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a  b  s  t  r  a  c  t

Underwater  visual  census  (UVC)  methods  are  used  worldwide  to monitor  shallow  marine  and  freshwater
habitats  and  support  management  and conservation  decisions.  However,  several  sources  of bias  still
undermine  the  ability  of these  methods  to accurately  estimate  abundances  of  some  species.

The present  study  introduces  FishCensus,  a  spatially-explicit  individual-based  model  that  simulates
underwater  visual  census  of  fish  populations.  The  model  features  small  temporal  and  spatial  scales  and
uses  a movement  algorithm  which  can  be shaped  to  reflect  complex  behaviours  and  effects  of  diver
presence.  Four  different  types  of  fish  were  used  in the  model,  featuring  typically  problematic  behavioural
traits,  namely  schooling  behaviour,  cryptic  habits,  shyness  and  boldness.  Corresponding  control  types
were  also  modelled,  lacking  only  the key behavioural  traits.  Sampling  was  conducted  by a  virtual  diver
using  four  true fish densities  and  employing  two  distinct  methods:  strip  transects  and  stationary  point
counts.

Comparisons  with  control  fish  have  shown  that schooling  and  bold  behaviours  induce  positive  bias
and  reduce  precision,  while  cryptic  and  shy  behaviours  induce  negative  bias  and  increase  precision,
although  shy  behaviour  did  not  have  a significant  effect  on  precision  in  transects.  By  looking  at  deviations
from  true  density,  however,  schooling,  shy  and  bold  fish densities  were  strongly  overestimated  by  both
methods,  while  cryptic  fish  were  slightly  underestimated.  Schooling  and  bold  fish  had  the  lowest  precision
overall,  followed  by  shy  fish.  Fish  rarity  decreased  precision,  but  had  no  effect  on  bias.  Stationary  points
had less  precision  than transects  for all fish  types,  and  led to much  higher  counts,  resulting  in  greater
overestimation  of  density  overall.
By modelling  complex  behaviour,  it was  possible  to separate  the  contributions  of  detectability  and
non-instantaneous  sampling  on  bias,  and  gain  a  deeper  understanding  of  the  effect  of behavioural  traits
on UVC  estimates.  The  model  can  be  used  as a tool  for  planning  and  optimization  of  monitoring  programs
or  to  calculate  conversion  factors  for  past  or ongoing  surveys,  assuming  behavioural  patterns  are well
replicated.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Methods to quantify the abundance of populations and commu-
ities are key in Ecology, determining the way a state or process of
he system is perceived by observers (Zurell et al., 2010). When the
ntire area of interest or population cannot be surveyed, as is often

he case, the choice of method and sampling design can be crucial,
articularly if observations support conservation and management
ecisions (Blanchard et al., 2008; Pais et al., 2014).

∗ Corresponding author.
E-mail address: mppais@fc.ul.pt (M.P. Pais).

ttp://dx.doi.org/10.1016/j.ecolmodel.2016.12.011
304-3800/© 2016 Elsevier B.V. All rights reserved.
Underwater visual census (UVC) methods are a cost-effective
way to survey shallow marine and freshwater habitats. In addition,
the fact that they are non-destructive makes them ideal choices for
protected areas, supporting important management and conserva-
tion decisions worldwide, particularly on temperate and coral reefs
(Colvocoresses and Acosta, 2007; Di Franco et al., 2009; Edgar et al.,
2004; Henriques et al., 2013; McClanahan et al., 2007a,b). As with
any sampling method, UVC methods estimate the true state of the
observed system, but are affected by two kinds of uncertainty: pre-

cision and bias. Precision is the width of the dispersion of estimates
around the mean and bias is the deviation of the mean from the true
value we are estimating. Precision can be quantified by doing repli-
cate measurements, and to a certain extent it can be reduced by

dx.doi.org/10.1016/j.ecolmodel.2016.12.011
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2016.12.011&domain=pdf
mailto:mppais@fc.ul.pt
dx.doi.org/10.1016/j.ecolmodel.2016.12.011
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ncreasing sampling effort (Pais et al., 2014), however, bias is very
ifficult to quantify and can only be minimised by changing sam-
ling design, or applying a correction factor to field data (Kulbicki
t al., 2010).

UVC methods are subject to several sources of bias, such
s observer experience (Thompson and Mapstone, 1997), low
etectability of organisms (MacNeil et al., 2008a), observer
ovement (Lincoln Smith, 1988), non-instantaneous sampling

Ward-Paige et al., 2010) and underwater visibility (Bozec et al.,
011). In fact, even if we ensure that divers are experienced and the
ampling method is standardised across space and time, estimates
ay  still be completely false, even if very precise (Sale and Sharp,

983). While UVC methods are known for their tendency to under-
stimate due to imperfect detectability (Katsanevakis et al., 2012),

ard-Paige et al. (2010) used a simulation model to show that
hark densities are systematically overestimated due to their high
obility. In either case, bias can have devastating effects, because
anagers and scientists may  spend unnecessary resources to pro-

ect species which are not actually endangered, or may  be unaware
hen population sizes reach threateningly low levels. Accurate

stimates are particularly important for fisheries stock assessments
Jennings and Polunin, 1995), or to parameterise dynamic commu-
ity and population models that support management decisions
Pelletier et al., 2008).

Several studies on UVC have concluded that bias is strongly
inked to species behavioural traits (Bozec et al., 2011; Kulbicki
t al., 2010; MacNeil et al., 2008a; Samoilys and Carlos, 2000;

illis et al., 2000). In fact, some traits such as cryptic habits
Christensen and Winterbottom, 1981; Willis, 2001), schooling
ehaviour (MacNeil et al., 2008a) and reaction to divers (Edgar et al.,
004; Kulbicki, 1998) have been pointed out as particularly difficult
o deal with when using UVC.

The quantification of sampling bias can be very useful, not
nly because it can be used to reshape sampling designs to better
uit our subject, but also because it allows us to apply correction
actors to existing data, or to standardised long-term monitoring
rogrammes (Christensen and Winterbottom, 1981; Pierucci and
ózar, 2015; Sale and Sharp, 1983). This of course requires that
e know the true density of fish at a given time, which is a chal-

enge that many have tried to overcome. The majority of studies
ealing with bias in UVC used an alternative method (usually more
estructive) to represent the true state of the system, which include
raps (Edgar et al., 2004) or fish poisoning in an enclosed pool
Christensen and Winterbottom, 1981) or caged area (Willis, 2001).
ther approaches include distance sampling (Bozec et al., 2011;
uckland et al., 2012) and predictive models that use data from
ifferent transect widths and extrapolate to a zero-width theo-
etical scenario (Sale and Sharp, 1983). However, these alternative

ethods have their own bias (Mahon and Hunte, 2001), and some
an seriously affect or kill fish from the assemblages of interest,
efeating the purpose of a non-destructive method.

Another alternative approach is to use a controlled environ-
ent, which can be a fish tank or even a natural enclosed area,
here a known number of fish are introduced (e.g. Biro, 2013). Of

ourse, the logistics of such an approach hinder its use, but even if
easible, fish behaviour can be affected by conditions in captivity
nd artificial gathering of fish near walls can affect counts if the
ank is too small.

A third alternative is to use computer simulation. This requires
he effort of programming the model, but can ultimately meet the
equirements of being cost-effective and non-destructive, while
lso continuing to serve as a tool for future use and improvement. A

uitable modelling approach to answer sampling-related questions
s what has been labelled by Zurell et al. (2010) as the “virtual ecol-
gist” approach. In such models, more realistic output values can
e drawn by also modelling the data collection procedure, where
odelling 346 (2017) 58–69 59

a “virtual ecologist” records measurements and observations in a
similar way a real ecologist would do in the field. For the specific
case of UVC, two  models have been built to study observation bias,
both opting for a spatially-explicit individual-based model of fish
movement, with divers added as agents responsible for observing
and recording the number of fish according to pre-determined rules
and limitations. The Reefex model was  developed by Watson et al.
(1995) to study the influence of fish speed and approach angle on
transects and stationary point counts. It featured grid-based fish
movement and a time step of 10 s. While the movement model
was simplified, many complex processes were included, such as
fish avoidance, different behaviours with pre-defined frequencies
and observation error.

More recently, Ward-Paige et al. (2010) studied the effect of
bias due to observer speed and non-instantaneous sampling in
UVC of sharks, creating a new model that improved on some of
the limitations faced by the Reefex model to answer these ques-
tions. The resulting AnimDens model uses a correlated random
walk for sharks and a much smaller time step of 1 or 2 s. Because
the movement model is simplified down to two  parameters, speed
and maximum turning angle, it is meant to be generically adaptable
to visual counts of any moving animal.

While these two  previous models succeed at answering spe-
cific questions about UVC bias, the representation of fish behaviour
in either of them is very simplified. It is impossible or very diffi-
cult to accurately represent the movement of a fish species with
complex behaviours such as schooling and shoaling, diver avoid-
ance/attraction or cryptic habits. This can lead to bias estimates
from these models being more accurate for certain species than for
others, depending on how the real species fits the grid-based or
correlated random walk assumptions.

In the present study, a new individual-based model is presented,
building upon some of the concepts behind the Reefex and Anim-
Dens models but featuring complex fish movement and behaviour.
The FishCensus model can have a very small time step (0.1 s) to
allow for precise modelling of fish reactions to their surroundings,
and can be used to simulate counts using the most common UVC
methods. This study focuses on four behavioural traits which are
typically problematic for UVC, namely schooling behaviour, cryp-
tic habits, shyness and boldness towards divers. Four generic fish
types representing these key traits were simulated and placed in
the environment at four densities. Virtual divers performed strip
transects and stationary point counts and reported an estimated
density, which was  used to calculate accuracy and precision. The
isolated effect of each behavioural trait was  also calculated using
control fish types. The FishCensus model is proposed as a tool to
aid in sampling design for monitoring and research, and to cal-
culate correction factors for densities of species estimated with
standardised methods.

2. Materials and methods

2.1. Model description

The FishCensus model was programmed in NetLogo version
5.3.1 (Wilensky, 1999). The latest model versions are freely
available at https://www.openabm.org/model/5305/. Model ver-
sion 1 was  used in this study. A full description following the
ODD (Overview, Design concepts, Details) protocol for describing
individual-based models (Grimm et al., 2010, 2006) is available as
supplementary material (S1).
2.1.1. Purpose
The FishCensus model simulates how different fish behaviours

affect density estimates in common underwater visual census

https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
https://www.openabm.org/model/5305/
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ethods. By adapting a flexible fish movement model to the desired
pecies or group, the model can help calculate correction factors for
ast and ongoing surveys or decide the best sampling method for
n upcoming field assessment.

.1.2. Landscape and scales
The model is spatially explicit, two-dimensional and has two

ypes of moving agents, divers and fish. The model landscape is rep-
esented by a grid of squares with 1 m sides that have no variables
irectly affecting agents. Depth is ignored (assumed constant) and
aximum underwater visibility was set to 6 metres and remained

onstant in time and space. The landscape size was  set to 20 × 80
quares (1600 m2). Divers and fish wrap around when they reach
he edges to avoid artificial gatherings near walls. The origin of the
oordinate system is located in the centre of the bottom left square,
o that integer coordinate values always correspond to square cen-
res, even though agents move in continuous space.

There are two levels on the time scale. Fish and diver move-
ents use a time step representing 1/10 of a second and all other

rocedures in the model are based on a time step of one second.
odel runs stop when finishing conditions are met  for the sam-

ling method chosen (i.e. diver reaches a fixed distance or sampling
ime).

.1.3. Agents

.1.3.1. Diver. The diver is a single agent, responsible for perform-
ng a chosen sampling method with pre-defined input parameters.
iver state variables are their x and y coordinates, heading

degrees) and a constant speed (metres per minute). There is a fixed
iew angle value that defines a field of view in front of the divers and
s set to 180 ◦ for transects and 160 ◦ for stationary points (Ward-
aige et al., 2010). The diver keeps record of all counted fish in a list
nd a list of unique fish ID numbers is used as short term memory
o prevent immediate recounts. Fish that leave the field of view are
emoved from the memory list.

.1.3.2. Fish. Fish can belong to different “species” or types that
hare the same attributes and size. Besides species name and size,
here are several other attributes of fish agents that stay constant
uring model runs. Every fish type has a maximum ID distance to
he diver (in metres), within which they can be seen and correctly
dentified. There is also a maximum approach distance (m), which is
he distance to divers or predators that triggers evasive movement.
nother important attribute is detectability, which is the probabil-

ty of a fish being visible to the diver. Fish visibility is determined
n every behaviour change (10 model seconds by default; see sec-
ion 2.1.6.4). A detectability below 1 means fish can become hidden
rom the diver, even if within ID distance (e.g. to simulate cryptic
ehaviour or mimicry).

Fish sensing capabilities are described by a perception distance
m)  and a perception angle (degrees), which encompasses short
istance detection of visual, tactile and chemical stimuli. A Boolean
ttribute establishes if fish will exhibit schooling behaviour. If true,

 distance to schoolmates (in body lengths) must be specified and
 list of schoolmates (conspecifics within perception angle and dis-
ance) is updated every time step for every fish. Fish state variables
nclude their x and y coordinates, heading (degrees), the x and y
omponents of their velocity vector and the x and y components of
heir acceleration vector. The magnitude of the vectors is limited
y three attributes: maximum sustained speed (maximum veloc-
ty magnitude for continuous movement), maximum burst speed
maximum velocity magnitude in evasive movement) and maxi-

um  acceleration (maximum increase in speed that can occur in a
econd).
odelling 346 (2017) 58–69

2.1.4. Initialization
The total number of fish to place is calculated from the pre-

defined true density and the area of the environment. Fish are
placed with random coordinates and headings and both velocity
and acceleration vector components set to 0. All attributes are set
per fish type and all fish are visible. Then, the behaviour change
sub-model (section 2.1.6.4) is run to select the starting behaviour
for every fish. The movement model is then run for 200 cycles (20
model seconds) to stabilise the starting positions for fish (form
schools, gather in patches, etc.). Further behaviour changes do not
occur during this stabilization phase and the model clock is not
advanced.

The diver is then placed on the environment. For the stationary
point count method, the diver is placed in the centre of the world,
for transects, the diver starts on the centre of the 6th patch from the
bottom, at the same distance from both margins of the world. Diver
starts with a heading of 0◦ (facing upwards) for both methods.

2.1.5. Model schedule
Every model run represents a single sample, using a single

method of choice and sampling for a given time or distance. A cycle
(one second in model time) starts with a check to see if the diver
has reached the end conditions of the survey. If the diver is fin-
ished, then outputs are calculated and the model run ends. If not,
the model cycle continues.

The model cycle starts with the diver counting the fish that are
eligible (see section 2.1.6.2), which happens every second in model
time. Then all the agents move (10 movement cycles per model
second), starting with the diver and following with all the fish, in
an order that is randomly picked each cycle. In its turn to move, a
fish will perform all vector calculations, determine the new velocity
vector and move to the new position, then the next fish is picked.

There is no limit for the number of fish stored in memory, but
when the movement cycle ends, fish listed on the diver’s memory
that left the field of view are removed from the list. Every 10 model
seconds all fish pick a behaviour from the behaviour list. In case
there are fish with detectability smaller than 1, visible status is
re-calculated for the next 10 s (see section 2.1.6.4). The sequence
of events and sub-models on every time step is represented in a
diagram in Fig. 1.

2.1.6. Sub-models
2.1.6.1. Diver movement. Diver movement is much simpler than
fish movement, however, since the position of the diver can influ-
ence the response of fish, it also moves every tenth of a model
second (by default), even though counts are only made every sec-
ond (see 2.1.6.2).

The movement sub-model differs with the chosen sampling
method. For fixed distance transects, the diver maintains a head-
ing of 0 ◦ and moves forward at a pre-defined constant speed. For
stationary point count, the diver starts with heading 0 ◦ and rotates
clockwise at a pre-defined constant speed (in degrees/second). The
default diver movement models and parameters for the stationary
point count and random path methods were adapted from Ward-
Paige et al. (2010), with added spatial and temporal resolution.
Transect diver swim speed was set to 8 m per minute based on
average swim speeds in real transects on temperate reefs (Pais et al.,
2014).

2.1.6.2. Fish counting. This is a diver procedure that simulates
the observation and recording of fish during the virtual sampling

method. Some parts of the counting sub-model differ with the cho-
sen sampling method.

At every second in model time, the diver lists eligible fish that
meet the following criteria:
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Fig. 1. Overview of the FishCensus model schedule. Each cycle (between in

) Their coordinates fall within the field of view (defined by view
angle and maximum visibility);

) Their coordinates fall within the sample area (transect length
and width or point count radius);

) They are closer than their ID distance (distance at which an
individual is identifiable);

) They are visible (Boolean variable based on detectability);
) Their unique ID is not in the diver’s memory (only new or for-

gotten fish can be counted).

Besides maximum visibility and memory, counts are also limited
y a saturation value. Count saturation is the maximum number of
sh that a diver can register in a second, with priority given to clos-
st fish. This is set to 3 fish based on visual working memory studies
Luck and Vogel, 1997). The “species name” value of the new fishes
s then added to the diver’s list of counted fish and their unique ID
s added to the memory list. Counted fish remain recorded until the
nd of the sample, but fish in the memory list are removed from
emory if they leave the diver’s field of view.

.1.6.3. Fish movement. The parameterisation of the movement
odel at such a small scale relies heavily on real time obser-

ation of model runs and comparison with field observations or

ideo footage. Parts of the movement sub-model code are based
n the NetLogo implementation by Wilensky (2005) of the flock-

ng model of Spector et al. (2005). A set of urges are translated into
wo-dimensional acceleration vectors of magnitude 1 m/s2 that are
ation and outputs) represents 1 model second. Legend: FOV- Field of view.

multiplied by weight coefficients given to different urges. Finally, a
vector representing deceleration due to drag (Ad) is added. All vec-
tors are then summed to generate a resultant acceleration vector
(A) that is added to the velocity vector from the previous cycle to
generate the new velocity vector:

A =
8∑

i=1

(wi.Ai) + Ad

where wi and Ai are the weight and the acceleration vector for urge
i. The magnitude of the velocity vector is limited by two attributes,
the maximum cruise speed and the maximum burst speed. These
are very important values for fish movement simulation and can
either be based on real measurements or estimated from the caudal
fin aspect ratio and total length (Sambilay Jr, 1990). The acceleration
vector is also limited to a maximum value.

If the magnitude of the resultant acceleration vector exceeds
the maximum acceleration, it is scaled down to this value and then
added to the velocity vector on the previous cycle to calculate the
x and y components of the new velocity. To avoid erratic move-
ment at low speed, a minimum speed threshold was  arbitrarily set
at 0.2 m/s  for all fish types in this study, below which no movement
occurs. The only time a velocity vector magnitude can exceed the

maximum cruise speed is when a diver is within the approach dis-
tance and covered by the perception angle, and the diver avoidance
urge weight is greater than zero. In this case, the maximum burst
speed becomes the limit.
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Table 1
Detailed description of the urge vectors used in the fish movement model.

Urge Description Vector calculation

Wander Urge to move around randomly. x and y components drawn from a uniform distribution between −1
and 1.

Cruise Urge to maintain current heading. Vector in the direction of velocity on the previous cycle.
Rest  Urge to stop moving. Vector in the opposite direction of velocity on the previous cycle.
Align  Urge to align with schoolmates. Mean of the x components and y components of the velocity vector of

schoolmates.
Spacing  Urge to move away from schoolmates that are

too close.
Sum of the vectors pointing away from schoolmates that are closer
than the schooling distance, their magnitude being equal to the
distance to each schoolmate.

Centre Urge to centre the position relative to
schoolmates.

Vector in the direction of the point defined by averaging x and y
coordinates of all schoolmates.

Avoid  diver Urge to move away from the diver. Urge
weight can be negative for attraction to divers.

Vector in the opposite direction of a diver who enters the area defined
by  approach distance and perception angle.
Vector in the direction of the picked patch centre.
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Table 2
Fixed attributes for the four types of fish used in the experiments.

Schooling Cryptic Shy Bold

Size (m)  0.2 0.1 0.3 0.3
ID  distance (m) 4  1 6 6
Approach distance (m) 1.0 0.7 3.0 3.0
Perception distance (m) 0.35 – – –
Perception angle (degrees) 320 360 320 320
Max. acceleration (m/s2) 0.2 0.1 0.1 0.1
Patch  centre Urge to move to the centre of the picked patch
if a fish moves outside the picked patch
distance.

Fish can be stationary for long periods and often move with short
ursts, followed by a coasting phase. This is a very important aspect
f fish movement and is greatly influenced by drag forces (Videler,
981). Since length is constant for a fish type in the model, the
agnitude of the acceleration due to drag in a movement cycle

an be written in the form ad = k v2, with v being the speed on the
revious cycle. The constant k is calculated from the total length
L) in meters using the formula

 =
1
2 × D × d × cL2

aLb

here D is the drag coefficient, d is the density of the fluid
1027 kg/m3 for surface seawater), c is the coefficient for the length

 surface area relationship and a and b are coefficients for the length
 weight relationship (see supplementary material S2 for details
n the calculation). The coefficients a, b and c must be converted so
he formulas reflect relationships in meters and kilograms. This for-

ula establishes the magnitude of the acceleration vector, while its
irection is always opposite to the velocity vector on the previous
ycle.

While the values to estimate drag forces can be taken from real
alues measured for each fish type in the model, they are only avail-
ble for a reduced number of species, and when using generic fish
ypes, it can be difficult to opt for one value over another. Given this,
he extensively studied movement of the cod Gadus morhua Lin-
aeus, 1758 was used as an approximation for simplicity. Videler
1981) estimated that the drag coefficient of a coasting cod with
.3 m total length is approximately 0.011. The length-weight rela-
ionship for cod can be converted to Kg and m from Coull et al.
1989) to W = 10.3 L2.857 and the coefficient for the length − sur-
ace area relationship (in metres) is approximately 40 (O’shea et al.,
006).

A fish can have up to 8 urges acting simultaneously (Table 1) and
ll vectors are given a magnitude equal to their weight coefficient.

eights define the relative importance of urges and are character-
stic of fish types, with a set of urge weights defining a behaviour
or a fish type (see section 2.1.6.4). Weight for the diver avoidance
rge can be set to negative values to simulate attraction to divers.

.1.6.4. Fish behaviour change. The way behaviour change is imple-
ented in FishCensus is based on the Reefex model by Watson et al.

1995), including the default 10 s interval. This seems like a reason-
ble value for a parameter that must be arbitrarily set, given that

ehavioural states are independent of external stimuli.

Attributes for up to four behavioural states, their names and
requencies are stored as fish variables. Stored attributes for a
ehavioural state are detectability, schooling (Boolean), schooling
Max. sustained speed (m/s) 0.5 0.3 0.4 0.4
Burst speed (m/s) 2.6 1.1 2.2 2.2

distance, urge weights (align, centre, spacing, wander, rest, cruise,
patch gathering, diver avoidance) and picked patch distance.

Behavioural state frequencies are used every 10 model seconds
to perform a weighted random selection with replacement. Every
fish, in a randomised order, picks the next state. If a fish has school-
mates, it will act as a leader and the others will immediately pick
the same state, even if some of them may  already have picked on
that turn.

Once the next behaviour is picked, and if detectability is smaller
than 1, the fish runs a Bernoulli trial to determine if it will be visi-
ble to the diver for the next 10 model seconds. This Bernoulli trial
occurs with every behaviour change, always in a randomised order,
while detectability remains smaller than 1. Visible status in schools
is independently set for every fish.

The last step of the behaviour change sub-model takes place
only if the weight given to the patch gathering urge is greater than
0. If this is the case, then it is assumed that the behavioural state
requires a fixed patch. If a fish has not picked a patch on a previous
state or commanded by a schoolmate on the present turn, it must
choose the patch that stands 2 metres ahead. Once more, if there
are schoolmates, they will skip the queue and pick the same patch
immediately. If the weight given to the patch gathering urge is 0, the
picked patch fish variable is cleared or replaced with a null value.

The behaviour change turn ends when all fish have picked the
next behavioural state, set their visible status (if applicable) and
picked a patch (if applicable).

2.2. Fish types and parameterisation

To test the influence of behavioural traits on the accuracy and
precision of estimated density, four generic types of fish were
created, representing four typically problematic behaviours for

underwater visual census, namely a “schooling” type, a “cryptic”
type, a fish that is attracted to divers (“bold” type) and a fish that
evades divers (“shy” type). Fixed attribute values for these types
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Table  3
Behavioural states, frequencies and attributes for the four fish types used in the experiments. BL: body lengths.

Schooling Cryptic Shy Bold

Behavioural state wandering feeding stationary guarding feeding nested patrolling wandering stationary wandering stationary

Frequency 0.5 0.2 0.3 0.25 0.2 0.1 0.45 0.6 0.4 0.6 0.4
Detectability 1 1 1 0.3 0.6 0.1 0.5 1 1 1 1
Schooling? TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Schooling distance (BL) 1 1 1 – – – – – – – –
Patch distance (m)  – 1 – 0.5 3 0.5 2 – – – –

Urge weights Align 5 1 5 – – – – – – – –
Centre 6 2 6 – – – – – – – –
Spacing 15 5 15 – – – – – – – –
Wander 3 1 1 3 3 0 3 7 7 7 7
Rest  0 1 7 2 1 15 2 0 6 0 6
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Cruise 0 0 0 0 

Patch gathering 0 10 0 6 

Diver  avoidance 10 10 10 4 

re specified in Table 2 and behavioural states and parameters for
ach type are summarised in Table 3.

All four fish types were parameterised based on real species or
roups that are familiar to the authors, so that observation expe-
ience could aid in parameterising the model. While some data
xist to support parameterisation, it is not easy to find a direct
alue to input into the model, and some assumptions are unfor-
unately unavoidable. Fish speed is among the most important
alues for a UVC simulation (Ward-Paige et al., 2010; Watson et al.,
995). For this study the values were calculated from the caudal
n aspect ratio of representative fish species, using the equations

rom Sambilay Jr (1990), and validated through comparison with
ideo footage and field observations. Maximum acceleration was
arameterised by first establishing maximum speeds and adjust-

ng while the model runs in real time until expected movement
atterns are matched, since blindly fitting a value here is difficult
nd may  lead to unrealistic movement. Perception angle for cryptic
sh was assumed to be 360◦, due to the position of the eyes on top of

he head and the predominantly sedentary behaviour. For all other
sh types, a value of 320◦ was adopted, since it encompasses both
isual and lateral line perception, in accordance with observations
y Partridge and Pitcher (1980). ID distance, approach distance,
chooling distance and some behaviour frequencies and patterns
ere parameterised based on the authors’ experience from more

han 250 UVC dives in temperate reefs, complemented by underwa-
er video. In this qualitative assessment, it is important to compare
etails such as fish spacing in schools, the school shape and hori-
ontal spread, the approximate distance from a threat that triggers
vasive movement, or how erratic or directed the movement is (e.g.
sh changing location or looking for food).

The “schooling” type is based on sparids from the genus Diplo-
us. These species usually form small to medium-sized schools and
an often be found stationary, or feeding in shoals around rock
atches (Gonç alves et al., 2014). There is an extensive literature
n the movement of sparids at larger scales, using acoustic teleme-
ry, but fine scale movement data is scarce. Given this handicap,
ehaviours and frequencies for the “schooling” type were based
n the authors’ experience from field observations. Perception dis-
ance has a strong effect on school sizes, therefore the value was
et by matching the resulting school sizes with real observations
f Diplodus spp. (approximately 2–15 fish; personal observation).
ideo 1 (available in the online version) illustrates the movement
f the “schooling” type with the model running in real time.

The “cryptic” type is based on blenniids, mostly on the genus

arablennius. These are small (8–10 cm)  benthic fish that tend to
e very approachable by divers. They hide in holes and crevices
nd males can have territorial behaviour in the reproductive sea-
on. Behaviours and frequencies were based on a study by Almada
0 0 0 10 0 10 0
6 15 6 0 0 0 0
10 0 10 10 10 −1 0

et al. (1987) on the behaviour of territorial males of Parablennius
pilicornis. The main parameters that vary according to behaviour
are detectability and the maximum distance to the patch centre.
Detectability has been quantified for some blenniids to be in the
range 0.1–0.4 (MacNeil et al., 2008a), but these values take into
account other factors that are modelled separately in FishCensus,
such as water visibility, maximum ID distance, count saturation,
observer speed, among others (Bozec et al., 2011). For this reason,
while the lowest value was  set at 0.1 for a nested fish, the highest
value was  set at 0.6 for feeding behaviour, to compensate for other
factors in the model that can increase the probability of missing a
fish. Video 2 (available in the online version) shows an example of
the “cryptic” type.

Both the “shy” and “bold” types share parameters from labrids
from the genus Labrus.  These species are usually solitary and reac-
tion to divers usually varies per species, sex and age (personal
observation). Even though some males guard nests in the reproduc-
tive season (Villegas-Ríos et al., 2013), this was not included in the
model since it was  not the key behaviour under study. As a simplifi-
cation, only two  behavioural states were included for this type, with
a slightly higher probability for the “wandering” state (Table 3).
As with the “schooling” type, the available data is mostly from
acoustic telemetry, so fine scale behaviour frequencies for “shy”
and “bold” types were set based on what the authors perceive from
field observations. Videos 3 and 4 (available in the online version)
illustrate the movement of the “shy” and “bold” types, respectively,
particularly their reaction to the diver.

2.3. Experiments and data analysis

To calculate the effect of behaviour on accuracy and precision of
density estimates, three control types were created that were iden-
tical to their counterparts in all parameters, except those shaping
the behaviours under study. For the schooling type, the control had
schooling set to false for all behaviours, thus align, centre and spac-
ing urges are ignored. For the cryptic type, control had detectability
set to 1 for all behaviours. Finally, for both the shy and bold types,
the control had the diver avoidance weight set to zero, being indif-
ferent to the diver.

Experiments were run for transect and stationary point counts.
Transects were 2 m wide and 40 m long and the diver swam at
8 m/minute, stationary points used a 5 m observation radius, 4◦ per
second clockwise rotation and a total observation time of 5 min.
Both methods sampled an area of approximately 80 m2.
To assess the effect of true density on the estimates, and to
understand if the effects of behaviour are affected by true density,
four pre-determined densities were tested, namely 0.05, 0.1, 0.2
and 0.3 fish/m2. 10 surveys with 10 replicates each were run for all
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Table 4
Average inaccuracy and correction factors (CF) for all fish types, calculated from 10
surveys with 10 replicates using a true density of 0.2 fish/m2.

method type inaccuracy CF

stationary schooling 400% 0.20
cryptic −79% 4.74
shy 609% 0.14
bold 974% 0.09

transect schooling 142% 0.41
cryptic −37% 1.60
4 M.P. Pais, H.N. Cabral / Ecolo

our fish types and three controls at each true density, for each of the
wo methods. To ensure sample independence, fish were replaced
nd reshuffled before every replicate and a new random seed was
sed. Precision per survey was calculated as the coefficient of vari-
tion of the estimates, which is obtained by dividing the standard
eviation of the density estimates from the 10 replicates by the
rue density. The inaccuracy of each survey was calculated as the
verage difference between estimated and true density for the 10
eplicates, divided by true density. Both precision and inaccuracy
ere then multiplied by 100 to reflect percentages of true density

The effect of true density on inaccuracy and precision irrespec-
ive of behaviour was tested through a mixed nested analysis of
ovariance, with true density (continuous) nested within behaviour
four levels, random). The significance of the effects of isolated
ehavioural traits was tested with one-way analysis of covariance,
ith true density as a covariate and behaviour as a two-level fixed

actor (behaviour vs control).

.4. Model sensitivity

In order to understand how sensitive the output of the model is
o small changes in parameters, a local sensitivity analysis was run
sing 30 × 2 m transects, a diver swimming at 8 m per minute with

 visibility of 6 m and true density of fish fixed at 0.2 fish per m2.
5 replicates were run for each parameter. Fish types were created
pecifically for sensitivity analysis and details can be seen in the
upplementary material (S3).

. Results

.1. Effect of behaviour on inaccuracy and precision

Fig. 2 shows the average inaccuracy (a1 and b1) and precision (a2
nd b2) for all types at different true densities. In general, inaccu-
acy was not affected by true density within fish types (F1,3 = 2.87,

 > 0.05), even though a slight increase is visible with decreasing
ensity of schooling fish (Fig. 2a1). Precision, however, is severely
ffected by decreasing density (F1,3 = 10.62, p < 0.05), a relation-
hip that is more pronounced for bold fish, where the coefficient
f variation goes from 98% at 0.3 fish/m2 to 256% at 0.05 fish/m2.

The diver systematically underestimated the density of cryp-
ic fish by about 80% of true density in stationary points and 40% in
ransects (Fig. 2 a1 and b1, respectively). All other types had overes-
imated densities, with stationary counts leading to approximately
wo times more bias when compared to transects for bold and shy
sh. Bold fish estimated density was biased by almost 500% of true
ensity in transects and by more than 900% in stationary points.
or schooling fish, the difference between methods was more pro-
ounced, going from more than 130% in transects to about 400% in
tationary counts.

Precision was higher (lower coefficient of variation) on tran-
ects, with stationary counts having almost two  times more
ariation for all fish types (Fig. 2a2 and b2). Cryptic fish, particu-
arly on stationary counts, had the highest precision, and this type

as the least affected by density. The remaining fish types had sim-
lar precision, with schooling and bold fish showing a slightly larger
ariation.

Since inaccuracy is stable across different true densities, it is
ossible to use a “correction factor” approach without much con-
ern about true density (which is unknown in the field). This can
e useful to correct densities for past or ongoing surveys, by sim-

ly multiplying the correction factor by the estimated density. This
orrection factor can be obtained with the formula 1/(�+1), where �
s inaccuracy. In the case of this study, correction factors should not
e directly applied to every species sharing these behavioural traits,
shy 259% 0.28
bold 504% 0.17

since that would carry an assumption that the behaviours were well
represented across all species. Nevertheless, calculated correction
factors for these fish types are shown in Table 4 for demonstration,
based on the data from Fig. 2 for a true density of 0.2 fish/m2.

Fig. 3 shows the average difference between the fish types and
their controls, which represents the absolute effect size attributable
only to the key behavioural trait in each case. ANCOVA results
revealed that true density, treated as a covariate, only had a sig-
nificant effect on inaccuracy for bold (F1,76 = 5.15, p < 0.05), shy
(F1,76 = 10.22, p < 0.05) and schooling (F1,76 = 12.45. p < 0.05) fish
when using stationary counts. For schooling and shy fish, effect
size decreased with density, while for bold fish the pattern was
opposite (Fig. 3a1). All behavioural traits significantly affected inac-
curacy, over and above the effect of true density, for both methods,
and there was no significant effect of the interaction term. In gen-
eral, schooling and bold behaviours affected bias positively on
both methods, with bold behaviour contributing to nearly 200%
positive bias in transect surveys and even surpassing that on sta-
tionary counts. The effect of cryptic behaviour alone accounts for
only 5–10% negative bias in stationary point counts (F1,76 = 19.67,
p < 0.05), whereas in transects this value increases to more than
40% (F1,76 = 444.97, p < 0.05).

The effect of behaviour on precision was  much more variable
among replicate surveys, as evidenced by the standard error bars,
particularly in low densities (Fig. 3 a2, b2). However, the effect of
isolated behaviour traits on precision was still significant for most
fish types in both methods, except for shy fish sampled with tran-
sects (F1,76 = 0.29, p > 0.05). Interaction between true density and
behaviour was significant for cryptic (F1,76 = 9.81, p < 0.05) and bold
(F1,76 = 4.48, p < 0.05) fish when using stationary points, evidenced
by an increase in effect size with decreasing density (Fig. 3b2).
For both methods, schooling and bold behaviours tend to decrease
precision (increasing variability), while cryptic and shy behaviours
increase precision.

3.2. Model sensitivity

Behaviour change interval (10 s) and count saturation (3 fish per
second) are two  structural parameters of the model that had to be
somewhat arbitrarily set. Increasing behaviour change interval by
1 s (10%) led to an average increase of 15.2% on the estimated den-
sity, while decreasing this parameter by 1 s led to an increase of
4.1%. These values suggest the output is relatively robust to small
changes in this model simplification parameter. For the count sat-
uration, counting 1 less fish per minute led to an increase in 0.4%
in the output and counting one more fish led to a 1.6% increase.

In terms of movement parameters and vector urges, the model
is particularly sensitive to fish speed (maximum speed and the
magnitude of the rest urge). The rest urge adds additional drag

to fish movement, regardless of their maximum speed, so chang-
ing this urge can drastically change the average speed and thus
impact the visual counts. Maximum speed, however, is one of the
most important attributes in the model, requiring a particularly
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Fig. 2. Inaccuracy (1) and precision (2) at four different true densities (fish/m2) for stationary point counts (a) and transects (b), expressed as percentages of true density.
Average values from n = 10 surveys, each survey with 10 replicates. Error bars denote the standard error of the mean.
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ig. 3. Isolated effect of key behavioural traits on inaccuracy (1) and precision (2) a
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nformed parameterisation, either from laboratory measurements,
ideo analysis or by using a proxy such as the caudal fin aspect ratio
pproach implemented in the model interface.

For schooling behaviour, the output seems to be particu-

arly sensitive to the spacing between schoolmates. Decreasing or
ncreasing the distance by 20% led to a decrease or increase in esti-

ated density by about 20%, respectively. Because increasing the
centre” urge vector leads to more compact schools, it is analogous
 different true densities (fish/m2) for stationary point counts (a) and transects (b),
 with 10 replicates. Error bars denote the standard error of the mean.

to decreasing the distance in terms of sensitivity.
A decrease in fish view angle of a non-schooling fish led to a 2.0%

average increase in estimated density, while an increase led to an
average increase of the output in 1.8%. Changing the view angle
on a schooling fish tends to affect the shape and size of schools,

and therefore model sensitivity is probably affected differently (for
more details on sensitivity analysis see supplementary material S3).
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. Discussion

.1. Assumptions, simplifications and parameterisation

Most methods used to estimate bias in UVC in the field share
 common problem: they are calculating bias based on approx-
mations to true density, which can be biased themselves (Sale
nd Sharp, 1983; Willis et al., 2000). Computer simulation is a
heaper alternative to laboratory experiments in aquaria, and a
on-destructive alternative to fishing, poisoning or explosives in
eefs. However, it does come with disadvantages, one of them being
he simplification process associated with modelling. In field-based

ethods the actual species, with all their behaviours and particu-
arities, are used to estimate bias, while in individual-based models
esults arise from simplified representations. The first simplifica-
ion in this study is the lack of individual variability in terms of
ize, behaviour repertoire and ID distance. This ignores the exis-
ence of smaller fish that would have lower detectability and thus
he model may  be slightly overestimating their densities. This is,
owever, an option for the current study and not a limitation of the
odel, since FishCensus allows for multiple fish types to populate

he model simultaneously and these types can represent different
ize classes of the same “species”, with different behaviours and
etectability. Another simplification is the absence of topographic
omplexity in the environment, which would make detectability
ary spatially. This can be seen as an advantage for generalisation,
ince calculations can be made in an abstract sense, detached from

 particular location with all its habitat patchiness. Additionally,
he detectability parameter can be used as a proxy to represent

 species likely to be missed due to topography. Another impor-
ant aspect is the lack of a third dimension. While it is possible to
nclude a vertical dimension, computational power requirements

ould increase greatly, and likely without significant gains. One
f the most important aspects to consider is the shape of schools,
ince the spacing urge and the schoolmate distance only account
or horizontal distance. If a species of interest tends to form schools
f vertically stacked individuals, spacing urge should be set to low
alues to allow for more overlap in two-dimensional space. This
s particularly important because model output was shown to be
articularly sensitive to school shaping parameters.

To narrow the gap between real and simulated fish, the FishCen-
us model attempts to unite two different modelling approaches,
irtual ecologist approaches to bias estimation and complex move-
ent models with emergent behaviour and interactions. Previous

irtual ecologist approaches to bias estimation in animal counts
sed simplified behaviour models, which is better for computa-
ional performance and allows them to isolate particular aspects
f movement, such as the speed or approach angle of the animals
eing counted (Ward-Paige et al., 2010; Watson et al., 1995). How-
ver, fish behaviour can be very complex and it has been shown
epeatedly that behaviour is one of the main factors responsi-
le for bias in counts (Biro, 2013; Kulbicki, 1998; Kulbicki et al.,
010; Lincoln Smith, 1989; Sale and Sharp, 1983). The simulation
f collective movement in water and air (swarming, flocking and
chooling) has been around for decades, from the simple “boids”
odel of Reynolds (1987) and its generic entities with the urges to

ohere, align and separate, to more complex and species-specific
odels that include elements of flight physics (e.g. Hemelrijk

nd Hildenbrandt, 2012). To produce fish movement and school-
ng behaviour without unnecessary complexity, FishCensus uses a
boids” approach.

The only addition to the FishCensus movement model that bor-

ows from physics simulation is the drag vector. In fact, while drag
oes not need to be specifically modelled for schooling behaviour
f constantly moving fish, or flocking of birds, it is very important
hen modelling behaviour changes and avoidance bursts in ani-
odelling 346 (2017) 58–69

mals that move in a dense medium. When a fish evades a nearby
diver its speed increases but, as a consequence, the amount of drag
countering the movement also increases, causing the fish to dras-
tically reduce the speed a small distance ahead (Videler, 1993).

The purpose of this study was  to test the influence of behavioural
traits, and not to calculate inaccuracy for a particular species, thus
the use of generic fish types representing key behaviours is suffi-
cient, with the added advantage of more flexibility in finding data
to parameterise. There are, however, still several assumptions and
arbitrariness when establishing some parameters. One of the main
difficulties found is the scarcity of information for direct, objec-
tive parameterisation of the movement model. It is very difficult
to objectively know how much weight the urge to align has over
the urge to avoid a diver in fish decision-making. What we can
observe is the movement patterns emerging from those weights
in different situations, and compare them to real observed pat-
terns (Kramer-Schadt et al., 2007). This kind of “pattern-oriented
modelling” (Grimm and Railsback, 2012) that relies heavily on
observation benefits from a user interface to control parameter
values in real time and observe changes instantly, a feature of
the NetLogo modelling environment where FishCensus is imple-
mented. While parameterisation relies heavily on observation, local
sensitivity analysis revealed a greater sensitivity of the output to
speed and school shaping parameters, which are among the easiest
patterns to extract from observation.

The amount of time a fish spends on each behavioural “state” can
also be quantified to a certain extent with observations or video
recordings in the field or in aquaria. While this was achievable
to a certain extent with the cryptic type, using literature on the
behaviour of territorial males (Almada et al., 1987), parameterisa-
tion of the other types relied heavily on the authors’ experience,
due to lack of small scale movement data. While this is not ideal,
FishCensus seems to better represent the intricacies of complex
fish behaviour than previous models, in a way that can be visually
compared to real patterns.

The diver movement model for both methods was similar to the
AnimDens model implementation. However, AnimDens divers are
able to count fish without saturation limits and remember all fish
counted, showing that even a perfect observer would still report
biased estimates (Ward-Paige et al., 2010). In FishCensus memory
implementation intends to be more realistic, but can also be seen
as unforgiving, in a sense that all fish that leave the field of view are
immediately forgotten. In a real UVC a diver may  remember some
fish that are very site-attached, rare or unique in some way  (pers.
obs.), but these nuances were simplified into a mechanistic pro-
cess and may  artificially lead to a slightly increased overestimation,
which is assumed to be negligible.

Validation, as in attempting to “fit” values to field data, is a dif-
ficult task, and one that would require an artificial setting without
guarantees of matching field conditions. In addition, in the case
of the present study, using generic types may  lead to combina-
tions of parameters which do not exist in a single species. Even
though speeds are estimated from the caudal fin aspect ratio of
real species, as well as other parameters, the main goal was not to
exactly mimic  one species, but to achieve a certain level of realism
that can make typical behavioural patterns plausible and results
useful. Since the model is created exactly because bias in the field
is unknown, and traditional approaches to calculate bias focus on
detectability alone, confidence on the bias estimates comes from
confidence on the representation of behaviour patterns and the
modelled sampling method. Nevertheless, the results of the exper-
iments here presented agreed with known patterns and orders of

magnitude observed in the field, as detailed in the next section,
which supports the validity and usefulness of emergent, larger scale
patterns in the model.
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.2. Effect of behavioural traits on density estimates

The coefficients of variation estimated using transects were
lightly below the ranges estimated by McClanahan et al. (2007a,b)
or within site variation in coral reefs. This lower variability is
xpected since natural spatial and temporal variability is not explic-
tly modelled in FishCensus. The observed increase in variability

ith fish rarity is also a known issue in fisheries stock assess-
ents (Blanchard et al., 2008), posing a serious problem for impact

ssessment and monitoring, because as a population declines, the
ecline becomes harder to detect in statistical tests. Bias, on the
ther hand, seems to stay unaffected by true density. This has also
een observed by Watson and Quinn II (1997) using the Reefex
odel for both stationary points and transects. This observation is

mportant for monitoring purposes, because it supports the idea
hat a “correction factor” can be applied to reduce bias, irrespec-
ive of true density (Christensen and Winterbottom, 1981; Sale and
harp, 1983; Ward-Paige et al., 2010).

By looking at the available literature on UVC bias estimation,
here seems to be a generalised idea that abundances tend to be
nderestimated (e.g. Christensen and Winterbottom, 1981; Edgar
t al., 2004; Jennings and Polunin, 1995; Willis, 2001). For this rea-
on, it may  come as a surprise that three out of four fish types
tudied were severely overestimated by transects and point counts.
n fact, field-based methods of bias estimation attempt to correct for
ias due to fish detectability or reaction to the diver (Bozec et al.,
011; Edgar et al., 2004; Sale and Sharp, 1983). However, a very

mportant component of bias is due to non-instantaneous sampling
Ward-Paige et al., 2010). Swimming along a transect or rotating in

 fixed point as fish move freely in and out of the sample area can
ead to biased estimates, particularly with fast-moving fish. Esti-

ating this component of bias is difficult in the field and benefits
reatly from computer models (Pierucci and Cózar, 2015).

The cryptic fish type was the only one whose density was  under-
stimated, mostly in transects. This has been witnessed by several
tudies and has been one of the major criticisms of using UVC for
ryptic fish. Willis (2001) reported underestimations by 44–91% for
ommon cryptic species even when using exhaustive UVC searches
ompared with rotenone poisoning and Sale and Sharp (1983) esti-
ated a negative bias of 21% when comparing wide with narrow

ransects. These estimates are in the same order of magnitude of
he results obtained with FishCensus, even though bias varies with
he particularities of each cryptic species and a swim speed of 8 m
er minute may  not be ideal for cryptic fish (Lincoln Smith, 1989).
he agreement of computer models with field methods in bias esti-
ation for these species is likely due to their limited movement. If

etectability is set to 1, they almost function as stationary objects,
o bias due to non-instantaneous sampling is negligible (Ward-
aige et al., 2010). This means that the amount of bias in estimates
ill be almost entirely linked to detectability, which is what field
ethods of bias estimation focus on.

Bias due to schooling behaviour can be attributed to both spa-
ial clustering and movement. This study revealed that schooling
ehaviour alone leads to less precision and accuracy in estimates
or both methods. While gregarious behaviour usually helps with
etectability (Kulbicki, 1998; MacNeil et al., 2008b), finding a school
ill have a much greater effect on total counts than when counting

olitary fish. This can lead to a more erratic behaviour of predic-
ions between transects (Cheal and Thompson, 1997) and also to

ore counts due to inconspicuousness (MacNeil et al., 2008b). This
tudy predicted overestimations due to schooling behaviour alone
o be under 50% for both methods, however, the actual difference

rom true density reached much larger values simply because the
imulated fish were moving relatively fast when wandering around
he sample area. In transects bias was smaller, likely because the
imulated fish had a 50% chance of staying on the same area (either
odelling 346 (2017) 58–69 67

stationary or feeding), effectively reducing bias due to movement
(Ward-Paige et al., 2010). In contrast, some field studies still con-
clude that schooling fish are underestimated by UVC. Christensen
and Winterbottom (1981) found that only an average of 57% of
schooling fish were counted in pools, and this was  attributed to the
observer being overwhelmed by the numbers and failing to make
an accurate estimate. This was also pointed out by Lincoln Smith
(1988). In a real field survey, divers will tend to count the whole
school even if some fish fall out of the sample area, and will try to
estimate numbers faster by counting small clusters at a time (per-
sonal observation). In FishCensus, the counting submodel does not
change in the face of a schooling fish, so fish outside the field of
view or sample area are simply ignored. In addition, the limit of 3
fish per second leads to a slower count that may end up missing
some fish that leave before being counted. For small schools, such
as the ones in the present study (size 2–15), this is likely not an
issue, however, large schools may  lead to unrealistic counts in the
model and there is still room for improvement, which may  include
the addition of probabilities of counting errors, as suggested by
Watson et al. (1995), which can be a function of fish density in the
field of view.

One would expect shy fish to be systematically underestimated,
and field observations point to that conclusion (Bozec et al., 2011;
Kulbicki, 1998; Kulbicki et al., 2010). In the simulations, when com-
pared to the control fish, shy behaviour led to underestimation in
both methods. These findings matched the orders of magnitude
found by Christensen and Winterbottom (1981) of up to 40% under-
estimation, or even the 90% underestimation reported by Edgar
et al. (2004). Despite this, the simulated deviation between survey
results and true density was  still strongly positive for both methods,
which is likely due to a cruise speed of 0.4 m/s, for which Ward-
Paige et al. (2010) found overestimations by up to 700% (albeit
with a slower observer swim speed). In fact, the AnimDens model
demonstrated that, in non-instantaneous sampling, overestimation
is directly proportional to fish speed relative to the diver, as more
fish will potentially enter the sample area during the survey (Ward-
Paige et al., 2010). The simulated shy fish avoided the diver when
it got closer than 3 m,  however, they represent large inconspicuous
fish that are still visible and identifiable up to 6 m. This can attenu-
ate bias in transects, since fish can cross the sample area in front of
the diver and still be counted, while still at a safe distance (Bozec
et al., 2011).

Bold or curious behaviour alone can lead to overestimation for
two reasons. The first is the creation of a cluster around the diver
that creates a false notion of density, the second one is the high
probability of recounts this generates (Colton and Swearer, 2010;
Kulbicki et al., 2010). In the modelled bold fish type the results of
these effects led to about 200% positive bias when compared to the
control type for both methods. However, when compared to true
density, the total overestimation reached near an astounding 1000%
in stationary points. This value can be inflated by the way  memory
works in FishCensus, since the diver is rotating at 4 ◦ per second for
5 min  (more than three and a quarter rotations), favouring possible
recounts of forgotten fish.

The difference between shy and bold behaviour has been
pointed out by several authors as problematic, particularly in
marine protected areas (MPAs) where UVC is frequently used for
monitoring. In fact, the same species can display diver avoidance
behaviour outside MPAs (e.g. due to spear fishers) or diver attrac-
tion or indifference inside MPAs, leading to an artificial increase of
the perceived “reserve effect” (Edgar et al., 2004; Willis et al., 2000).
In this study the differences in effect size were around 200%, favour-

ing bold fish over shy or indifferent (control) fish in either method,
which is a very significant difference in perception, considering a
scenario where the true densities are equal.
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In this study transects had less bias and more precision than
oint counts for all species, but point counts led to higher counts
ue to a greater overestimation. However, in some field studies
omparing transects to point counts, counting more fish has been
een as a sign of better performance (Colvocoresses and Acosta,
007; Samoilys and Carlos, 2000), a conclusion poisoned by the
ossibly erroneous assumption that UVC methods systematically
nderestimate. The relative performance of transects and point
ounts is of course only valid for the dimensions and sample times
dopted for the experiments. While a 40 × 2 m transect or a 5 m
adius point may  be suited for some types of fish, the same may
ot be true for other types. In fact, while results could be satis-

actory in point counts for the cryptic or schooling type, the shy
nd bold types would be strongly overestimated. It is nevertheless
mportant to stress that the dimensions and times used are within
ommon practice for a visibility of 6 m,  and could easily be picked
rbitrarily for a monitoring study (Colvocoresses and Acosta, 2007;
enriques et al., 2013; Lincoln Smith, 1988; Pais et al., 2014). This

tudy supports the need for a careful selection of sampling meth-
ds and designs to suit behavioural traits of the species of interest
Kulbicki et al., 2010; Lincoln Smith, 1989), and FishCensus can be

 valuable tool for that purpose.
There are two main components of UVC bias, namely detectabil-

ty and the effect of fish movement due to the non-instantaneous
ature of sampling methods. Cryptic or sedentary fish allow for
etter field estimations of true density, using methods such as
otenone collections or exhaustive searches in enclosed areas.
owever, bias for these species is almost only affected by
etectability. On the other hand, field methods that try to esti-
ate bias for mobile fish in the water column are either biased

y gear selectivity (e.g. capture-resight, baited video) or also suffer
rom non-instantaneous sampling bias (distance sampling, vary-
ng transect widths, video transects). For these species, computer

odels such as AnimDens and Reefex have shown that UVC meth-
ds overestimate densities of mobile organisms. With FishCensus,
y introducing complex behaviour into the model, it was possible
o separate the contributions of both components of bias, and gain

 deeper understanding of the effect of behavioural traits on UVC
stimates.

.3. Applicability of FishCensus as a tool

Due to the lack of information for direct, “blind” parameter-
sation, FishCensus benefits from the experience of the person
stimating parameter values. Therefore, the model’s ability to rep-
esent realistic behaviour can be increased by using parameter
alues estimated (and shared) by experts on the species being
odelled. While the model has abstract parameters that cannot

e directly measured (e.g. vector weights), they can be parame-
erised based on observed movement patterns and qualitatively or
uantitatively calibrated, as found necessary.

More than a simulation model of UVC to answer the questions
osed by this study, FishCensus intends to be a tool to aid in pick-

ng the best protocol for an upcoming survey, or a complement to
ast or ongoing surveys by permitting the calculation of correction

actors for real field data. Even if the detectability parameter in Fish-
ensus is not a function of distance to the centre of the transect or
xed point, it can be used in conjunction with distance sampling

heory if a uniform detection function can be assumed (Buckland
t al., 2012). In the future, non-uniform detection functions can be
dded to FishCensus if required, although processes and attributes
uch as diver avoidance, maximum ID distance and count satura-

ion are already contributing to a decay in detectability in areas
urther from the diver.

By modelling different transect dimensions, observation
adiuses, swim speeds or sampling times, it is possible to test the
odelling 346 (2017) 58–69

response of bias or precision for a species to these parameters. It is
also possible to apply search algorithms and approach survey plan-
ning as an optimisation problem, fitting the best possible method
to a species and using bias or precision as fitness.

Similarly to the models that preceded it, FishCensus is an
abstraction from variability due to external factors such as temporal
patterns or habitat features (Irigoyen et al., 2013; Pais et al., 2014,
2013). For this reason, it is still important to consider between-site
variability, since no two sites are the same. This variability needs to
be captured in the field, and sampling design is key. This issue has
been approached by the authors in the past (Pais et al., 2014, 2013),
and some key aspects, besides site selection, are to 1) try to match
the assessment scale to between-site variability and 2) adjust the
sampling effort so that the most variable sites are considered.

Despite its simplifications inherent to a modelled environment,
FishCensus can also be used to estimate residual variability due to
fish movement and calculate sample sizes for a method and species,
in order to optimise statistical power to detect expected effect sizes.
This can be a good alternative between a fully theoretical a priori
power analysis and an expensive pilot study.

The latest model versions are freely available at https://www.
openabm.org/model/5305/, along with tutorials and instructions
on how to collaborate, use the model and contribute with new
species.

While the model is still in its infancy in terms of practical appli-
cation, there is hope that it can help researchers and managers have
a better idea about the true state of a system. Nevertheless, it will
continue to be very difficult to know exactly how close to the truth
we are getting.
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