certainly is unrealistic in many cases, but may be suf-
ficient if neighborhoods are large relative to typical spacing between indi-
viduals and if there is enough randomness in behavioral responses of the
individuals.
The analytical approximations by Flierl et al. (1999) are quite complex, de-

rived using a variety of assumptions and techniques from statistical physics.
The resulting expression for the flux J is inserted in Equation 11.1 and then
this equation solved numerically to obtain the organism’s density ρ over
time. The results match the output of the IBM quite well, although there
are also some discrepancies regarding the timing of merging and splitting
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of groups. Flierl et al. also derive analytical approximations for another
population-level quantity, the group size distribution. This approximation
is feasible when group size distributions become stable quickly enough that
the average rate at which groups merge and split can be defined as a function
of group size. (The IBM of Fahse et al. 1998 addressing lark flocks makes
an interesting comparison; see Section 6.6.3.)
The Flierl et al. example and the other approximation studies mentioned

in this section show that analytical approximations can capture essential
features of at least simple IBMs. Powerful and easy-to-use approximation
methods could be very useful but these methods, like IBMs themselves, are
in their infancy. Currently, most approximation methods are too demanding
mathematically to be applied by non-mathematicians, and our expectations
must be limited by the fact that even in physics there are many problems
(e.g., fluid turbulence, behavior of complex and digital circuits) for which
analytical techniques are considered impractical. It will be interesting to see
how analytical techniques develop and how useful they become for ecological
problems in which interactions among individuals and their environment are
important.

11.5 USING ANALYTICALMODELS TO UNDERSTAND AND

ANALYZE IBMS

In this section we discuss ways that some of the advantages of AMs, such as
more complete understanding, ease of communication, and generality, can
be obtained in IBE without actually implementing AMs. The individual-
based ecologist can adopt several useful things from the analytical modeller:
system-level concepts, a framework for simplifying models, and mathemati-
cal constructs for analyzing models.

11.5.1 Adopting System-level Concepts

Even a well-designed, parsimonous IBM may still contain so much informa-
tion that it is difficult to understand how system-level phenomena emerge.
In contrast, AMs are designed specifically to think about and explain system-
level behaviors. Classical theoretical ecology includes a number of concepts
concerning population behaviors and their causes, and these concepts can
help us understand population behaviors of our IBMs.
An example is provided by our old friend, the beech forest model BEFORE

(Section 6.8.3; Rademacher et al. 2004). A typical mosaic pattern of forest
structure emerges in BEFORE sooner or later, no matter what initial con-
ditions are assumed (Neuert 1999). Moreover, this forest structure pattern
is rather robust to changes in demographic parameters. What causes this
robustness, a kind of equilibrium? The system-level concepts of AMs and
classical ecology provide a strong clue: we know from minimal models that
negative feedback loops often lead to equilibrium, either locally or globally.



g-r May 17, 2004

USING ANALYTICAL MODELS IN INDIVIDUAL-BASED ECOLOGY 355

Such feedback loops exist in forests at the local scale: high recruitment into
the upper canopy layer increases mortality in younger, lower layers by shad-
ing them (Neuert 1999). This negative feedback between recruitment and
survival is partly responsible for the quasi-equilibrium of the forest struc-
ture pattern. Knowing about negative feedback loops (or positive feedback
loops in other cases) from analytical modeling helps quickly figure out this
important element of the forest’s robustness.
Other examples of system-level concepts that should be borne in mind

while analyzing IBMs include the existence of extinction thresholds in meta-
populations (Bascompte and Solé 1998), the importance of environmental
noise for the survival of small populations (Wissel et al. 1994), the relation-
ship between disturbance intensity and species diversity (Connell 1978), and
the relationship between the complexity of interactions within a commu-
nity and the community’s stability properties (May 1973). An awareness of
such concepts is a productive starting point for understanding even complex
models, and talking about these concepts often helps communicate IBMs
and their results by putting them in a context familiar to all ecologists.

11.5.2 Using Analytical Models as a Framework for Simplifying
IBMs

One very productive technique for analyzing IBMs is to simplify them in a
stepwise way (Section 9.4.4). Analytical modeling approaches can be used
as a framework to guide this analysis technique. Instead of attempting to
directly compare an IBM with an AM of the same problem (Section 6.6), the
idea is to simplify an IBM, step by step, toward what an AM of the same
problem might look like, while learning what is gained and lost at each step.
The purpose is similar to that of the analytical modeler who tries to distill
analytical approximations from an IBM (Section 11.4): to understand which
elements of an IBM are essential for a certain phenomenon, to distinguish
between the ecological “signal” and “noise”.
Implementing such simplifications is straightforward and can follow steps

such as:

• Eliminating spatial heterogeneity by making the habitat homogeneous.
• Reducing temporal variability by holding inputs constant, e.g., using
constant weather conditions.

• Reducing the importance of local interaction by expanding the distance
over which individuals interact.

• Eliminating individual variability by making all individuals identical.
• Deactivating detailed processes by deleting them from the IBM’s sched-
ule or setting parameters to zero.

• Replacing stochastic processes with deterministic ones.

Simulation experiments (Chapter 9) can then be used to determine what
capabilities of the model are lost, and what ability to understand the model
is gained, as each simplification makes the model more closely resemble a
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simple AM.
One of the most instructive analyses of a complex IBM via simplifica-

tion used this approach. This example is the analysis by Deutschman et
al. (1997) of SORTIE, an individual-based, spatially explicit forest model.
SORTIE describes growth, mortality, and recruitment of nine tree species
in a detailed way. For example, growth depends on local light availabil-
ity, which is determined by a detailed submodel of shading by neighboring
trees and movement of the sun. The purpose of SORTIE is to understand
forest composition and structure under different disturbance and harvesting
regimes and altered climate conditions.
First, Deutschman et al. ran baseline simulations of the full model, con-

trasting scenarios with and without disturbances (circular clearcuts). The
main result was that the undisturbed forest is dominated by shade-tolerant
beech, whereas yellow birch is much more abundant in the disturbed for-
est. Then, as part of a comprehensive model analysis, Deutschman et al.
employed two simplifications that made SORTIE much more like a classi-
cal AM. First, the effect of spatial relationships was removed by replacing
local light availability of each tree by the average light availability of the
entire forest and by making the distribution of seedlings global and random.
Second, the number of processes and parameters was sharply reduced. In
SORTIE, each of the nine species is characterized by 10 parameters that
govern six key traits. A principal components analysis (PCA) showed that
two factors accounted for 69% of the total variance in species position in
parameter space. These two factors are combinations of model parameters
with strong, biologically meaningful interpretations: shade tolerance and
growth strategy. Simulations with individual traits simplified to these two
factors were then compared to the baseline simulations.
In the “mean-field” forest without spatial information, biomass was con-

siderably lower and competitive exclusion accelerated. In the disturbed sce-
nario, yellow birch was completely missing. Thus, spatial relationships were
found essential for explaining the baseline results. Results using the simpli-
fied, PCA-defined species traits were quite similar to those of the baseline
model in the undisturbed case, but failed to reproduce the dominance of yel-
low birch in the disturbed case. Deutschman et al. (1997) concluded that the
PCA by itself indicated that the IBM could likely be simplified, but the sim-
plified representation of species traits failed to reproduce essential features
of the full model. The 30% of variance in the parameter space unexplained
by the two PCA factors turned out to have a “strong dynamical signature”.
Emergent forest dynamics are thus sensitive to the details of each species’
traits—at least in SORTIE.
By simplifying toward, but not all the way to, the simplicity of AMs, we

remove detail from an IBM and check whether this detail was essential for
system-level phenomena. We do not obtain new analytical approximations
of the IBM, but we develop an understanding of what is gained and lost as
we traverse a gradient between IBM and simple AM.
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11.5.3 Using Analytical Constructs to Analyze IBMs

Simple AMs can provide ideas for evaluating more complex simulation mod-
els in a unifying way because AMs use general, well-known, and well-understood
underlying mathematical constructs. One way we can analyze an IBM is by
seeing whether its population-level dynamics resemble the dynamics pro-
duced by such familiar constructs as the Lotka-Volterra equations and ran-
dom walk models. Again, the idea is not to approximate the IBM’s dynamics
in an AM; instead, here the question is whether an IBM’s dynamics include
mathematical properties familiar from analytical modeling. If so, we can
take advantage of what we know from analytical modeling to better under-
stand the IBM.
One example of this approach has already been described in Section 6.6.3.

Fahse et al. (1998) developed an IBM to study searching and flocking strate-
gies of larks. After building this bottom-up model entirely from biological
considerations, Fahse et al. then analyzed whether its population-level dy-
namics followed the properties of any mathematical constructs known from
analytical modeling. This analysis found that the IBM did in fact have dy-
namics inherently resembling those of the logistic equation, a discovery that
greatly increased the IBM’s understanding and usefulness.
A second example of using analytical mathematical constructs to under-

stand bottom-up simulation models addresses the stochastic models of small
populations frequently used in population viability analysis. In these mod-
els, persistence and viability are fundamental quantities to be analyzed. Sur-
prisingly, however, there is no consensus on how to quantify persistence and
viability, especially in simulation models. The arithmetic mean time to ex-
tinction in, say, 1000 simulations might be biased by the specific choice of
initial conditions; the distribution of extinction times is skewed so that the
median time to extinction is sometimes a better measure than the mean;
viability—whether the probability of a population’s extinction over certain
time horizon is acceptably low—is more meaningful than extinction times
but the choice of time horizon and acceptable extinction risk are arbitrary.
However, a familiar analytical construct, the first-order Markov process,

was found to reveal an underlying structure of extinction processes (Wissel
et al. 1994; Grimm and Wissel 2004). In such a Markov process, the current
change of a population only depends on the population’s current state, not on
earlier stages. Population dynamics thus are described as lacking “memory”.
We will discuss later why this assumption is less restrictive than it seems.
Consider a population of n individuals in which the probability Pn(t) of
having n individuals at time t is determined by the so-called master equation
(Markov process of birth and death type):

dPn(t)
dt

= bn−1Pn−1(t) + dn+1Pn+1(t)− bnPn(t)− dnPn(t). (11.2)

This equation contains the probabilities dndt and bndt that the population
size n decreases (via death) or increases (via birth), respectively, by one
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individual in the infinitesimal time interval dt. For the birth and death rates
bn and dn, several submodels can be chosen, but this choice is irrelevant for
the following considerations. Equation 11.2 can be rewritten with the help
of a tridiagonal transition matrix A, with the matrix elements An,m defined
by bn and dn:

dPn(t)
dt

=
∑
m

An,mPm(t)

with m extending from 1 to some ceiling population size. It can be shown
that after a short transient time, the probability of extinction, P0(t), can be
approximated by:

P0(t) = 1− c1 exp (−ω1t) (11.3)

where ω1 is to the first eigenvalue of the transition matrix A, and c1 is
the inner product of the corresponding left-hand eigenvector with the ini-
tial condition, Pn(t = 0). Equation 11.3 provides a general structure for
how probability of extinction depends on time, using two constants, c1 and
ω1, that have a clear ecological meaning explained below. This structure
provides the basis for a general protocol that (1) finds values for the two
constants from simulations and (2) checks whether Equation 11.3 holds for
specific simulation models.
The protocol is very simple. The simulation model is repeatedly run to

extinction. Then, the probability of extinction by time t, P0(t), is determined
by the ratio of runs in which the population is extinct at time t to the total
number of runs. Then, according to Equation 11.3, which can be rewritten
as:

− ln (1− P0 (t)) = − ln(c1) +
t

Tm
,

a plot of − ln (1− P0(t)) versus time t should yield a straight line when the
time Tm is defined as:

Tm =
1
ω1
.

The constant c1 can be determined from the intercept with the y-axis,
which is − ln(c1), and the characteristic time Tm is given by the inverse of
the slope of the plot. Grimm and Wissel (2004) show that Tm is a mean time
to extinction which does not depend on initial conditions, just as the intrinsic
rate of population increase in a matrix model does not depend on the initial
state of the population. Therefore, Tm may be referred to as “intrinsic mean
time to exinction”. On the other hand, c1 reflects initial conditions. It turns
out that c1 can be interpreted as the probability that a population reaches
the so-called “established phase”, which is characterized by quasi-stationary
fluctuations of the populations state variables (including population size)
and by the short-term probability of extinction being constant and equal to
1/Tm.
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The ln(1 − P0) versus time plot has been used for all kinds of stochas-
tic simulation models of populations (Figure 11.1). In all cases, the plot
was linear, reflecting the general structure of Equation 11.3. It is perhaps
surprising how well the plot works even for complex models which seem to
violate the Markov assumption that systems have no “memory”, e.g., mod-
els with age structure or succession. However, possible memory effects in
population dynamics can be described by a Markov process if the model in-
cludes state variables that carry this memory. Typical examples include age,
weight, size, or other covariates of fitness. If these additional state variables
carry the memory of earlier states of the population, the basic assumption of
Markov processes that the current change only depends on the current state
still can be used. Grimm and Wissel (2004) discuss theoretical and applied
implications of the ln(1− P0) plot.
The lesson from these examples is that population-level dynamics of bottom-

up models may have underlying mathematical structure which is hard to
perceive directly. Simple models reveal such structure more clearly and
can provide ideas for what kind of structure to look for and how to use
the underlying structure if it is found. But note that we here are talking
about underlying mathematical structures, not specific models. The general
structure underlying Equation 11.3 is independent of the specific submod-
els chosen for the birth and death rates. We can view minimal models as
demonstrations of general structures and mechanisms and search for these
general features in IBMs. Sometimes we might find the same structures, but
we should not be surprised when we do not.

11.6 SUMMARY AND DISCUSSION

Analytical modeling is unquestionably a fundamental tool of ecology. This
approach has produced many important insights on the most fundamen-
tal problems of science, and perhaps its greatest benefit is the universality
of mathematics as a language for scientific problems and their solutions.
Therefore, whenever ecologists tackle new problems they should think about
whether analytical modeling is a feasible and practical approach. When the
problems involve the dynamics that arise from individuals interacting with
each other and their environment, the answer to this question will often be
“no”—which is of course why IBMs exist. But if the answer is “yes”, or even
“perhaps”, then analytical models should be given a try.
As individual-based simulation has arrived as another tool of ecology, con-

flict between users of these two approaches has unfortunately (but, perhaps,
naturally) arisen. At best, many ecological modelers and theorists see IBMs
and AMs as fundamentally different tools for fundamentally different prob-
lems. This view is largely true, but not completely. We hope that this chap-
ter shows that instead of conflict there can be a productive overlap between
the two approaches. Many IBMs are population models, so we should expect
that the long tradition of analytical population modeling can contribute to
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Figure 11.1 The ln(1 − P0) plot applied to a metapopulation model (Stelter et
al. 1997) for different initial conditions. The left panels show the
initial state of the population and of the landscape (patches; patch
capacity ranges from 5-30 individuals and is indicated by the size of the
patch symbols). (a) All patches occupied and with maximum capacity.
(b) A state of intermediate quality. (c) An extremely poor initial
state. The right panels show the corresponding frequency distribution
of times to extinction from 1,000 runs of the model, the arithmetic
mean times to extinction, T (in years), the ln(1 − P0) plot, and the
intrinsic mean times to extinction, Tm, which are largely independent
of the initial conditions. Note that the model includes environmental
variation and catastrophes, and that patch capacity is not static but
may become maximal after catastrophes and then decrease linearly
due to succession. (Modified after Grimm and Wissel 2004.)
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the development and analysis of IBMs. In particular, individual-based ecol-
ogists should try to borrow some of the key advantages of analytical mod-
eling: simplification and established, well-known population-level concepts
and mathematical constructs. Doing so can help us understand IBMs models
more quickly and thoroughly, and help us communicate models and results
to other ecologists.
Any scientist should be thankful for a more diverse set of tools and for

more than one perspective on complex problems. Individual-based and ana-
lytical approaches each have their own momentum that can be unproductive
if unchecked: AMs tend to drift into realms where mathematical interest sup-
plants ecological relevance, while IBMs tend to drift into excess detail that
makes understanding difficult. Constantly referring to each other can help
both approaches maintain a productive direction.
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Chapter Twelve

Conclusions and Outlook for Individual-based

Ecology

A new tool does not merely increase the number of ways to at-
tack old problems, but also changes the nature of these existing
problems, and, in an extreme case, may reveal whole new classes
of problems to systematic enquiry.

Ezequiel Di Paolo, Jason Noble, and Seth Bullock, 2000

12.1 INTRODUCTION

In the Preface and Chapter 1 we explained why we wrote this book: to estab-
lish an effective and coherent framework for using individual-based modeling,
a new approach to ecology that we refer to as “individual-based ecology”
(IBE). The strategic elements of IBE include fundamentals of good mod-
eling (Chapter 2), “pattern-oriented” modeling (Chapter 3), an approach
to theory (Chapter 4), and a conceptual framework for modeling systems
from an individual-based perspective (Chapter 5). In Chapter 6 we illus-
trated, with over 30 IBMs, how we can conduct IBE and what we have
already learned from the approach. Then, in chapters 7-10, we descended
into the ‘engine room’ to discuss four important technical aspects of IBMs:
formulation (Chapter 7), software (Chapter 8), model analysis (Chapter 9),
and model communication (Chapter 10). In Chapter 11, we discussed the
relationship of more traditional analytical modeling approaches with IBE.
Now, in this final chapter it is time to ascend from the engine room and

return to the strategic level. We boldly assume that we were more or less
able to convey the main elements of effective and coherent individual-based
modeling and teach readers how to run the ‘engine’: how to formulate, im-
plement, analyze, and communicate IBMs. But where will the new research
vessel of IBE take us? What course should we take, and what will we learn
on the voyage? How will our explorations differ from those undertaken with
more traditional approaches to ecology? And, as we steam ahead, what will
we contribute not only to ecology but to science in general?
To plot the route we envision, this chapter first discusses the kind of prob-

lems we can solve with IBE and how IBE differs from traditional approaches
to ecology. Then we discuss the role of IBE in the larger context of complex-
ity science. Finally, just for fun we take a quick look into the individual-based
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ecology laboratory of the future to see who works there and what they are
doing. A primary purpose of all this is to emphasize a point we made start-
ing in Chapter 1: IBMs are a tool for fundamentally different approaches to
solving ecological problems—both theoretical and applied. IBMs are not an
end in themselves but part of a process through which we can develop mech-
anistic understanding of ecological patterns and solve urgent environmental
problems.

12.2 WHY DO WE NEED IBE?

Individual-based ecology is ecology from the perspective of individual or-
ganisms and their behavior, but IBE is still ecology and addresses the same
problems as ecology in general. A widely accepted definition of ecology
(Krebs 1972; but see Peters 1991) is that ecology tries to detect and explain
patterns in the distribution and abundance of organisms. Within this gen-
eral framework there are a plethora of subdisciplines, all narrowing ecology
down by adding qualifiers: population, community, landscape, plant, for-
est, insect, arctic, microbial, food web, metapopulation, wetland, and many
others.
In our view, IBE does not just add to this list but is as generic as “ecology”

itself: each of these subdisciplines of ecology can—and should, sometimes—
be approached in an individual-based way. And IBE, like ecology in general,
attempts to explain patterns of distribution and abundance. However, the
way IBE goes about this fundamental problem is different in many ways.
The example models and studies in Chapter 6 show that IBE can be used to
address many kinds of questions and problems that other “ecologies” cannot:

• How do system-level patterns of distribution and abundance emerge
from the interaction of individuals with each other and with their envi-
ronment?

• How does population structure, not just abundance, affect ecology? In
IBE, “abundance” is treated only a summary state variable of a system,
not sufficient by itself to explain its own value and dynamics. Because
individuals are different, populations can be structured by many indi-
vidual characteristics: sex, age, size, life stage, social rank, location,
etc. Completely different structures may underlay the same abundance,
so considering only abundance ignores information which is decisive for
most problems. To really explain patterns in distribution and abun-
dance we must also explain the structure of populations. In many ex-
ample IBMs (e.g., of woohoopoes, marmots, canids, social spiders, and
even the hypothetical species models of Uchmański and Donalson and
Nisbet), populations were strongly affected by how they were structured
by size, age, space, or social rank.

• What mechanisms determine “distribution”? Often, IBE tells us that
these mechanisms include the adaptive dispersal and habitat selection



g-r May 17, 2004

364 CHAPTER 12

traits of individuals, the structure of the habitat or landscape, and in-
teractions among individuals (e.g., the marmot, woodhoopoe, lynx, and
trout IBMs). Thus, “distribution” is an outcome of individual behavior,
environment, and population status.

• What is the significance of local interactions to dynamics of plant abun-
dance and distribution? Because plants are sessile, their local spatial
configuration determines local competition; and mortality due to local
competition is the key to explaining such general patterns as the linear-
ity of the self-thinning trajectory.

• What are the individual-level processes that explain abundance and dis-
tribution patterns at the community and ecosystem level? Addressing
such diversity problems requires community and ecosystem IBMs to fo-
cus on the “driving” species instead of including every species.

• How can we develop and test management models that are mechanis-
tic and structurally realistic enough to let applied ecologists analyze a
wide array of stressors and management scenarios? IBMs that are rel-
atively simple yet mechanistic at the individual level can explain and
predict complex population responses (especially to habitat alteration)
that have proven elusive with population-level models.

• How do the environment and other species (e.g., predators) affect the be-
havior, life history, and population dynamics of a species? IBMs include
the full life cycle of individuals and can include complex environmental
dynamics. Especially by using techniques such as artificial evolution
of adaptive traits, we can even look at how ecosystems are affected by
individual variability in behavioral strategies.

Thus, we need IBE to solve traditional questions of ecology in new ways,
but we also need it to address new questions that cannot be asked in the
framework of traditional ecology (hence, the motto of Di Paolo et al. at the
beginning of this chapter).

12.3 HOW IS IBE DIFFERENT FROM TRADITIONAL ECOL-

OGY?

Most ecologists are now trained in what we refer to as “traditional ecology”.
We refer both to classical theoretical ecology, which is based on analytical
models (Chapter 11), and to empirical ecology strongly influenced by classi-
cal theoretical ecology, for example population studies where individuals are
censused but not considered in more detail. Especially in Part 3, we identify
technical ways in which IBE is different from traditional ecology: in IBE our
models use many kinds of information, we use computer simulation instead
of calculus, we test and analyze models differently, and we communicate our
models and research in different ways. But there are more fundamental,
strategic ways that IBE is different from traditional ecology. Here we list
eight general ways in which the conduct of IBE, as we envision it, is different
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from the way traditional ecology is usually conducted.

12.3.1 How We Address Complexity

Ecological systems are traditionally viewed as complex systems because they
consist of a large number of unique entities subject to many kinds of pro-
cesses and interactions. Taking this complexity directly into account in a
model, without applying any filters, certainly would render understanding
impossible. Traditional theoretical ecology uses mathematics as the com-
plexity filter, simplifying the description of ecological systems until we can
use the classical tools of theoretical science: analytical models. This ap-
proach means modeling highly aggregated state variables such as abundance
or production, and assuming that these variables depend only on themselves
and other aggregate variables, not lower-level processes (but see the approx-
imation techniques discussed in Section 11.4). For example, “density depen-
dence” means that the rate of change in abundance depends on abundance
itself—which of course is only a metaphor because changes in abundance
emerge from what individuals do and what their environment does to them
(Grimm and Uchmański 2002).
With IBE, we deal with complexity in a completely different way. The

main difference is that we explicitly model across levels of organization. In
IBE, as in real ecosystems, individuals and their behavior are the essential
drivers of any ecological phenomenon. The description of unique individuals,
with their full life cycle, is not sacrificed for the sake of a conceptual frame-
work (differential equations) that was designed for simple dynamic systems.
At the same time, we do not focus only on individuals, trying to understand
their behavior in detail. Instead, we look for models of individual behavior
that explain system dynamics and complexities. This across-level approach
has already been very successful for modeling complex physical systems: sci-
entists and engineers use it every day to predict the behavior of spacecraft,
electronic circuits, and building structures.
IBE does not ignore complexity from the outset but combines simple the-

ories (or models) of individual behavior in computer models that serve as
our laboratories. Then, we try to understand the dynamics emerging from
individual behavior using the hypothesis-testing experimental approach to
science (Platt 1964). But what filter do we use to know which models of
which behaviors we need to explain ecosystem complexities? The answer
is in the pattern-oriented approach: patterns indicate structure and orga-
nization instead of amorphous complexity. Multiple patterns at different
hierarchical levels can shed much light into the dark: we filter complexity
by keeping in our models only the processes and behaviors needed to repro-
duce a set of specific patterns. The resulting IBMs are more complex than
classical models, but still orders of magnitude simpler and easier to study
than real ecosystems.
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12.3.2 We Develop General Understanding by Studying Specific
Systems

In traditional ecology, another reason to ignore complexity is generality:
classical models attempt to reveal general mechanisms underlying abundance
and distribution patterns. Of course, IBE also aims—as does any science—to
gain general insights, but must follow a different strategy because complexity
is no longer ignored. When we address individuals explicitly, we must be
explicit about assumptions that are typically hidden or unstated in classical
models (Section 6.6). Most IBMs are designed to represent real species and
systems, either as a way to obtain reasonable assumptions about processes
ignored in classical models or simply to solve real-world problems. The
focus of IBMs on real systems can be seen as meaning they are not general,
if one assumes that specificity is the opposite of generality. But if we think
of generality as “applying to systems in general”, then to develop a truly
general model (or understanding) we must first show, convincingly, that it
is useful and predictive for at least some specific, real, systems—which has
not been a focus of traditional theoretical ecology.
In IBE we follow the advice of Schopenhauer to seek the general in the

particular. There are two ways to seek generality by applying IBE to specific
systems. First, the theory development cycle of IBE (Chapter 4) is used to
identify theories for adaptive individual traits that are useful in IBMs. The
constraints shaping the evolution of these traits are likely to be similar for
similar behaviors of similar organisms, and well-designed theories of traits
can be general to many environmental conditions. Therefore, instead of
hundreds of theories for some behavior such as habitat selection, it is more
likely that we end up with a toolbox of general theories which can be used
for a wide array of species and systems. The toolbox itself can become an
object to be analyzed: are there patterns in the theories for a certain adaptive
trait, or for multiple traits? Can we, for example, identify broad categories
of adaptive decisions that can be modeled using similar approaches? There
are many decisions, for example, involving tradeoffs between mortality risk
and growth that potentially can be modeled with fitness-seeking theory.
The second way we can seek generality in IBE is by looking for common

characteristics of the different systems we study. When we apply IBMs to a
system we can learn much more about the system’s internal structure and
processes than we can by using classical models. We can also develop much
more confidence in what we learn by testing the IBMs in a variety of ways
(Chapter 9). As we study more systems, it becomes possible to use com-
parative approaches to address general questions about the significance of
certain system “ingredients” such as environmental variability and distur-
bance, phenology, structural diversity, and energy and nutrient inputs.
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12.3.3 Behavior and Population Ecology are Tightly Linked: Evo-
lution Underlies All

Ecology is “made” by individual behavior, which in turn is shaped by ecology
through evolution: for real organisms, behavior and ecology are thus insep-
arably bound to each other. Traditional population ecology largely ignores
individual behavior, and traditional behavioral ecology often ignores ecolog-
ical dynamics. In IBE we focus on both levels and, especially, on theory
linking the levels. And often in IBE, evolution is the key concept underlying
this theory: we can often explain ecological dynamics by assuming individual
behaviors act, directly or indirectly, to improve fitness.

12.3.4 Modeling and Empirical Research are Closely Linked

Field ecologists are very good at observing what the individuals of their sys-
tems do and how they adapt to changing conditions. Empirical knowledge
about individual behavior and autecology is a rich resource for developing
predictive models and theories, yet it is almost completely ignored in tradi-
tional modeling, which focuses more on numbers (e.g. abundance) than on
the processes and structures underlying abundance. In IBE, we put empir-
ical knowledge to work in two important ways. First, empirical knowledge
can be used directly in individual traits: we can base our models of what
individuals do on detailed laboratory studies, large-scale observations, and
even informal, infrequent observations of rare events. Second, we use a va-
riety of observed patterns to design and test our models and their theories
(Section 12.3.7). These patterns may be observed via field research or from
controlled laboratory experiments.

12.3.5 Environmental Processes are Integral to Models and thus
Explicit

Traditional ecology often minimizes the importance of environmental vari-
ability and heterogeneity. Simple classical models treat environmental effects
as “noise”, deviations from standard conditions that are acknowledged but
otherwise ignored. In other population-level models, environmental effects
show up only as parameter values that must be calibrated. Obviously, the
inability to consider and explain effects of environmental variability and het-
erogeneity is a serious limitation. First, these effects are very common; very
many populations and communities are affected by spatial and temporal
variation in food availability or mortality risks; natural or human distur-
bances; and, now, climate change. Second, environmental effects are often
exactly the problem we build ecological models to address: what happens
when habitat is lost, exotic species invade, climate changes? In IBMs we can
easily represent the local interactions between individual and environment
that, along with interactions among individuals, drive populations. The ef-
fects of environmental change emerge from an IBM just as naturally as do
the effects of population state.
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12.3.6 “Theory” is not Separate from Real-world Problem-solving

In traditional ecology, the pursuit of theory is isolated from real-world problem-
solving: theoretical models are so abstract that they can rarely be applied
directly to management problems. (Suter 1981, for example, discusses how
ecosystem theory has not be useful for managing ecosystems.) The theory
toolbox we envision for IBE (Chapter 4), in contrast, is designed to let ecol-
ogists assemble IBMs for management applications as easily as for research
applications. A theory for how individual plants compete for light, for ex-
ample, can be used to explain structural diversity of natural forests and to
manage timber harvests and to predict the effects of exotic plant invasions.
Inversely, developing IBMs for management applications also produces the-
ory: for an IBM to be credible for management we must test its traits for
individual behavior and these traits, once tested, become IBE theory.

12.3.7 Testing and Analysis are Integral to Modeling

Testing and analysis of models are not important concerns of traditional
theoretical ecology. Testability is “sacrificed” (Levins 1969) to generality:
models designed to be so general that they apply to all populations end up
being so lacking in structure that they make few testable predictions. And
many classical models are so simple that they require little analysis to under-
stand. Most IBMs, however, address specific systems and produce a variety
of results that are both complex and testable. Consequently, extensive anal-
ysis with simulation experiments (Chapter 9) is an essential and profitable
undertaking. From the analysis we can learn much about the IBM; and by
testing its predictions against a variety of observed patterns we can develop
a level of confidence in what the model tells us about the real system.

12.3.8 Research is Inherently Interdisciplinary

Traditional ecology is typically a collaboration of mathematics and biology;
in fact, theoretical ecology is largely a mathematical enterprise. IBE requires
a greater diversity of expertise because it considers more aspects of the sys-
tem being modeled. Mullon et al. (2003) describe a typical large IBE project,
which addressed recruitment variability in Cape Anchovy off the west coast
of South Africa. Recruitment is highly dependent on ocean currents, so a
hydrodynamic model was coupled with individual-based models of the an-
chovy. The models produced huge amounts of data to be analysed. Thus,
this project needed experts in fish biology, oceanography, simulation mod-
eling, and statistics. In general, IBE projects addressing real systems will
require expertise in field biology to understand the system level; physiology,
behavior, and natural history to model the individuals; physical science or
engineering, and geographic data, to model the environment; software engi-
neering to design and build the IBM’s software; and model analysis to finally
test and learn from the IBM. For the ecologists, working in IBE is likely to
mean we need less expertise in mathematics and more in the system’s biology
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and more in simulation modeling and software.

12.4 WHAT CAN ECOLOGY CONTRIBUTE TO THE SCIENCE

OF COMPLEX SYSTEMS?

This book borrows much from the new science of Complex Adaptive Systems.
The CAS movement of the past several decades started with the recognition
that models based on classical mathematics cannot capture essential dynam-
ics of many systems of adaptive individuals, and now searches for models
and theory to explain such dynamics. Ecologists were among the pioneers of
CAS; the earliest IBMs (Section 1.4) were among the first attempts to find
productive ways to model and study complex adaptive systems. Now, sci-
entists in fields that specialize in complex systems (e.g., physics, mathemat-
ics, and computational science) come to biology—especially, evolutionary
ecology—in search of interesting complexity problems. (A young scientist
at the Santa Fe Institute, which specializes in complexity, once wrote a his-
tory of the evolution of bad theories of evolution developed by physicists.)
What can ecology, and especially IBE, contribute now to CAS? Our prob-
lems are certainly still among the most complex, but can we still be pioneers
in figuring out how to deal with complex problems?
So far, much of the theoretical work in CAS has had a “what-if” nature:

what system dynamics emerge if we turn simple adaptive individuals loose
to evolve in simple digital worlds? What happens to emergent dynamics if
we change a trait of the individuals? The contribution of IBE to complex-
ity science is tackling the inverse of the “what-if” approach, which could
be referred to the “if-what” approach: “if” we look at specific patterns of
real complex systems, “what” are the individual traits that explain them?
The “what-if” studies have been extremely important for getting complexity
science off the ground; classic CAS models such as Boids (Section 6.2.1) and
Axelrod’s (1984, 1997) models of social interaction convinced science that
complex and important system behaviors can emerge from simple individual
traits. But, as we argue in Section 12.3, to develop predictive theory of how
complex systems work scientists must get busy applying the approaches we
describe in books II and III to real systems: they must also ask the “if-
what” question. Ecology has already made more progress than most other
complex sciences in linking individual traits and complex system behaviors.
We ecologists are certainly in a position to regain leadership in not only
understanding how complex systems work but also in learning how to study
complex systems.
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12.5 A VISIT TO THE INDIVIDUAL-BASED ECOLOGY LAB-

ORATORY

We have now said what we want to say in this book. Like all authors of
science books, we hope you read this book from cover to cover, recommend
it to all your colleagues, and decide to enter IBE and follow all our rec-
ommendations. But, to be more serious: it is important to think about
the consequences of more and more ecologists making more and more use
of individual-based methods. Or, as we asked in the introduction to this
chapter: where will the research vessel IBE take us? Of course, we cannot
precisely answer this question. As Max Planck said: predictions are difficult,
especially if they are about the future. Science is exploration, so whatever
we will find will be new and unexpected. Nevertheless, we would like to end
this book with a vision of what the practice of IBE might become, which we
do by peeking into an imaginary ecology lab.
So now let us push open the door and enter the ecology laboratory of

Professor S., at a university of the not-too-distant future. The first thing
we see in the main room is the all-important conference table in the cen-
ter. Along the walls are the graduate students’ desks, piled high with field
equipment and monitors connected to the computer cluster humming in the
corner. At one of the desks, a graduate student studies for his class in simu-
lation software, the last of three core classes (along with introductory classes
in modeling and programming) that are offered jointly by the ecology and
computer science departments.
The bookshelf on one wall includes the old annual editions of the Hand-

book of Individual-based Ecology, which collected all available models of
individual behavior and environmental processes, along with information on
how each model has been tested in what contexts. On the same shelf are
the old, well-worn users manuals for EcoSwarm, the software package that
implements all the models in the Handbook. Now, since the national science
funding agency finally decided to support these essential tools of IBE, the
Handbook and EcoSwarm Manual are on-line so scientists can find—and add
to—a complete and up-to-date collection of models and software. In fact,
Dr. S.’s laboratory continues to contribute many of the models in the Hand-
book and the corresponding EcoSwarm code. Originally she kept a software
engineering graduate student on staff, but now that her ecology students are
better trained in software and the new software platforms are so much easier
to use, she did not replace the last software engineer after he graduated.
The next bookshelf holds a complete collection of the short-lived Journal

of Individual-based Ecology; JIBE grew rapidly in influence for several years
but as the quality of individual-based research improved and its methods
became established, scientists like Dr. S. published more and more in the
mainstream ecology journals. On the bottom shelf a tattered and outdated
copy of Grimm and Railsback (2004) lies under a pile of field instrument
catalogues.
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In her adjacent office, Dr. S. works preparing the next lecture for her IBE
class. She will discuss how plants sense and respond to potentially competing
neighbor plants, and how this adaptive behavior affects community diversity.
The students of her lectures are interested and enthusiastic as they see how
the theory she teaches directly relates to what they see in the field. The
students are especially excited by the seemingly limitless range of interesting
and unsolved, yet imminently solvable, problems in IBE. One of her students
now is using published data and an existing IBM to test a new theory for
how large herbivores adapt their fecundity to temporal variation in habitat
conditions; the theory was modified from the approach used by an earlier
student to model how the herbivores select habitat at large scales. Another
student is in the field evaluating fitness elements for a bird species that seems
threatened by habitat loss: how do mortality risks, feeding and growth, and
nesting success vary with what habitat characteristics? Even the simple
IBMs students develop as class projects often provide a fascinating new
perspective on an old problem.
But Dr. S. realizes it is time for her meeting on a new project, a study to

evaluate alternative ways to control an exotic plant’s invasion of a nearby
national park. Around the lab’s conference table is the team she assembled
to help design an IBM and the analyses it will be used for. A naturalist from
the park represents the client and provides field data and anecdotal obser-
vations on the invasion problem. A professor from the botany department is
familiar with the park’s native community and plans, as part of the project,
to conduct laboratory studies to see if a suspected allelopathic trait partly
explains the invader’s success. Wind dispersal of seeds is clearly important,
so Dr. S. has invited a fluid dynamicist from the mechanical engineering de-
partment to sit in and help decide if and how they should model local wind
patterns. Her graduate student on the project is prepared to discuss what
remote sensing data are already available or need to be acquired. Finally,
Dr. S. has invited an assistant professor in mathematics to consult because
he has worked on mathematical models of invasion. Although his “dispersal
kernels” are still obscure to Dr. S., she knows from earlier projects that his
different perspective on modeling is productive and helps improve the design
and analysis of her IBMs.
As the meeting proceeds, Dr. S. bites her tongue as the park naturalist

and the other scientists identify detail after detail that they think must be
in the IBM to make it realistic—she knows that most of these details must
be weeded out as they reduce the model to the most essential structures and
processes so they can analyze it and explain it to park management.
Finally, after the meeting wraps up, Dr. S. decides to clear her mind with

a bicycle ride. As she wheels across campus on the busy bikepaths, the
cyclists unconsciously collect in groups for safety as they cross the streets,
each cyclist staying just far enough from its neighbors to avoid collision.
As she reaches the edge of town and the traffic danger wanes, the cyclists
disperse and Dr. S. eventually rides alone through the fields. She mulls
over the new project, thinking about all the information and data they have
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collected on the individual plants and the natural community. “Now,” she
thinks, “in all that information, what are the key patterns that will tell us
what needs to be in the model?”



g-r May 17, 2004

References

Adami, C. 2002. Ab initio modeling of ecosystems with artificial life. Natural
Resource Modeling, 15, 133–146.

Adler, F. R. 1996. A model of self-thinning through local competition. Pro-
ceedings of the National Academy of Sciences of the USA, 93, 9980–
9984.

An, G. 2001. Agent-based computer simulation and SIRS: building a bridge
between basic science and clinical trials. Shock, 16, 266–273.

Anderson, J. J. 2002. An agent-based event driven foraging model. Natural
Resource Modeling, 15, 55–82.

Andersson, M. 1994. Sexual selection. Princeton, New Jersey: Princeton
University Press.

Antonsson, T., & Gudjonsson, S. 2002. Variability in timing and character-
istics of Atlantic salmon smolt in Icelandic rivers. Transactions of the
American Fisheries Society, 131, 643–655.

Aoki, I. 1982. A simulation study on the schooling mechanisms in fish.
Bulletin of the Japanese Society of Scientific Fisheries, 48, 1081–1088.

Arnold, W., & Dittami, J. 1997. Reproductive suppression in male alpine
marmots. Animal Behaviour, 53, 53–66.

Arthur, W. B. 1994. Increasing returns and path dependence in the economy
(economics, cognition, and society). Ann Arbor, Michigan: University
of Michigan Press.

Arthur, W. B., Durlauf, S., & Lane, D. A. (eds). 1997. The economy as an
evolving complex system II. Reading, Massachusetts: Addison-Wesley.

Auyang, S. Y. 1998. Foundations of complex system theories in economics,
evolutionary biology, and statistical physics. New York: Cambridge
University Press.

Axelrod, R. 1984. The evolution of cooperation. New York: Basic Books.

Axelrod, R. 1997. The complexity of cooperation: agent-based models of com-
petition and collaboration. Princeton, New Jersey: Princeton University
Press.



g-r May 17, 2004

374 REFERENCES

Axelrod, R., Riolo, R. L., & Cohen, M. D. 2001. Beyond geography: coop-
eration with persistent links in the absence of clustered neighborhoods.
Personality and Social Psychology Review, 6, 341–346.

Banks, J. 2000. Discrete-event system simulation. Upper Saddle River, New
Jersey: Prentice-Hall.

Bart, J. 1995. Acceptance criteria for using individual-based models to make
management decisions. Ecological Applications, 5, 411–420.

Bartell, S. M., Breck, J. M., Gardner, R. H., & Brenkert, A. L. 1986. Indi-
vidual parameter perturbation and error analysis of fish bioenergetics
models. Canadian Journal of Fisheries and Aquatic Sciences, 43, 160–
168.
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Grünbaum, D. 1998. Using spatially explicit models to characterize foraging
performance in heterogeneous landscapes. American Naturalist, 151,
97–115.

Gurney, W. S. C., & Nisbet, R. M. 1998. Ecological Dynamics. New York:
Oxford University Press.



g-r May 17, 2004

CONCLUSIONS AND OUTLOOK FOR INDIVIDUAL-BASED ECOLOGY 385

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching.
Pages 47–57 of: Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD Record 2. New York:
ACM Press.

Haefner, J. W. 1996. Modeling biological systems: principles and applica-
tions. New York: Chapman and Hall.

Hall, C. A. S. 1988. An assessment of several of the historically most influ-
ential theoretical models used in ecology and the data provided in their
support. Ecological Modelling, 43, 5–31.

Hall, C. A. S. 1991. An idiosyncratic assessment of the role of mathematical
models in environmental sciences. Environment International, 17, 507–
517.

Hall, C. A. S., & DeAngelis, D. L. 1985. Models in ecology: paradigms
found or paradigms lost? Bulletin of the Ecological Socity of America,
66, 339–346.

Hallam, T. G., & Levin, S. A. (eds). 1986. Mathematical ecology: an Intro-
duction. New York: Springer Verlag.

Hanski, I. 1994. A practical model of metapopulation dynamics. Journal of
Animal Ecology, 63, 151–162.

Hanski, I. 1999. Metapopulation ecology. Oxford: Oxford University Press.

Hara, T. 1988. Dynamics of size structure in plant populations. Trends in
Ecology and Evolution, 3, 129–133.

Harper, J. L. 1977. The population biology of plants. London: Academic
Press.

Harper, S. J., Westervelt, J. D., & Shapiro, A.-M. 2002. Modeling the move-
ment of cowbirds: applications toward management at the landscape
scale. Natural Resource Modeling, 15, 111–131.

Harte, J. 1988. Consider a spherical cow: a course in environmental prob-
lem solving. Mill Valley, California: University Science Books (reprint
edition).

Hemelrijk, C. K. 1999. An individual-orientated model of the emergence of
despotic and egalitarian societies. Proceedings of the Royal Society of
London B, 266, 361–369.

Hemelrijk, C. K. 2000a. Self-reinforcing dominance interactions between
virtual males and females. Hypothesis generation for primate studies.
Adaptive Behavior, 8, 13–26.



g-r May 17, 2004

386 REFERENCES

Hemelrijk, C. K. 2000b. Social phenomena emerging by self-organization in
a competitive, virtual world (DomWorld). Pages 11–19 of: Jokinen,
K., Heylen, D., & Nijholt, A. (eds), Learning to behave. Workshop II:
Internalising knowledge.

Hemelrijk, C. K. 2002. Understanding social behaviour with the help of
complexity science. Ethology, 108, 1–17.

Hengeveld, R., & Walter, G. H. 1999. The two coexisting ecological
paradigms. Acta Biotheoretica, 47, 141–170.

Hilborn, R., & Mangel, M. 1997. The ecological detective: confronting models
with data. Princeton, New Jersey: Princeton University Press.

Hildenbrandt, H. 2003. The Field of Neighbourhood (FON)—
ein phänomenologischer Modellansatz zur Beschreibung von Nach-
barschaftsbeziehungen sessiler Organismen. Ph.D. thesis, University of
Bremen, Germany.

Hildenbrandt, H., Bender, C., Grimm, V., & Henle, K. 1995. Ein indi-
viduenbasiertes Modell zur Beurteilung der Überlebenschancen kleiner
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Uchmański, J. 1985. Differentiation and frequency distributions of body
weights in plants and animals. Philosophical Transactions of the Royal
Society of London B., 310, 1–75.
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Glossary

These are terms defined throughout the book. Most of these terms are used
with various meanings throughout ecology, so we clarify how we use them in
individual-based ecology. Other terms are adopted from software engineering
and the field of Complex Adaptive Systems. (Italicized words are defined
elsewhere in the glossary.)

Action. An element in an IBM’s schedule. An action is defined by a list
of model objects, the methods of these objects executed by the ac-
tion (e.g., traits of individuals, updating the environment; producing
output), and the order in which the objects are processed.

Adaptive behavior. Individual behavior that results from adaptive traits
instead of being directly specified. Adaptive behavior therefore is an
outcome of both the trait and the conditions occurring at the time the
trait is executed.

Adaptive trait. A trait that includes some kind of active choice among
alternative behaviors, with the decision depending on environmental
or internal conditions.

Agent-based model (ABM). The term for individual-based models in
fields other than ecology. “ABM” is a more widespread and generic
term than “IBM”.

Behavior, individual behavior, system behavior. What a model indi-
vidual or system actually does during a simulation. A behavior is an
outcome of an IBM, whereas a trait is a set of model rules that the
individuals use to select their behaviors.

Classical models. The modelling approaches most commonly portrayed
in ecology texts and courses. Classical models typically operate at the
population level and use analytical equations or matrices.

Collective. In an IBM, an aggregation of individuals that exhibits some
behavior of its own (e.g., a social group, pack, flock). Individuals
belong to a collective and the state of the collective affects the indi-
viduals. Collectives are an intermediate level of organization between
individuals and populations.

Complex Adaptive Systems (CAS), complex adaptive system. When
capitalized, CAS refers to the scientific study of systems made up of
interacting, adaptive agents. Such systems are referred to as complex
adaptive systems (not capitalized).
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Discrete event simulation. A general category of modeling that includes
IBMs. Discrete event simulators are simulation models that represent
system behavior over time as a series of discrete events happening to the
system’s components, as opposed to classical models that use system-
level rates. Much of the extensive literature and software for discrete
event simulation is useful for IBMs.

Emergent behavior. System behavior (or, sometimes, individual behavior
that is affected by interactions among individuals) that is not directly
specified by individual traits. Instead, emergent behavior arises from
individuals’ adaptive traits and their interactions with each other and
their environment. System behaviors are characterized more as emer-
gent (instead of imposed) if they (1) are not simply the sum of the
properties of the individuals, (2) are of a different type than the prop-
erties of the individuals, and (3) cannot be predicted by examining
only the individual traits.

Expected fitness. An individual ’s current estimate of its future fitness,
used as a way of evaluating decision alternatives in some adaptive
traits: individuals make decisions in a way that increases expected
fitness. Expected fitness at any one time may have little relation to
the individual’s eventual actual fitness.

Fitness. The actual success of an individual in passing its genes on to suc-
ceeding generations; in an IBM, fitness is an outcome. An individual’s
fitness can be evaluated as, for example, the number of its offspring
that survive and reproduce; or the fraction of the simulation’s final
population that descended from the individual.

Fitness element. In direct fitness-seeking traits, a target that must be met
for fitness to be high. Example fitness elements are future survival,
growth to reproductive size, and attaining the social rank needed to
reproduce.

Fitness measure, completeness, directness. A specific model of expect-
ed fitness that model individuals use as the basis of fitness-seeking
adaptive traits. Decisions are based on the value of the fitness mea-
sure for each alternative. A fitness measure models how one or several
fitness elements depends on the decision. A fitness measure’s complete-
ness increases with the number of fitness elements it considers: a fitness
measure that models how expected fitness varies with survival proba-
bility, growth to reproductive size, and mate selection is more complete
than a fitness measure that considers only growth. Directness refers
to how explicitly the fitness measure reflects fitness consequences of
a decision alternative: assuming that decisions are made to maximize
growth is a less direct fitness measure than one that considers how
growth affects the expected number and viability of offspring.
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Fitness-seeking, direct fitness-seeking, indirect fitness-seeking. A type
of adaptive trait that assumes individuals make decisions to improve
their expected fitness. Traits using direct fitness-seeking assume indi-
viduals evaluate decision alternatives using a fitness measure. Indirect
fitness-seeking traits are designed to reproduce behaviors that are ob-
served in real organisms and assumed to contribute indirectly to fitness.

Formulation. A complete and detailed written description of a model (typ-
ically called a “specification” by software engineers).

Imposed behavior. System behavior that is strongly determined by, and
predictable from, individual traits; in contrast to emergent behavior.

Individual. In an IBM, the organizational unit at which behavior is mod-
eled; the modeled system is a collection of individuals. “Individual” is
a modeling term, not a biological one. In most IBMs, an individual rep-
resents one organism; but sometimes a model’s individuals represent a
collective, a super-individual, or all the organisms within a spatial grid
cell.

Individual-based ecology (IBE). The study of ecological systems from
the perspective that system properties arise from unique, independent,
individuals and the interactions of the individuals with each other and
with their environment.

Individual-based model (IBM). A model of a system of individuals and
their environment, in which system behavior arises from traits of the
individuals and characteristics of the environment. IBMs do not in-
clude system-level models that consider individual variation, nor do
they include models of a single individual.

Interaction, direct interaction, mediated interaction, interaction fields.
Mechanisms by which model individuals communicate with each other
or otherwise affect each other. Direct interactions involve an encounter
among individuals in which information is exchanged or one individual
directly affects the other (e.g., by killing it). Mediated interactions are
mechanisms by which individuals affect each other indirectly by con-
suming or producing a common resource. Food competition is easily
modeled as a mediated interaction: by consuming food, an individual
affects others by reducing their food availability. Interaction fields rep-
resent how an individual is affected by the total or average effect of
multiple neighboring individuals.

Method. In object-oriented software, a block of code that executes one par-
ticular trait or process. Methods are similar to subroutines in non-
object-oriented software.

Observation, observer tools. The process of collecting data and infor-
mation from an IBM; typical observations include graphical display of
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patterns over space and time and file output of summary statistics.
Observer tools are software tools such as graphical user interfaces that
make certain kinds of observation possible.

Platform. The programming language or software environment used to
convert a model into executable code and run it. Platforms range
from procedural or object-oriented programming languages to high-
level environments in which specific kinds of model can be built and
executed with little programming.

Prediction, tacit prediction, overt prediction. The way an IBM rep-
resents how individuals foresee the future outcomes of their decisions.
Tacit prediction includes simple, implicit assumptions about decisions
outcomes. Overt prediction explicitly forecasts the consequences of
each decision alternative.

Sensing. The way an IBM represents how individuals obtain information
about their environment and neighboring individuals. What kinds of
information do individuals sense (what variables do they “know”)?
How much information can individuals sense: over what distances, or
from many neighbors, can they obtain information? How accurate is
the sensed information?

Schedule, dynamic schedule, fixed schedule. In an IBM’s formulation,
a description of the order in which events are assumed to occur: the
schedule defines the actions and the rules for executing them. In an
IBM’s software, the schedule is the code which defines actions and con-
trols when they are executed. Fixed schedules define a single order in
which events always occur, a cycle repeated each time step. Dynamic
schedules allow the number and order of actions to be determined by
the model as it executes.

State, state variable. A measure of the status of some part of a model
(individuals, habitat units, the system) that typically can be described
using a single number. A state variable is a model variable describing a
particular state of some model component. Example individual states
are weight, sex, and location; example system states are population
biomass, number of species, and mortality rate (number of individuals
dying per time step).

Stochasticity. The use of pseudo-random numbers to represent a process
or trait. Often, traits or processes are represented as a stochastic
model: whether an event occurs is stochastic, but the event’s proba-
bility is modeled deterministically. For example, an individual’s death
is stochastic but its probability of dying depends on its age and size.
Stochasticity is often used to represent processes that are assumed to
be variable but are not sufficiently important, or not understood well
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enough, to be represented deterministically; but processes in IBMs are
often variable without being stochastic.

Submodel. A part of an IBM’s formulation that represents one trait or
process. An IBM can be divided into submodels so each process can
be modeled, calibrated, and tested separately.

Super-individual. An individual that represents multiple organisms, as-
suming they all have identical states and behavior. Super-individuals
do not represent natural aggregations of individuals but are instead a
modeling technique for simulating very large numbers of individuals.

System. All the individuals in an IBM, which may represent a population or
community of organisms. The system has properties of different types
than individuals have, e.g. abundance, mortality and reproduction
rates, persistence, diversity, and spatial patterns.

Theory, IBE theory. In IBE, a “theory” is a trait that has been tested
and shown useful for explaining system behavior under a known range
of ecological contexts. “IBE theory” includes both the collection of
theories that have been developed and the process for developing the-
ories in IBE.

Trait. A model of a particular behavior of an individual. A trait is typically
a set of rules for what individuals do at particular times or in response
to specific situations in an IBM; an individual is represented as a col-
lection of state variables and traits. Example traits include models
of short-term activities (foraging, response to predators), phenotypic
expression, or changes in life stage.




