Preliminary steps

We load up library vegan and we source (i.e. read in) a file that has some useful functions for exploring PCA outputs (this file is in the folder for Aula T23).

library(vegan)
source("brocardfunctions.R")

Exercício 1

Recolheram-se dados de abundância de várias espécies de anfíbios em vários distritos de Portugal (DataTP10anfibios.csv). Efectue uma análise de componentes principais aos dados e retire as principais conclusões.

As usual, we begin by reading the data

anfibios<-read.csv2("DataTP10anfibios.csv")

and we check it all looks OK

str(anfibios)
## 'data.frame':    15 obs. of  7 variables:
##  $ Distritos  : Factor w/ 15 levels "AVEI","BEJA",..: 7 2 8 13 11 10 5 14 9 1 ...
##  $ Rana       : num  4.44 2.18 0.47 1.22 4.66 2.68 1.45 0 1 2.35 ...
##  $ Triturus   : num  0 0 0 2.45 0 0 1.88 0 0 0 ...
##  $ Salamandra : num  35.96 41.1 35.38 20.92 5.12 ...
##  $ Hyla       : num  3.2 0 0.71 0 1.82 0 0 1.5 1.71 6.47 ...
##  $ Bufo       : num  4.8 16.4 14.8 44.1 23.6 ...
##  $ Pleurodeles: num  16 0.48 9.3 11.46 20.76 ...

We have 15 observations for 7 variables, which correspond respectively to locations and taxa (genera of amphibians). The first column does not represent a genera, but it contains the labels of the locations

anfibios[,1]
##  [1] EVOR BEJA FARO SETU LISB LEIR CBRA VISE GUAR AVEI COIM PORT BRAG BRCA
## [15] VREA
## 15 Levels: AVEI BEJA BRAG BRCA CBRA COIM EVOR FARO GUAR LEIR LISB ... VREA

The names of the genera are

names(anfibios)[2:7]
## [1] "Rana"        "Triturus"    "Salamandra"  "Hyla"        "Bufo"       
## [6] "Pleurodeles"

We can also see and if some locations have much more amphibians than others

nbyloc=data.frame(loc=anfibios[,1],n=rowSums(anfibios[,2:7]))
nbyloc
##     loc     n
## 1  EVOR 64.40
## 2  BEJA 60.12
## 3  FARO 60.68
## 4  SETU 80.13
## 5  LISB 56.00
## 6  LEIR 64.44
## 7  CBRA 55.34
## 8  VISE 59.52
## 9  GUAR 44.71
## 10 AVEI 61.30
## 11 COIM 67.15
## 12 PORT 72.92
## 13 BRAG 63.86
## 14 BRCA 58.43
## 15 VREA  0.00

with Vila Real representing a really weird location, with no data (might that be a mistake?).

We can also evaluate what are the most abundant taxa,

colSums(anfibios[,2:7])
##        Rana    Triturus  Salamandra        Hyla        Bufo Pleurodeles 
##       21.99        5.44      146.68       36.63      471.83      186.43

By now, on lecture TP13, we should be fast at doing all the above.

Given that a PCA is a dimension reduction technique, we can see if the genera are highly correlated or not. The analysis will be more efficient if there are high correlations to explore (e.g. two variables with perfect correlation can be summarized in a single component!)

panel.hist <- function(x, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(usr[1:2], 0, 1.5) )
    h <- hist(x, plot = FALSE)
    breaks <- h$breaks; nB <- length(breaks)
    y <- h$counts; y <- y/max(y)
    rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
panel.corP <- function(x, y, digits = 2, prefix = "", cex.cor, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- abs(cor(x, y))
    txt <- format(c(r, 0.123456789), digits = digits)[1]
    txt <- paste0(prefix, txt)
    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex = cex.cor * r)
}
panel.corS <- function(x, y, digits = 2, prefix = "", cex.cor, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- abs(cor(x, y,method="spearman"))
    txt <- format(c(r, 0.123456789), digits = digits)[1]
    txt <- paste0(prefix, txt)
    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex = cex.cor * r)
}
pairs(anfibios[,2:7], lower.panel = panel.smooth, upper.panel = panel.corP,
      gap=0, row1attop=FALSE,diag.panel = panel.hist)

As it turns out, there is actually no correlation between any two variables larger than 0.65, and this is hinting to the fact that the PCA might not be very efficient to reduce the dimensionality of this data set.

For the PCA plots it might be useful to define row.names in the object anfibios, as these will be used by default in the plotting of biplots, hence making the plots easier to interpret.

row.names(anfibios)=anfibios[,1]

Now, we implement the PCA itself. There are several possible functions to do, and we begin by using princomp. Note that we must remove the first column, as otherwise the labels would be used as a (factor) covariate in the PCA, which would be unreasonable.

acp1<-princomp(anfibios[,-1])
acp1
## Call:
## princomp(x = anfibios[, -1])
## 
## Standard deviations:
##     Comp.1     Comp.2     Comp.3     Comp.4     Comp.5     Comp.6 
## 21.3241377 13.8202048  8.8379189  2.0249230  1.0881376  0.5173327 
## 
##  6  variables and  15 observations.

and we visualize the summary of the analysis

summary(acp1)
## Importance of components:
##                           Comp.1     Comp.2    Comp.3     Comp.4
## Standard deviation     21.324138 13.8202048 8.8379189 2.02492300
## Proportion of Variance  0.623434  0.2618644 0.1070897 0.00562166
## Cumulative Proportion   0.623434  0.8852984 0.9923880 0.99800971
##                             Comp.5       Comp.6
## Standard deviation     1.088137650 0.5173326744
## Proportion of Variance 0.001623361 0.0003669335
## Cumulative Proportion  0.999633067 1.0000000000

As we can see, we were able to extract 6 principal components, which is the number of genera available in the dataset. This is always the case, at most we extract as many PCs as original variables.

We can also explore some of the components of the PCA output, namely the loadings (i.e. the correlations between the PC’s and the original variables)

acp1$loadings
## 
## Loadings:
##             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## Rana                              0.375  0.920       
## Triturus                         -0.239  0.195 -0.951
## Salamandra   0.471 -0.710  0.521                     
## Hyla                              0.893 -0.330 -0.292
## Bufo        -0.861 -0.255  0.434                     
## Pleurodeles  0.171  0.655  0.732                     
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000
## Proportion Var  0.167  0.167  0.167  0.167  0.167  0.167
## Cumulative Var  0.167  0.333  0.500  0.667  0.833  1.000

Note there is an argument to the function that prints the loadings that can be used to force all loadings to appear, since by default only those above 0.1 are displayed

print(acp1$loadings,digits = 2, cutoff = 0.05)
## 
## Loadings:
##             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## Rana                       0.06   0.38   0.92   0.10 
## Triturus                         -0.24   0.20  -0.95 
## Salamandra   0.47  -0.71   0.52                      
## Hyla        -0.08                 0.89  -0.33  -0.29 
## Bufo        -0.86  -0.26   0.43  -0.06               
## Pleurodeles  0.17   0.66   0.73         -0.07        
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## SS loadings      1.00   1.00   1.00   1.00   1.00   1.00
## Proportion Var   0.17   0.17   0.17   0.17   0.17   0.17
## Cumulative Var   0.17   0.33   0.50   0.67   0.83   1.00

the scores (the coordinates of the locations in the principal components space) - note one could use these to manually plot the results of a PCA

acp1$scores
##           Comp.1     Comp.2      Comp.3       Comp.4      Comp.5
## EVOR  35.9372068  -9.447106   4.8185073  3.725788576  0.39758994
## BEJA  25.9322705 -26.132662   1.0883920 -1.005602272  0.47170637
## FARO  25.9645802 -15.938199   3.7883005 -0.737356805 -1.71864114
## SETU  -5.6126292 -11.697835  10.6619966 -3.377098293  0.85090691
## LISB   6.1061455  10.813623   0.4620701  1.348352884  2.53012718
## LEIR   8.9848858  25.213559  10.5964813 -0.466393130  0.23644253
## CBRA   5.5366438  16.597692   2.8113376 -1.813620589  0.31169056
## VISE   6.2936806  19.570766   6.8724397 -0.427544499 -2.25862036
## GUAR  -0.4735304   8.222119  -5.4756022 -0.578501670 -0.04296380
## AVEI -13.9550085   1.242643  -2.2288006  3.256310122  0.24966376
## COIM -30.6908939  -6.783789  -0.2957481 -0.008096814 -0.54770479
## PORT -28.3591494  -3.467991   2.1077881  2.418836310 -0.07153958
## BRAG -31.5838299  -8.565286  -1.7535031 -2.719565086  0.72190123
## BRCA -24.5776694  -6.527845  -5.5590466  1.756994063 -1.07362658
## VREA  20.4972974   6.900310 -27.8946126 -1.372502796 -0.05693222
##            Comp.6
## EVOR -0.534750516
## BEJA  0.673293918
## FARO  0.200646515
## SETU -0.826266873
## LISB  0.511082088
## LEIR  0.709903936
## CBRA -1.076690623
## VISE  0.118997893
## GUAR  0.355027113
## AVEI -0.365408342
## COIM  0.462117161
## PORT -0.008871033
## BRAG  0.208693187
## BRCA -0.265844705
## VREA -0.161929720

and the standard deviation associated with each PC

acp1$sdev
##     Comp.1     Comp.2     Comp.3     Comp.4     Comp.5     Comp.6 
## 21.3241377 13.8202048  8.8379189  2.0249230  1.0881376  0.5173327

We can plot the objects produced by a PCA in two different ways. The default plot function presents a display of the amount of variation explained by each principal component. remember that ideally, the first few components will explain most of the variability!

par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(acp1)

A second plot, representing sites and species in a biplot, is obtained via function biplot

biplot(acp1,cex=0.7)

Finally, we can use one of the bespoke functions in file brocardfunctions.R to plot the variances associated with each PC and evaluate two criteria to choose the number of PCs to interpret

evplot(acp1$sdev^2)

Both criteria seem to agree that the more sensible would be to interpret just the first two PCs.

Note that we could have implemented the same analysis using function rda in library vegan, which produces slightly different output, but the same results

acpbyrda1<-rda(anfibios[,-1])
acpbyrda1
## Call: rda(X = anfibios[, -1])
## 
##               Inertia Rank
## Total           781.5     
## Unconstrained   781.5    6
## Inertia is variance 
## 
## Eigenvalues for unconstrained axes:
##   PC1   PC2   PC3   PC4   PC5   PC6 
## 487.2 204.6  83.7   4.4   1.3   0.3

The summary of this object gives us direct access to something that was hidden above, namely the coordinates of the covariates in the PC space

summary(acpbyrda1)
## 
## Call:
## rda(X = anfibios[, -1]) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total           781.5          1
## Unconstrained   781.5          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                            PC1      PC2     PC3      PC4      PC5
## Eigenvalue            487.1988 204.6408 83.6880 4.393193 1.268618
## Proportion Explained    0.6234   0.2619  0.1071 0.005622 0.001623
## Cumulative Proportion   0.6234   0.8853  0.9924 0.998010 0.999633
##                             PC6
## Eigenvalue            0.2867497
## Proportion Explained  0.0003669
## Cumulative Proportion 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  10.2273 
## 
## 
## Species scores
## 
##                  PC1      PC2      PC3       PC4       PC5        PC6
## Rana        -0.24279  0.04961 -0.18772  0.287830  0.378957 -0.0188070
## Triturus     0.04546 -0.01272 -0.08416 -0.183302  0.080555  0.1862655
## Salamandra  -3.80663 -3.71720 -1.74307  0.008117 -0.018248 -0.0002021
## Hyla         0.63170 -0.17200  0.06577  0.685012 -0.135978  0.0572872
## Bufo         6.95334 -1.33604 -1.45330 -0.042191  0.009485 -0.0070138
## Pleurodeles -1.38213  3.42864 -2.45037  0.021880 -0.028093  0.0008849
## 
## 
## Site scores (weighted sums of species scores)
## 
##           PC1     PC2      PC3      PC4     PC5      PC6
## EVOR -4.45029 -1.8051 -1.43972  4.85876  0.9649  2.72958
## BEJA -3.21133 -4.9933 -0.32520 -1.31139  1.1447 -3.43677
## FARO -3.21533 -3.0454 -1.13190 -0.96158 -4.1708 -1.02418
## SETU  0.69504 -2.2351 -3.18569 -4.40403  2.0650  4.21760
## LISB -0.75616  2.0662 -0.13806  1.75837  6.1401 -2.60877
## LEIR -1.11264  4.8176 -3.16612 -0.60822  0.5738 -3.62364
## CBRA -0.68563  3.1714 -0.84000 -2.36512  0.7564  5.49587
## VISE -0.77938  3.7395 -2.05341 -0.55756 -5.4812 -0.60741
## GUAR  0.05864  1.5710  1.63605 -0.75442 -0.1043 -1.81220
## AVEI  1.72812  0.2374  0.66594  4.24651  0.6059  1.86519
## COIM  3.80061 -1.2962  0.08837 -0.01056 -1.3292 -2.35883
## PORT  3.51186 -0.6626 -0.62978  3.15437 -0.1736  0.04528
## BRAG  3.91119 -1.6366  0.52393 -3.54655  1.7519 -1.06526
## BRCA  3.04358 -1.2473  1.66098  2.29127 -2.6055  1.35698
## VREA -2.53829  1.3185  8.33462 -1.78986 -0.1382  0.82656

We can use a function in brocardfunctions.R to make a clean plot of this object

cleanplot.pca(acpbyrda1)

and this representation is slightly more useful as it shows us that the variables most important (those which the arrows go outside the “control” circle) are Pleurodeles, Salamandra and Bufo (question: what do these 3 taxa share? They were the most abundant! This is not good.). This last genera name is not printed in the plot, for reasons which are unclear (a possible bug in the function). Nonetheless, the rda function creates an object that can help us, because it provides the coordinates of the variables in the PC space. We could therefore plot these in PC space if we so wanted and check that the variable that was not printed above was Bufo

plot(summary(acpbyrda1)$species[,1:2],type="n",xlim=c(-5,7))
text(summary(acpbyrda1)$species[,1:2],names(anfibios[,-1]))

Note that the results of the princomp and of rda might look different, for example, the sites scores. The sites scores in the first component are

#princomp
acp1$scores[,1]
##        EVOR        BEJA        FARO        SETU        LISB        LEIR 
##  35.9372068  25.9322705  25.9645802  -5.6126292   6.1061455   8.9848858 
##        CBRA        VISE        GUAR        AVEI        COIM        PORT 
##   5.5366438   6.2936806  -0.4735304 -13.9550085 -30.6908939 -28.3591494 
##        BRAG        BRCA        VREA 
## -31.5838299 -24.5776694  20.4972974
#rda
summary(acpbyrda1)$sites[,1]
##        EVOR        BEJA        FARO        SETU        LISB        LEIR 
## -4.45028832 -3.21132583 -3.21532690  0.69504061 -0.75615526 -1.11264441 
##        CBRA        VISE        GUAR        AVEI        COIM        PORT 
## -0.68563095 -0.77937869  0.05863969  1.72812015  3.80061052  3.51185867 
##        BRAG        BRCA        VREA 
##  3.91118736  3.04357864 -2.53828528

but what we should keep in mind is that signs in scores are not possible to interpret, and in fact magnitudes are not easily interpreted either. It is only relative to each other that they can be interpreted. And relative to each other, the correlations between the sites scores across methods is perfect - as we can see below all 1 or -1 - so the results just look different at first, but are exactly the same!

cor(acp1$scores[,1],summary(acpbyrda1)$sites[,1])
## [1] -1
cor(acp1$scores[,2],summary(acpbyrda1)$sites[,2])
## [1] 1
cor(acp1$scores[,3],summary(acpbyrda1)$sites[,3])
## [1] -1
cor(acp1$scores[,4],summary(acpbyrda1)$sites[,4])
## [1] 1
cor(acp1$scores[,5],summary(acpbyrda1)$sites[,5])
## [1] 1
cor(acp1$scores[,6],summary(acpbyrda1)$sites[,6])
## [1] -1

Finally, we should note that it might be more sensible, given the data were abundances, to scale the data prior to the analysis. If we do that, say with the rda function, this is what we get

acpbyrda2<-rda(scale(anfibios[,-1]))
acpbyrda2
## Call: rda(X = scale(anfibios[, -1]))
## 
##               Inertia Rank
## Total               6     
## Unconstrained       6    6
## Inertia is variance 
## 
## Eigenvalues for unconstrained axes:
##    PC1    PC2    PC3    PC4    PC5    PC6 
## 2.3287 1.3351 1.1423 0.8014 0.2688 0.1238

As noted above, the summary of this object gives us direct access to the coordinates of the covariates in the PC space

summary(acpbyrda2)
## 
## Call:
## rda(X = scale(anfibios[, -1])) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total               6          1
## Unconstrained       6          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                          PC1    PC2    PC3    PC4     PC5     PC6
## Eigenvalue            2.3287 1.3351 1.1423 0.8014 0.26875 0.12379
## Proportion Explained  0.3881 0.2225 0.1904 0.1336 0.04479 0.02063
## Cumulative Proportion 0.3881 0.6106 0.8010 0.9346 0.97937 1.00000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  3.0274 
## 
## 
## Species scores
## 
##                  PC1     PC2      PC3      PC4      PC5      PC6
## Rana        -0.70518 -0.5605  0.35220 -0.71704  0.26273  0.09418
## Triturus    -0.05266  1.0845 -0.09913 -0.54777  0.10755 -0.16477
## Salamandra  -0.74030 -0.2325 -0.81806 -0.34136 -0.37349 -0.01298
## Hyla         0.95051 -0.6409  0.15236 -0.31626 -0.09727 -0.28401
## Bufo         1.07507  0.2143  0.12125 -0.43920 -0.22054  0.26382
## Pleurodeles -0.67071  0.1960  0.95069  0.02149 -0.36379 -0.05137
## 
## 
## Site scores (weighted sums of species scores)
## 
##           PC1      PC2     PC3     PC4      PC5     PC6
## EVOR -1.11472 -1.16822 -0.2980 -0.9783 -0.05659 -1.1615
## BEJA -0.80364 -0.48583 -1.5122 -0.1381 -0.18387  1.0847
## FARO -0.59632 -0.16407 -1.1444  0.5814 -1.21466 -0.1498
## SETU -0.19929  1.71236 -0.6032 -1.2792 -0.12597 -0.1142
## LISB -0.64957 -0.67438  0.9097 -0.6987  1.13161  1.0599
## LEIR -0.83183  0.04880  1.4780  0.3464 -0.54002  0.9706
## CBRA -0.50210  1.43906  0.6390 -0.3091  0.37601 -1.0968
## VISE -0.21402  0.29417  0.8576  1.1450 -1.39824 -0.4538
## GUAR  0.03154 -0.01817  0.2578  0.6898  0.30029  0.3949
## AVEI  0.63058 -0.78602  0.4346 -0.5638  0.33398 -0.7674
## COIM  1.18052 -0.15962 -0.1215  0.1496 -0.42285  0.6488
## PORT  1.07042 -0.62408  0.3282 -0.5670 -0.21849 -0.1281
## BRAG  0.94564  0.88104 -0.3997 -0.2379  0.34510  1.0314
## BRCA  1.26232 -0.41002 -0.2108  0.1312 -0.16822 -0.7446
## VREA -0.20951  0.11499 -0.6152  1.7287  1.84190 -0.5739

Make a clean plot of the output

cleanplot.pca(acpbyrda2)

The results are now considerably different, and this means that prior results were (inadvertently) dominated by the most abundant species. Typically, that is not desired, and therefore this might be a better analysis to interpret.

In this case we might need more than 2 PCs to interpret. Can you explain why this is a better analysis and yet it does not manage to represent as well the original information in just 2 PC’s?

evplot(acpbyrda2$CA$eig)

Exercício 2

Efectue uma análise de componentes principais aos dados das características de diferentes serras portuguesas (DataTP10serras.csv), com base na matriz de variância/covariância e na matriz de correlação. Comente os principais resultados obtidos em cada uma das análises e refira em que circunstâncias cada uma destas abordagens seria mais adequada.

We read in the data

serras<-read.csv("DataTP10serras.csv", sep=";")

as before, check it is all OK

str(serras)
## 'data.frame':    15 obs. of  6 variables:
##  $ Serra        : Factor w/ 15 levels "Acor","Alvao",..: 5 8 13 1 15 11 12 3 2 7 ...
##  $ Altitude     : int  1993 1548 1486 1418 1416 1415 1382 1362 1283 1227 ...
##  $ Perc.Floresta: int  20 21 18 17 16 15 25 32 45 54 ...
##  $ Dispon.agua  : int  5 6 7 8 9 5 4 10 12 14 ...
##  $ Matos        : int  75 48 76 98 56 47 56 35 34 54 ...
##  $ Incendios    : int  3 4 6 3 6 5 4 12 15 14 ...

We have 15 observations for 6 variables, which correspond respectively to serras and their characteristics. The first column does not represent a a characteristic, but it contains the labels of the serras.

As above, we begin with exploring the data

serras[,1]
##  [1] Estrela    Geres      Montesinho Acor       Soajo      Marao     
##  [7] Montemuro  Amarela    Alvao      Gardunha   Lousa      Bornes    
## [13] Padrela    Falperra   Gralheira 
## 15 Levels: Acor Alvao Amarela Bornes Estrela Falperra Gardunha ... Soajo

The names of the serras are

names(serras)[2:6]
## [1] "Altitude"      "Perc.Floresta" "Dispon.agua"   "Matos"        
## [5] "Incendios"

What are the correlations between descriptors?

pairs(serras[,2:6], lower.panel = panel.smooth, upper.panel = panel.corP,gap=0, row1attop=FALSE,diag.panel = panel.hist)

Some of the correlations are quite high, as high as 0.95, so the PCA technique might be efficient.

As before, we add the right labels to the row.names

row.names(serras)=serras[,1]

Now, we implement the PCA itself, first on the covariance matrix

acp.serras<-princomp(serras[,-1])
#this is the same as
#acp.serras<-princomp(serras[,-1],cor=FALSE)
acp.serras
## Call:
## princomp(x = serras[, -1])
## 
## Standard deviations:
##     Comp.1     Comp.2     Comp.3     Comp.4     Comp.5 
## 215.332725  15.664152  11.295886   2.235848   1.010098 
## 
##  5  variables and  15 observations.

We can look at the summary of the resulting object

summary(acp.serras)
## Importance of components:
##                             Comp.1       Comp.2       Comp.3       Comp.4
## Standard deviation     215.3327250 15.664151562 11.295885593 2.2358479945
## Proportion of Variance   0.9918929  0.005248781  0.002729514 0.0001069373
## Cumulative Proportion    0.9918929  0.997141723  0.999871237 0.9999781741
##                              Comp.5
## Standard deviation     1.010098e+00
## Proportion of Variance 2.182589e-05
## Cumulative Proportion  1.000000e+00

We can also look at some of the components of the object created

acp.serras$loadings
## 
## Loadings:
##               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Altitude       0.997                            
## Perc.Floresta         0.555  0.779 -0.263  0.116
## Dispon.agua                  0.130  0.792  0.593
## Matos                -0.805  0.589              
## Incendios             0.186  0.171  0.551 -0.795
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## SS loadings       1.0    1.0    1.0    1.0    1.0
## Proportion Var    0.2    0.2    0.2    0.2    0.2
## Cumulative Var    0.2    0.4    0.6    0.8    1.0

Apparently, the main driver of the variability would be Altitude. But in fact, the truth is that the altitude is measured with a higher order of magnitude (1000’s) than the other variables (10’s or 100’s). This suggests that the analysis based on the correlation matrix is much more sensible than one based on the covariances.

We can look at the scores of the analysis

acp.serras$scores
##                 Comp.1     Comp.2      Comp.3     Comp.4       Comp.5
## Estrela     637.772883  18.577037  15.8304839  0.6159163  0.401905823
## Geres       192.883507   8.458511 -11.0379411 -1.6814589  1.333573829
## Montesinho  132.409285 -19.853092   1.9160680  0.9369192 -1.609093482
## Acor         65.680113 -43.598861  11.8774196  0.1551196 -0.022792148
## Soajo        61.852382  -9.868268 -13.0582419  2.3130933  0.366487802
## Marao        60.605771  -3.704939 -19.8566483 -1.2639212 -0.835996979
## Montemuro    27.529712  -8.078386  -7.9617387 -5.3448661  0.003224666
## Amarela       6.004445  13.130049 -13.2810904  1.5715964 -0.852477944
## Alvao       -73.671336  16.039050  -5.1146234  0.8413669 -0.563993596
## Gardunha   -129.183895   0.768920  12.2499784 -0.6179373  1.312161511
## Lousa      -152.331717  13.870548  16.2403720  0.8775077 -1.907480327
## Bornes     -155.527864  -3.763524  -4.0235285  4.6340288  1.106989884
## Padrela    -210.395347   1.503908   9.0297213 -1.4836588  1.111213174
## Falperra   -222.481752   5.347614  -0.1898093  0.9765820  0.807563740
## Gralheira  -241.146186  11.171433   7.3795786 -2.5302879 -0.651285955

and the plot it

par(mfrow=c(1,2),mar=c(4,4,0.5,0.5))
plot(acp.serras)
biplot(acp.serras,cex=0.7)

No, we implement the PCA on the correlation matrix, which will decrease the influence of altitude in the analysis

acp.serras2<-princomp(serras[,-1],cor=TRUE)

which we note in passing is equivalent with an analysis on the covariance matrix of the scaled data (scaled data have, by definition, variances of 1, and hence the covariances and correlations are the same)

#which is the same as
acp.serras2<-princomp(scale(serras[,-1]))

Then we can look at the object resulting

acp.serras2
## Call:
## princomp(x = serras[, -1], cor = TRUE)
## 
## Standard deviations:
##    Comp.1    Comp.2    Comp.3    Comp.4    Comp.5 
## 1.9774983 0.7738141 0.5699272 0.3709750 0.1681455 
## 
##  5  variables and  15 observations.
summary(acp.serras2)
## Importance of components:
##                           Comp.1    Comp.2    Comp.3     Comp.4
## Standard deviation     1.9774983 0.7738141 0.5699272 0.37097499
## Proportion of Variance 0.7820999 0.1197576 0.0649634 0.02752449
## Cumulative Proportion  0.7820999 0.9018575 0.9668209 0.99434542
##                             Comp.5
## Standard deviation     0.168145492
## Proportion of Variance 0.005654581
## Cumulative Proportion  1.000000000
acp.serras2$loadings
## 
## Loadings:
##               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Altitude       0.436         0.867  0.218       
## Perc.Floresta -0.472 -0.171  0.401 -0.617  0.454
## Dispon.agua   -0.463 -0.367         0.739  0.313
## Matos          0.359 -0.907        -0.157 -0.153
## Incendios     -0.494         0.281        -0.820
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## SS loadings       1.0    1.0    1.0    1.0    1.0
## Proportion Var    0.2    0.2    0.2    0.2    0.2
## Cumulative Var    0.2    0.4    0.6    0.8    1.0

the summary of the object

summary(acp.serras2)
## Importance of components:
##                           Comp.1    Comp.2    Comp.3     Comp.4
## Standard deviation     1.9774983 0.7738141 0.5699272 0.37097499
## Proportion of Variance 0.7820999 0.1197576 0.0649634 0.02752449
## Cumulative Proportion  0.7820999 0.9018575 0.9668209 0.99434542
##                             Comp.5
## Standard deviation     0.168145492
## Proportion of Variance 0.005654581
## Cumulative Proportion  1.000000000

and some of its components, as before, the loadings

acp.serras2$loadings
## 
## Loadings:
##               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Altitude       0.436         0.867  0.218       
## Perc.Floresta -0.472 -0.171  0.401 -0.617  0.454
## Dispon.agua   -0.463 -0.367         0.739  0.313
## Matos          0.359 -0.907        -0.157 -0.153
## Incendios     -0.494         0.281        -0.820
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## SS loadings       1.0    1.0    1.0    1.0    1.0
## Proportion Var    0.2    0.2    0.2    0.2    0.2
## Cumulative Var    0.2    0.4    0.6    0.8    1.0

and the scores

acp.serras2$scores
##                Comp.1        Comp.2      Comp.3      Comp.4      Comp.5
## Estrela     3.3843786 -0.1701555286  1.72232398  0.07514264  0.07994403
## Geres       1.6882639  0.9496873031  0.06625469  0.01739621  0.24404943
## Montesinho  1.9511841 -0.6533639671 -0.19031455 -0.02727515 -0.28748056
## Acor        2.4374279 -1.9059101727 -0.65104457 -0.07036841 -0.02629920
## Soajo       1.2117037  0.2167791652 -0.43885015  0.52022847 -0.01106022
## Marao       1.5864603  1.0781288710 -0.57641648 -0.08816721 -0.12645700
## Montemuro   1.6429874  0.5896419318 -0.57088183 -0.72723636  0.10318056
## Amarela    -0.3735097  1.0037137166  0.04488904  0.26602348 -0.17258861
## Alvao      -1.3746378  0.6836330476  0.20072489  0.09967202 -0.10143626
## Gardunha   -1.4495942 -0.6636659398  0.13075576 -0.08309614  0.23338604
## Lousa      -2.6682495 -0.4638399285  0.65613646 -0.24793196 -0.29699170
## Bornes     -1.4855502 -0.3421301766 -0.25978905  0.83528254  0.06845791
## Padrela    -1.9024131 -0.4209728434 -0.07063063 -0.21719952  0.21754209
## Falperra   -2.1819737 -0.0009751006 -0.14613111  0.20411953  0.11004382
## Gralheira  -2.4664777  0.0994296218  0.08297355 -0.55659014 -0.03429033

Now, all variables have a reasonable influence on the first component. We can plot the resulting object

par(mfrow=c(1,2),mar=c(4,4,0.5,0.5))
plot(acp.serras2)
biplot(acp.serras2,cex=0.7)

In this case, given all the variables are measured in different units, it would only make sense to interpret the analysis over the correlation matrix, since the analysis based on the covariances suffers a strong impact from the measuring units of each variable (in other words, the analysis would return different results if say altitude was measured in km and in meters!). Leveraging on the nice clean biplot function (cleanplot.pca), for the scaled analysis we get the following biplots

rda.serras2s<-rda(scale(serras[,-1]))
cleanplot.pca(rda.serras2s)

showing that matos seems to be the main driver of the variability in Serras. Notice that the conclusions would be extremely different if interpreting the analysis based on the covariance and the correlation matrix.

Just to finish, note how the different principal components are indeed independent (i.e. uncorrelated, and while not shown here for both, this obviously happens for both covariance and correlation based analysis)

round(cor(acp.serras$scores),4)
##        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Comp.1      1      0      0      0      0
## Comp.2      0      1      0      0      0
## Comp.3      0      0      1      0      0
## Comp.4      0      0      0      1      0
## Comp.5      0      0      0      0      1

This happens by construction, i.e. a PCA is the mathematical procedure that obtains the linear combinations of the original covariates which simultaneous respect two conditions:

Exercício 3

Recolheu dados relativos a densidades de várias espécies de anfíbios e répteis em três tipos florestais (pinhal, eucaliptal e sobro) (DataTP10herpetofauna.csv). Realize uma análise de correspondências e comente os resultados obtidos. Efectue uma análise de componentes principais aos mesmos dados compare os resultados com os obtidos na análise de correspondências.

We read the data in

herpeto <- read.csv2("DataTP10herpetofauna.csv")

and we look at the data

str(herpeto)
## 'data.frame':    22 obs. of  11 variables:
##  $ Habitat    : Factor w/ 22 levels "Eucalip1","Eucalip2",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Chalcides  : num  0.05 0.02 0.01 0.01 0.02 0.08 0.03 0.02 0 0.01 ...
##  $ Triturus   : num  0.22 0.18 0.18 0.15 0.12 0.03 0 0.02 0.03 0 ...
##  $ Bufo       : num  0 0.04 0.05 0.01 0.04 0 0 0 0.01 0.01 ...
##  $ Rana       : num  0.2 0.13 0.11 0.1 0.02 0.02 0.02 0.02 0.01 0 ...
##  $ Salamandra : num  0.03 0 0 0.01 0 0.02 0 0 0.01 0.01 ...
##  $ Lacerta    : num  0.06 0.15 0.13 0.17 0.37 0.21 0.19 0.19 0.2 0.23 ...
##  $ Podarcis   : num  0.16 0 0.09 0.1 0.12 0.12 0.34 0.2 0.26 0.11 ...
##  $ Coluber    : num  0.03 0.05 0.08 0.04 0.08 0.16 0.11 0.31 0.25 0.21 ...
##  $ Malpolon   : num  0.06 0.04 0.06 0.05 0.02 0.05 0.1 0.03 0.08 0.1 ...
##  $ Psamodromus: num  0.16 0.36 0.32 0.33 0.16 0.32 0.17 0.2 0.14 0.27 ...

We can check upfront how many observations (replicates) exist in each habitat by using function substr (subset a string, i.e. a word), then table to count how many different habitats, then barplot to make a suitable plot of the result

barplot(table(substr(herpeto$Habitat,1,4)))

PCA

Given the way the material was presented in the lectures, we first implement the PCA.

The labels of the locations are

herpeto[,1]
##  [1] Eucalip1 Eucalip2 Eucalip3 Eucalip4 Eucalip5 Eucalip6 Eucalip7
##  [8] Eucalip8 Pinhal1  Pinhal2  Pinhal3  Pinhal4  Pinhal5  Pinhal6 
## [15] Pinhal7  Pinhal8  Sobro1   Sobro2   Sobro3   Sobro4   Sobro5  
## [22] Sobro6  
## 22 Levels: Eucalip1 Eucalip2 Eucalip3 Eucalip4 Eucalip5 ... Sobro6

and this seems to imply there are 3 types of habitats, Eucaliptal, Pinhal e Sobro. We can create a separate variable to hold the type of habitat - this could be useful for plotting say points with different colors per habitat

herpeto.hab=substr(herpeto[,1],1,4)
herpeto.hab
##  [1] "Euca" "Euca" "Euca" "Euca" "Euca" "Euca" "Euca" "Euca" "Pinh" "Pinh"
## [11] "Pinh" "Pinh" "Pinh" "Pinh" "Pinh" "Pinh" "Sobr" "Sobr" "Sobr" "Sobr"
## [21] "Sobr" "Sobr"

The names of the genera are

names(herpeto)[-1]
##  [1] "Chalcides"   "Triturus"    "Bufo"        "Rana"        "Salamandra" 
##  [6] "Lacerta"     "Podarcis"    "Coluber"     "Malpolon"    "Psamodromus"

We can also see and if some locations have much more animals than others

nbyloc=data.frame(loc=herpeto[,1],n=rowSums(herpeto[,-1]))
nbyloc
##         loc    n
## 1  Eucalip1 0.97
## 2  Eucalip2 0.97
## 3  Eucalip3 1.03
## 4  Eucalip4 0.97
## 5  Eucalip5 0.95
## 6  Eucalip6 1.01
## 7  Eucalip7 0.96
## 8  Eucalip8 0.99
## 9   Pinhal1 0.99
## 10  Pinhal2 0.95
## 11  Pinhal3 0.98
## 12  Pinhal4 0.96
## 13  Pinhal5 0.96
## 14  Pinhal6 0.92
## 15  Pinhal7 0.92
## 16  Pinhal8 0.95
## 17   Sobro1 0.93
## 18   Sobro2 0.92
## 19   Sobro3 0.90
## 20   Sobro4 0.91
## 21   Sobro5 0.91
## 22   Sobro6 1.00

and in fact these numbers are extremely suspicious to me, as they are way too close to 1 to being true… Not sure what happened here, but I suspect some scaling must have happened at some level.

We can also evaluate what are the most abundant taxa, and show them in increasing order

sort(colSums(herpeto[,-1]))
##        Bufo   Chalcides        Rana    Triturus  Salamandra    Podarcis 
##        0.18        0.34        0.67        0.95        1.17        1.66 
##    Malpolon Psamodromus     Lacerta     Coluber 
##        1.89        2.70        5.52        5.97

Given that a PCA is a dimension reduction technique, we can see if the genera are highly correlated or not. The analysis will be more efficient if there are high correlations to explore (e.g. two variables with perfect correlation can be summarized in a single component!)

pairs(herpeto[,-1], lower.panel = panel.smooth, upper.panel = panel.corP,
      gap=0, row1attop=FALSE,diag.panel = panel.hist)

As it turns out, there are a couple of large correlations, but many low correlations too, so it’s unclear how the PCA might perform.

For the PCA plots it might be useful to define row.names in the object herpeto, as these will be used by default in the plotting of biplots, hence making the plots easier to interpret.

row.names(herpeto)=herpeto[,1]

Now, we implement the PCA itself

acph1<-princomp(herpeto[,-1])
acph1
## Call:
## princomp(x = herpeto[, -1])
## 
## Standard deviations:
##      Comp.1      Comp.2      Comp.3      Comp.4      Comp.5      Comp.6 
## 0.222253341 0.116857752 0.084798534 0.065174317 0.049421709 0.027323770 
##      Comp.7      Comp.8      Comp.9     Comp.10 
## 0.019466369 0.012803054 0.007711547 0.005515373 
## 
##  10  variables and  22 observations.

and we visualize the summary

sumacp1=summary(acph1)
sumacp1
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4
## Standard deviation     0.2222533 0.1168578 0.08479853 0.06517432
## Proportion of Variance 0.6307611 0.1743747 0.09182164 0.05424020
## Cumulative Proportion  0.6307611 0.8051358 0.89695745 0.95119765
##                            Comp.5      Comp.6      Comp.7      Comp.8
## Standard deviation     0.04942171 0.027323770 0.019466369 0.012803054
## Proportion of Variance 0.03118917 0.009533439 0.004838807 0.002093127
## Cumulative Proportion  0.98238683 0.991920266 0.996759072 0.998852199
##                              Comp.9      Comp.10
## Standard deviation     0.0077115470 0.0055153726
## Proportion of Variance 0.0007593664 0.0003884347
## Cumulative Proportion  0.9996115653 1.0000000000

We can also explore some of the components of the PCA output, namely the loadings (i.e. the correlations between the PC’s and the original variables)

print(acph1$loadings,digits = 2, cutoff = 0.2)
## 
## Loadings:
##             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
## Chalcides                                              0.75   0.58   0.31 
## Triturus     0.25         -0.38         -0.45         -0.34   0.33   0.35 
## Bufo                                                  -0.43   0.33        
## Rana                      -0.25  -0.25  -0.28          0.31  -0.64   0.36 
## Salamandra                       -0.27   0.33  -0.81                 0.29 
## Lacerta            -0.87                                             0.36 
## Podarcis     0.25          0.87                                      0.31 
## Coluber     -0.71   0.41          0.36                               0.35 
## Malpolon                         -0.40   0.64   0.53                 0.33 
## Psamodromus  0.51                 0.68   0.36                        0.30 
##             Comp.10
## Chalcides          
## Triturus    -0.45  
## Bufo         0.81  
## Rana         0.31  
## Salamandra         
## Lacerta            
## Podarcis           
## Coluber            
## Malpolon           
## Psamodromus        
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## SS loadings       1.0    1.0    1.0    1.0    1.0    1.0    1.0    1.0
## Proportion Var    0.1    0.1    0.1    0.1    0.1    0.1    0.1    0.1
## Cumulative Var    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8
##                Comp.9 Comp.10
## SS loadings       1.0     1.0
## Proportion Var    0.1     0.1
## Cumulative Var    0.9     1.0

the scores (the coordinates of the locations in the principal components space) - note one could use these to manually plot the results of a PCA

acph1$scores
##               Comp.1        Comp.2        Comp.3       Comp.4       Comp.5
## Eucalip1  0.33036012  0.1190746337 -0.0536501941 -0.173598501 -0.090526132
## Eucalip2  0.34584060  0.0517842147 -0.1721385189  0.058846301  0.009082210
## Eucalip3  0.32476098  0.0779560507 -0.0841678556  0.019993831 -0.005314638
## Eucalip4  0.34143688  0.0258898542 -0.0655258483  0.025832367  0.013281281
## Eucalip5  0.17800655 -0.1704727058 -0.0023542392  0.002300882 -0.068136960
## Eucalip6  0.20429760  0.0187811424  0.0293535323  0.106670305  0.061945854
## Eucalip7  0.21143613 -0.0009541545  0.2399409213 -0.066183602  0.019471640
## Eucalip8  0.06037370  0.0814274760  0.1267152444  0.075954562 -0.032648361
## Pinhal1   0.07974812  0.0415702696  0.1736002759 -0.017164678 -0.022469305
## Pinhal2   0.12084691  0.0036613757  0.0441539446  0.089594180  0.082344779
## Pinhal3  -0.03808968 -0.0671599482 -0.0092753287 -0.076925610  0.044006065
## Pinhal4  -0.10939491 -0.2021268920 -0.0189188778 -0.001490877  0.002516037
## Pinhal5  -0.11011557 -0.1101631123  0.0179693053  0.027027647 -0.028576384
## Pinhal6  -0.16187489 -0.1856887962 -0.0266235105 -0.018859311 -0.003899037
## Pinhal7  -0.20549424 -0.0722419492 -0.0272707540  0.078608606 -0.073942208
## Pinhal8  -0.09507087 -0.1578061781 -0.0281760532 -0.060250364  0.050353478
## Sobro1   -0.25176387  0.0667264114 -0.0264528531 -0.007841541 -0.006905388
## Sobro2   -0.12468269 -0.0152867492 -0.0482293582 -0.075773264  0.091258354
## Sobro3   -0.20139685 -0.0139815965 -0.0293047807 -0.030779206  0.009969235
## Sobro4   -0.29326921  0.1501800341  0.0001913402  0.040198823 -0.043555560
## Sobro5   -0.27961522  0.0673598930 -0.0156762094  0.045156030 -0.062687574
## Sobro6   -0.32633958  0.2914707263 -0.0241601824 -0.041316579  0.054432614
##                 Comp.6        Comp.7        Comp.8        Comp.9
## Eucalip1  0.0003849084  0.0340361565 -0.0057888571 -0.0002534738
## Eucalip2  0.0119767752 -0.0030303004 -0.0061535217 -0.0058286363
## Eucalip3  0.0168104838 -0.0340484229  0.0052779494  0.0111880085
## Eucalip4 -0.0099672205 -0.0091393928 -0.0152754544 -0.0041853267
## Eucalip5 -0.0261431923 -0.0267621951  0.0395666453 -0.0044229935
## Eucalip6 -0.0198959109  0.0530281565  0.0213244051  0.0070892394
## Eucalip7 -0.0027819539  0.0040587949 -0.0018174578 -0.0099902259
## Eucalip8  0.0012641350  0.0018305978 -0.0121284771  0.0067218530
## Pinhal1   0.0064195679 -0.0319496192 -0.0026199560  0.0049651031
## Pinhal2   0.0190603464 -0.0059887697 -0.0101173348 -0.0098615361
## Pinhal3   0.0159393830  0.0123083101 -0.0081942702  0.0105938377
## Pinhal4   0.0241696557 -0.0097383806 -0.0060933523  0.0095122430
## Pinhal5  -0.0201931467  0.0136854862 -0.0031822026  0.0080259948
## Pinhal6   0.0516448822 -0.0013358857 -0.0074970018  0.0016667964
## Pinhal7  -0.0479037860  0.0075133298 -0.0171264087 -0.0014230612
## Pinhal8  -0.0100291625  0.0110885427  0.0065037999  0.0035186253
## Sobro1   -0.0258301614 -0.0041949108 -0.0013418082 -0.0033168842
## Sobro2   -0.0248019521 -0.0072512355  0.0027701275 -0.0114785828
## Sobro3    0.0016150264 -0.0030127952  0.0002010651 -0.0116901771
## Sobro4    0.0773930484  0.0168840405  0.0195055872 -0.0065897458
## Sobro5   -0.0142070233  0.0005152552 -0.0058044624 -0.0063703662
## Sobro6   -0.0249247029 -0.0184967623  0.0079909856  0.0121293084
##                Comp.10
## Eucalip1 -0.0008319545
## Eucalip2  0.0092156639
## Eucalip3  0.0061611483
## Eucalip4 -0.0159141142
## Eucalip5 -0.0025343131
## Eucalip6 -0.0015222878
## Eucalip7  0.0090531127
## Eucalip8 -0.0030570981
## Pinhal1  -0.0044147046
## Pinhal2   0.0005058102
## Pinhal3   0.0023686708
## Pinhal4   0.0083093312
## Pinhal5  -0.0002895905
## Pinhal6  -0.0085563999
## Pinhal7   0.0028535561
## Pinhal8  -0.0019751886
## Sobro1    0.0015824262
## Sobro2   -0.0007066841
## Sobro3   -0.0002147896
## Sobro4   -0.0010813382
## Sobro5    0.0025031725
## Sobro6   -0.0014544285

We can plot the objects produced by the PCA

par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(acph1)

biplot(acph1,cex=0.7)

as for previous exercises, and not surprisingly given the unscaled analysis (i.e. using the covariance matrix), Lacerta and Coluber, the most abundant species, are the ones driving most of the variability on the first PC.

Finally, we can use one of the bespoke functions in file brocardfunctions.R to plot the variances associated with each PC and two criteria to choose the number of PCs to interpret

evplot(acph1$sdev^2)

Both criteria seem to agree that the more sensible would be to interpret just the first two PCs.

Note that we could have implemented the same analysis using function rda in library vegan, which produces slightly different output, but the same results

acphbyrda1<-rda(herpeto[,-1])
acphbyrda1
## Call: rda(X = herpeto[, -1])
## 
##               Inertia Rank
## Total         0.08204     
## Unconstrained 0.08204   10
## Inertia is variance 
## 
## Eigenvalues for unconstrained axes:
##     PC1     PC2     PC3     PC4     PC5     PC6     PC7     PC8     PC9 
## 0.05175 0.01431 0.00753 0.00445 0.00256 0.00078 0.00040 0.00017 0.00006 
##    PC10 
## 0.00003

The summary of this object gives us direct access to something that was hidden above, namely the coordinates of the covariates in the PC space

summary(acphbyrda1)
## 
## Call:
## rda(X = herpeto[, -1]) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total         0.08204          1
## Unconstrained 0.08204          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                           PC1     PC2      PC3     PC4      PC5       PC6
## Eigenvalue            0.05175 0.01431 0.007533 0.00445 0.002559 0.0007821
## Proportion Explained  0.63076 0.17437 0.091822 0.05424 0.031189 0.0095334
## Cumulative Proportion 0.63076 0.80514 0.896957 0.95120 0.982387 0.9919203
##                            PC7       PC8       PC9      PC10
## Eigenvalue            0.000397 0.0001717 0.0000623 3.187e-05
## Proportion Explained  0.004839 0.0020931 0.0007594 3.884e-04
## Cumulative Proportion 0.996759 0.9988522 0.9996116 1.000e+00
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  1.145681 
## 
## 
## Species scores
## 
##                  PC1       PC2        PC3       PC4        PC5       PC6
## Chalcides   -0.03776  0.008854  0.0098076  0.002762 -0.0003448  0.002596
## Triturus    -0.23020  0.055851 -0.1308192 -0.049064  0.0904079  0.003909
## Bufo        -0.03385 -0.006658 -0.0220420  0.012559  0.0069510  0.006214
## Rana        -0.16181  0.060539 -0.0870802 -0.066131  0.0566041  0.015235
## Salamandra   0.16429  0.049853 -0.0560908 -0.072646 -0.0673632 -0.090889
## Lacerta      0.17234 -0.416903 -0.0031983  0.053345  0.0222889 -0.005150
## Podarcis    -0.22365  0.031512  0.3006997 -0.047010  0.0342179 -0.012577
## Coluber      0.64874  0.197801  0.0315186  0.097320  0.0332375  0.014769
## Malpolon     0.07940 -0.014905  0.0002864 -0.106045 -0.1296873  0.059417
## Psamodromus -0.46076  0.073078 -0.0259752  0.182206 -0.0733715 -0.005168
## 
## 
## Site scores (weighted sums of species scores)
## 
##               PC1       PC2        PC3       PC4      PC5       PC6
## Eucalip1 -0.36307  0.248894 -0.1545380 -0.650611  0.44741  0.003441
## Eucalip2 -0.38008  0.108241 -0.4958405  0.220544 -0.04489  0.107066
## Eucalip3 -0.35692  0.162946 -0.2424433  0.074933  0.02627  0.150277
## Eucalip4 -0.37524  0.054116 -0.1887455  0.096814 -0.06564 -0.089102
## Eucalip5 -0.19563 -0.356328 -0.0067813  0.008623  0.33676 -0.233706
## Eucalip6 -0.22453  0.039257  0.0845521  0.399778 -0.30616 -0.177859
## Eucalip7 -0.23237 -0.001994  0.6911435 -0.248043 -0.09624 -0.024869
## Eucalip8 -0.06635  0.170202  0.3649999  0.284662  0.16136  0.011301
## Pinhal1  -0.08764  0.086892  0.5000510 -0.064330  0.11105  0.057388
## Pinhal2  -0.13281  0.007653  0.1271843  0.335781 -0.40698  0.170389
## Pinhal3   0.04186 -0.140380 -0.0267173 -0.288301 -0.21749  0.142490
## Pinhal4   0.12023 -0.422492 -0.0544953 -0.005588 -0.01244  0.216064
## Pinhal5   0.12102 -0.230267  0.0517601  0.101294  0.14123 -0.180516
## Pinhal6   0.17790 -0.388133 -0.0766883 -0.070681  0.01927  0.461678
## Pinhal7   0.22584 -0.151003 -0.0785527  0.294609  0.36545 -0.428234
## Pinhal8   0.10448 -0.329852 -0.0811604 -0.225806 -0.24887 -0.089655
## Sobro1    0.27669  0.139474 -0.0761967 -0.029388  0.03413 -0.230908
## Sobro2    0.13703 -0.031953 -0.1389234 -0.283983 -0.45103 -0.221716
## Sobro3    0.22134 -0.029225 -0.0844116 -0.115354 -0.04927  0.014437
## Sobro4    0.32231  0.313911  0.0005512  0.150657  0.21527  0.691853
## Sobro5    0.30730  0.140798 -0.0451549  0.169236  0.30982 -0.127003
## Sobro6    0.35865  0.609242 -0.0695928 -0.154846 -0.26903 -0.222814

We can make a clean plot of this object

cleanplot.pca(acphbyrda1)

The corresponding analysis based on the correlation matrix is perhaps more sensible

sacphbyrda1<-rda(scale(herpeto[,-1]))
sacphbyrda1
## Call: rda(X = scale(herpeto[, -1]))
## 
##               Inertia Rank
## Total              10     
## Unconstrained      10   10
## Inertia is variance 
## 
## Eigenvalues for unconstrained axes:
##   PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
## 4.937 1.387 1.315 0.800 0.692 0.421 0.224 0.198 0.021 0.006

The summary of this object gives us direct access to something that was hidden above, namely the coordinates of the covariates in the PC space

summary(sacphbyrda1)
## 
## Call:
## rda(X = scale(herpeto[, -1])) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total              10          1
## Unconstrained      10          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Eigenvalue            4.9365 1.3874 1.3152 0.79974 0.69153 0.42064 0.22441
## Proportion Explained  0.4937 0.1387 0.1315 0.07997 0.06915 0.04206 0.02244
## Cumulative Proportion 0.4937 0.6324 0.7639 0.84389 0.91304 0.95510 0.97754
##                           PC8      PC9      PC10
## Eigenvalue            0.19814 0.020642 0.0057846
## Proportion Explained  0.01981 0.002064 0.0005785
## Cumulative Proportion 0.99736 0.999422 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  3.806754 
## 
## 
## Species scores
## 
##                 PC1      PC2      PC3       PC4      PC5     PC6
## Chalcides   -0.6148 -0.66989  0.28721 -0.020219  0.65342 -0.2655
## Triturus    -1.0417  0.47923  0.24165  0.014366  0.10989  0.2037
## Bufo        -0.7323  0.69684 -0.42256  0.062473 -0.18893 -0.3362
## Rana        -0.9712  0.32579  0.47437  0.091677  0.16752  0.3383
## Salamandra   0.9168  0.30657  0.56875  0.018431  0.03683 -0.0234
## Lacerta      0.5502  0.04452 -0.92847  0.232372  0.42470  0.1977
## Podarcis    -0.6334 -0.80017 -0.08305  0.144766 -0.53992  0.2077
## Coluber      1.0287  0.02834  0.21519 -0.506741 -0.11054 -0.1168
## Malpolon     0.6740  0.02272  0.34552  0.902175 -0.07640 -0.1687
## Psamodromus -1.0743 -0.05322 -0.05785  0.002388 -0.08965 -0.3810
## 
## 
## Site scores (weighted sums of species scores)
## 
##              PC1      PC2       PC3      PC4       PC5       PC6
## Eucalip1 -1.4296 -0.17228  1.859965  0.18866  0.996881  2.079766
## Eucalip2 -1.4284  1.46077  0.081130 -0.17814  0.333498 -0.786716
## Eucalip3 -1.3878  1.43203 -0.083985  0.16053 -0.787980 -0.814436
## Eucalip4 -1.0597  0.38443  0.208352  0.02952 -0.238384  0.581143
## Eucalip5 -0.7728  0.51739 -1.530892 -0.20115  0.198427 -0.063827
## Eucalip6 -0.7151 -1.69389  0.267106 -0.41076  1.747837 -1.880656
## Eucalip7 -0.4685 -1.88450 -0.100348  0.79593 -1.224439  0.344216
## Eucalip8 -0.3374 -1.07102 -0.212962 -0.99714 -0.774187  0.180882
## Pinhal1  -0.2211 -0.70609 -0.396428  0.08884 -1.867745  0.523299
## Pinhal2  -0.1692 -0.39642 -0.461122  0.33845 -0.749594 -1.098069
## Pinhal3   0.3565 -0.13499  0.364301  1.30791  0.482541  0.177416
## Pinhal4   0.4695  0.55664 -1.255823  0.82222  0.237081  0.002148
## Pinhal5   0.3795 -0.37481 -0.620047 -0.41217  0.718626  0.394531
## Pinhal6   0.7116  0.17490 -0.857397  0.92070  0.523985  0.668720
## Pinhal7   0.5600  0.26689 -0.791365 -1.67646  0.452221  0.934844
## Pinhal8   0.6562 -0.07702 -0.144873  1.19855  0.940616 -0.018770
## Sobro1    0.8416  0.40817  0.448639 -0.60596 -0.180739  0.134376
## Sobro2    0.8648  0.46235  0.643822  1.14046 -0.136818 -0.281960
## Sobro3    0.7979  0.33708  0.134159  0.15440 -0.009382  0.217083
## Sobro4    0.5456 -0.37114  0.508297 -0.86208  0.443939 -0.800235
## Sobro5    0.7097  0.29638 -0.001117 -1.50433 -0.086574  0.445470
## Sobro6    1.0966  0.58513  1.940588 -0.29798 -1.019809 -0.939224

We can make a clean plot of this object

cleanplot.pca(sacphbyrda1)

and we can see clearly that the separation on the first PC is between sites from Eucaliptal versus Pinhal versus Sobro, without any clear separation regarding habitat on the second component.

Making a biplot by hand has the advantage of letting us use bespoke colors as well as fine tune the limits of the plot. Check where are the species and locations scores

names(summary(sacphbyrda1))
##  [1] "species"     "sites"       "call"        "tot.chi"     "unconst.chi"
##  [6] "cont"        "scaling"     "digits"      "inertia"     "method"

and then use those to make the biplot

#a couple of useful objects to make the code more readable
myacp=summary(sacphbyrda1)
plot(myacp$sites[,1:2],type="n",ylim=c(-2,2),xlim=c(-2,2))
text(myacp$sites[,1:2],labels=substr(herpeto[,1],1,4),col=as.numeric(as.factor(substr(herpeto[,1],1,4))))
#species
arrows(x0=0,y0=0,x1=myacp$species[,1],y1=myacp$species[,2],col=2)
text(myacp$species[,1:2],labels=names(herpeto[-1]),cex=0.5)

CA

We now implement the CA

ca.herp<-cca(herpeto[,-1])
summary(ca.herp)
## 
## Call:
## cca(X = herpeto[, -1]) 
## 
## Partitioning of scaled Chi-square:
##               Inertia Proportion
## Total          0.7634          1
## Unconstrained  0.7634          1
## 
## Eigenvalues, and their contribution to the scaled Chi-square 
## 
## Importance of components:
##                          CA1    CA2     CA3     CA4     CA5     CA6
## Eigenvalue            0.4453 0.1260 0.06964 0.04409 0.03147 0.02391
## Proportion Explained  0.5833 0.1651 0.09122 0.05776 0.04123 0.03132
## Cumulative Proportion 0.5833 0.7484 0.83963 0.89739 0.93862 0.96993
##                           CA7      CA8      CA9
## Eigenvalue            0.01227 0.008908 0.001775
## Proportion Explained  0.01607 0.011669 0.002326
## Cumulative Proportion 0.98601 0.997674 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## 
## 
## Species scores
## 
##                 CA1      CA2      CA3      CA4      CA5       CA6
## Chalcides   -0.5736 -0.22736  0.20757  0.04381  0.14096  0.908077
## Triturus    -1.4050  0.73688  0.05765 -0.16664 -0.22457 -0.089970
## Bufo        -1.0305  0.47098 -0.79879  0.31354 -0.20087 -0.851458
## Rana        -1.4129  0.76139  0.37817 -0.35195 -0.10910  0.163806
## Salamandra   0.7689  0.40083  0.33082 -0.09962  0.30992 -0.110610
## Lacerta      0.2275 -0.06517 -0.35909 -0.13754 -0.04889  0.050076
## Podarcis    -0.6532 -0.92747  0.34514 -0.19702 -0.10903 -0.126929
## Coluber      0.5715  0.06924  0.16295  0.16178 -0.13829  0.002801
## Malpolon     0.2864  0.02326  0.06220 -0.22884  0.34774 -0.078629
## Psamodromus -0.8750 -0.09060 -0.11225  0.36752  0.19678  0.005858
## 
## 
## Site scores (weighted averages of species scores)
## 
##              CA1      CA2        CA3     CA4     CA5      CA6
## Eucalip1 -1.8378  1.24107  1.9682714 -2.2844 -0.8864  1.46841
## Eucalip2 -1.6903  1.70073 -0.7683320  1.1289  0.3499 -0.18031
## Eucalip3 -1.5521  0.95266 -0.2880435  0.6300 -0.1375 -1.59192
## Eucalip4 -1.4784  0.51800 -0.1493270  0.3650  0.5072 -0.16045
## Eucalip5 -0.7855 -0.21678 -1.6392392 -0.5009 -1.2758 -0.90399
## Eucalip6 -0.6798 -0.90007 -0.1168264  1.5494  1.3665  2.67892
## Eucalip7 -0.6587 -2.68435  1.0167252 -0.9794  0.2880 -0.42184
## Eucalip8 -0.3277 -1.34982  0.6323698  0.9567 -0.8997  0.14569
## Pinhal1  -0.3174 -1.67710  0.7070600 -0.2640 -0.7725 -1.62401
## Pinhal2  -0.2729 -0.98691 -0.5607742  1.4227  1.2752 -0.38206
## Pinhal3   0.2864  0.10054  0.0322563 -1.2341  1.0312  0.42323
## Pinhal4   0.5922 -0.03768 -1.6523057 -0.7708 -0.1172 -0.43146
## Pinhal5   0.5368 -0.35369 -0.6373104 -0.2149 -0.5060  0.84825
## Pinhal6   0.8310  0.06962 -1.3868831 -1.1190 -0.2211  0.38989
## Pinhal7   0.8616  0.28254 -0.7186440  0.5525 -1.5195  0.52699
## Pinhal8   0.6973  0.07484 -0.7684806 -1.2209  1.2522  0.57878
## Sobro1    1.0841  0.60666  0.6022968  0.2312 -0.1758 -0.36525
## Sobro2    0.8779  0.55443  0.1752309 -0.6501  2.0473 -0.72125
## Sobro3    0.9984  0.44945 -0.0006649 -0.3582  0.1627 -0.22688
## Sobro4    0.9901  0.30751  0.7987011  1.0692 -1.3731  1.22595
## Sobro5    1.0784  0.48887  0.3728823  0.7538 -1.4952  0.06327
## Sobro6    1.2374  0.96757  2.2301775  0.8152  0.9128 -1.24361
plot(ca.herp)

we could have used package ca, but we note these analysis are exactly the same, and as before for different PCA implementations, only the structure of the output objects is slightly different

library(ca)
caca.herp<-ca(herpeto[-1])
summary(caca.herp)
## 
## Principal inertias (eigenvalues):
## 
##  dim    value      %   cum%   scree plot               
##  1      0.445292  58.3  58.3  ***************          
##  2      0.126030  16.5  74.8  ****                     
##  3      0.069639   9.1  84.0  **                       
##  4      0.044091   5.8  89.7  *                        
##  5      0.031472   4.1  93.9  *                        
##  6      0.023908   3.1  97.0  *                        
##  7      0.012269   1.6  98.6                           
##  8      0.008908   1.2  99.8                           
##  9      0.001775   0.2 100.0                           
##         -------- -----                                 
##  Total: 0.763383 100.0                                 
## 
## 
## Rows:
##      name   mass  qlt  inr     k=1 cor ctr    k=2 cor ctr  
## 1  | Ecl1 |   46  746  137 | -1226 661 156 |  441  85  71 |
## 2  | Ecl2 |   46  938  105 | -1128 729 132 |  604 209 133 |
## 3  | Ecl3 |   49  923   82 | -1036 834 118 |  338  89  44 |
## 4  | Ecl4 |   46  937   65 |  -987 906 101 |  184  31  12 |
## 5  | Ecl5 |   45  443   37 |  -524 433  28 |  -77   9   2 |
## 6  | Ecl6 |   48  460   42 |  -454 307  22 | -320 152  39 |
## 7  | Ecl7 |   46  899   73 |  -440 158  20 | -953 741 329 |
## 8  | Ecl8 |   47  732   23 |  -219 126   5 | -479 605  86 |
## 9  | Pnh1 |   47  766   32 |  -212  86   5 | -595 680 132 |
## 10 | Pnh2 |   45  458   20 |  -182  97   3 | -350 360  44 |
## 11 | Pnh3 |   47  252    9 |   191 244   4 |   36   9   0 |
## 12 | Pnh4 |   46  399   23 |   395 398  16 |  -13   0   0 |
## 13 | Pnh5 |   46  686   13 |   358 611  13 | -126  75   6 |
## 14 | Pnh6 |   44  561   31 |   555 559  30 |   25   1   0 |
## 15 | Pnh7 |   44  635   31 |   575 617  32 |  100  19   3 |
## 16 | Pnh8 |   45  563   23 |   465 561  22 |   27   2   0 |
## 17 | Sbr1 |   44  933   35 |   723 857  52 |  215  76  16 |
## 18 | Sbr2 |   44  691   32 |   586 621  34 |  197  70  13 |
## 19 | Sbr3 |   43  982   27 |   666 928  43 |  160  53   9 |
## 20 | Sbr4 |   43  595   43 |   661 579  42 |  109  16   4 |
## 21 | Sbr5 |   43  830   37 |   720 784  50 |  174  46  10 |
## 22 | Sbr6 |   48  640   78 |   826 546  73 |  343  94  44 |
## 
## Columns:
##      name   mass  qlt  inr     k=1 cor ctr    k=2 cor ctr  
## 1  | Chlc |   16  257   31 |  -574 222  12 | -227  35   7 |
## 2  | Trtr |   45  956  156 | -1405 750 200 |  737 206 194 |
## 3  | Bufo |    9  399   36 | -1030 330  20 |  471  69  15 |
## 4  | Rana |   32  875  123 | -1413 678 143 |  761 197 146 |
## 5  | Slmn |   56  692   79 |   769 544  74 |  401 148  71 |
## 6  | Lcrt |  262  265   72 |   227 245  30 |  -65  20   9 |
## 7  | Pdrc |   79  872  152 |  -653 289  76 | -927 583 538 |
## 8  | Clbr |  284  818  151 |   571 806 208 |   69  12  11 |
## 9  | Mlpl |   90  259   38 |   286 257  17 |   23   2   0 |
## 10 | Psmd |  128  802  162 |  -875 793 221 |  -91   9   8 |
plot(caca.herp)

We note that the separation per habitat is perhaps not as clean as for the PCA. Again, we can make our own biplot

#a couple of useful objects to make the code more readable
names(summary(ca.herp))
##  [1] "species"     "sites"       "call"        "tot.chi"     "unconst.chi"
##  [6] "cont"        "scaling"     "digits"      "inertia"     "method"
mycas=summary(ca.herp)
#the biplot
plot(mycas$sites[,1:2],type="n",ylim=c(-2,2),xlim=c(-2,2))
text(mycas$sites[,1:2],labels=substr(herpeto[,1],1,4),col=as.numeric(as.factor(substr(herpeto[,1],1,4))))
#species
arrows(x0=0,y0=0,x1=mycas$species[,1],y1=mycas$species[,2],col=2)
text(mycas$species[,1:2],labels=names(herpeto[-1]),cex=0.5)

Comparison CA vs. PCA

The results from both analysis are not that different in this case. While this is not a standard procedure (i.e. I have never seen anyone else doing it explicitly), we could compare the relations between the scores in the PCA and the CA, for the first and second axis.

par(mfrow=c(1,2),mar=c(4,4,0.5,0.5))
plot(myacp$sites[,1],mycas$sites[,1],xlab="PCA score 1st CP",ylab="CA score 1st CP")
abline(0,1)
text(-1,1,paste0("R= ",round(cor(myacp$sites[,1],mycas$sites[,1]),2)))
plot(myacp$sites[,2],mycas$sites[,2],xlab="PCA score 2nd CP",ylab="CA score 2nd CP")
text(-1,1,paste0("R= ",round(cor(myacp$sites[,2],mycas$sites[,2]),2)))
abline(0,1)

With a correlation of over 99% in the first axis and over 80% in the second, there is nothing structurally different in both analysis.

In general, a CA might be more sensible to use directly over count data.

Actually, in this case, similar plots to the pair above comparing the PCA with and without scaling (i.e., over the correlation and over the covariance matrices) and between the covariance-based PCA and the CA would also be informative.

par(mfrow=c(2,2),mar=c(4,4,0.5,0.5))
plot(myacp$sites[,1],sumacp1$scores[,1],xlab="PCA score 1st CP",ylab="PCA unscaled score 1st CP")
abline(0,1)
text(-1,1,paste0("R= ",round(cor(myacp$sites[,1],sumacp1$scores[,1]),2)))
plot(myacp$sites[,2],sumacp1$scores[,2],xlab="PCA score 2nd CP",ylab="PCA unscaled score 2nd CP")
text(-1,1,paste0("R= ",round(cor(myacp$sites[,2],sumacp1$scores[,2]),2)))
abline(0,1)
# PCA unscaled vs CA
plot(mycas$sites[,1],sumacp1$scores[,1],ylab="PCA unscaled score 1st CP",xlab="CA score 1st CP")
abline(0,1)
text(-1,1,paste0("R= ",round(cor(sumacp1$scores[,1],mycas$sites[,1]),2)))
plot(mycas$sites[,2],sumacp1$scores[,2],ylab="PCA unscaled score 2nd CP",xlab="CA score 2nd CP")
text(-1,1,paste0("R= ",round(cor(sumacp1$scores[,2],mycas$sites[,2]),2)))
abline(0,1)

These plots show us what we already knew. The results of the unscaled PCA would not be sensible, being very different from those of the CA and the scaled PCA. This was as expected, as both the CA and the unscaled PCA are not dominated by the raw abundances, unlike the unscaled PCA (covariance matrix based).

Exercício 4

Efectue uma análise canónica de correspondências aos dados da alínea anterior, incluindo também as características dos locais (DataTP10herpamb.csv). Discuta os resultados. Em que situações esta análise é preferível em relação às anteriores técnicas?

First we read the environmental variables

herpamb <- read.csv("DataTP10herpamb.csv", sep=";")

and take a quick peak at it to make sure all is good

str(herpamb)
## 'data.frame':    22 obs. of  6 variables:
##  $ Habitat       : Factor w/ 22 levels "Eucalip1","Eucalip2",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Perc.floresta : int  75 85 49 65 68 67 59 58 45 45 ...
##  $ Agua          : int  2 1 1 1 1 0 0 0 0 0 ...
##  $ Altura        : int  12 10 9 8 12 15 14 15 13 14 ...
##  $ Idade         : int  9 8 9 8 7 8 9 8 8 9 ...
##  $ Activ.agricola: int  1 1 1 2 2 1 1 1 2 2 ...

Let’s look at the different variables as a function of habitat

hab=substr(herpamb$Habitat,1,4)
par(mfrow=c(3,2))
boxplot(herpamb$Perc.floresta~hab)
boxplot(herpamb$Agua~hab)
boxplot(herpamb$Altura~hab)
boxplot(herpamb$Idade~hab)
boxplot(herpamb$Activ.agricola~hab)

Then, we implement the CCA using function cca from package vegan

cca.herp<-cca(herpeto[,-1]~.,data=herpamb[,-1])

We can look at the summary of the results

summary(cca.herp)
## 
## Call:
## cca(formula = herpeto[, -1] ~ Perc.floresta + Agua + Altura +      Idade + Activ.agricola, data = herpamb[, -1]) 
## 
## Partitioning of scaled Chi-square:
##               Inertia Proportion
## Total          0.7634     1.0000
## Constrained    0.4915     0.6439
## Unconstrained  0.2719     0.3561
## 
## Eigenvalues, and their contribution to the scaled Chi-square 
## 
## Importance of components:
##                         CCA1    CCA2   CCA3     CCA4    CCA5    CA1
## Eigenvalue            0.3658 0.09177 0.0200 0.009837 0.00413 0.1080
## Proportion Explained  0.4792 0.12022 0.0262 0.012885 0.00541 0.1415
## Cumulative Proportion 0.4792 0.59938 0.6256 0.638467 0.64388 0.7853
##                           CA2     CA3     CA4     CA5     CA6      CA7
## Eigenvalue            0.05750 0.03331 0.02914 0.01788 0.01235 0.008604
## Proportion Explained  0.07532 0.04363 0.03818 0.02343 0.01618 0.011271
## Cumulative Proportion 0.86067 0.90430 0.94247 0.96590 0.98208 0.993351
##                            CA8      CA9
## Eigenvalue            0.004061 0.001015
## Proportion Explained  0.005320 0.001329
## Cumulative Proportion 0.998671 1.000000
## 
## Accumulated constrained eigenvalues
## Importance of components:
##                         CCA1    CCA2    CCA3     CCA4     CCA5
## Eigenvalue            0.3658 0.09177 0.02000 0.009837 0.004130
## Proportion Explained  0.7442 0.18671 0.04069 0.020012 0.008402
## Cumulative Proportion 0.7442 0.93090 0.97159 0.991598 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## 
## 
## Species scores
## 
##                CCA1     CCA2      CCA3     CCA4     CCA5      CA1
## Chalcides   -0.6113 -0.29111 -0.572651  0.19521 -0.33274 -0.06196
## Triturus    -1.2902  0.71449 -0.009936  0.02656  0.02877 -0.48284
## Bufo        -0.9295  0.23703  0.280710 -0.36696  0.15084 -0.15629
## Rana        -1.3053  0.71249 -0.114317  0.18142  0.06693 -0.54825
## Salamandra   0.7705  0.43184  0.118288  0.02470 -0.11919  0.08011
## Lacerta      0.1164 -0.10010  0.173742  0.06916 -0.01033  0.34121
## Podarcis    -0.5020 -0.63199 -0.091435  0.11269  0.07508 -0.61205
## Coluber      0.5613  0.06190 -0.116579 -0.04956  0.03247  0.11979
## Malpolon     0.2333  0.07466 -0.055202  0.01425  0.01962  0.15423
## Psamodromus -0.7509 -0.19039  0.031421 -0.17627 -0.05380 -0.40467
## 
## 
## Site scores (weighted averages of species scores)
## 
##             CCA1     CCA2    CCA3     CCA4     CCA5      CA1
## Eucalip1 -2.0152  1.87412 -2.8930  4.81834  1.10819 -0.81906
## Eucalip2 -1.8793  1.65598  0.6424 -3.91983 -1.31085  0.50931
## Eucalip3 -1.6983  1.00010  0.2777 -3.16262  2.05190 -1.49156
## Eucalip4 -1.6230  0.50958  0.4475 -1.65147 -0.43073 -0.87193
## Eucalip5 -0.9153 -0.38134  2.3268  0.35012  0.95296  0.60554
## Eucalip6 -0.7387 -1.32824 -1.5781 -1.51391 -7.43262  0.02136
## Eucalip7 -0.6709 -2.79755 -1.5910  2.85385  2.85197 -0.95704
## Eucalip8 -0.3082 -1.53374 -1.5519 -0.66192  2.00687 -0.37185
## Pinhal1  -0.2947 -1.69826 -0.7898  0.65662  5.24818 -1.38288
## Pinhal2  -0.2811 -1.37301  0.3499 -3.18278 -0.73277 -0.78594
## Pinhal3   0.2879  0.21061  0.2525  2.17733 -0.94590  0.23520
## Pinhal4   0.5812 -0.19994  2.5969  0.87950  1.02682  1.61298
## Pinhal5   0.5601 -0.48814  0.9088  1.36086 -1.23298  0.69684
## Pinhal6   0.8351 -0.01716  1.9636  1.96754  1.23469  2.41756
## Pinhal7   0.9260  0.17637  1.5098  0.04353 -0.52020  0.46418
## Pinhal8   0.7119  0.06910  1.6312  2.19994 -3.05349  0.94164
## Sobro1    1.2139  0.79587 -0.1443 -0.24031 -0.24692  0.48075
## Sobro2    0.9624  0.73900  1.0770  0.24228 -2.53746 -0.19991
## Sobro3    1.0866  0.57212  0.5625  0.55470  0.02748  0.65598
## Sobro4    1.1086  0.34669 -2.9852 -0.86866  1.34425  0.86836
## Sobro5    1.2042  0.57493 -0.3852 -0.55785  1.13225 -1.35850
## Sobro6    1.4536  1.41329 -2.2943 -1.95167 -0.46756 -0.91294
## 
## 
## Site constraints (linear combinations of constraining variables)
## 
##              CCA1    CCA2      CCA3     CCA4     CCA5      CA1
## Eucalip1 -1.80552  1.5084 -0.832575  1.58192  0.21614 -0.81906
## Eucalip2 -2.05667  0.8323 -0.195676 -1.03400 -1.38874  0.50931
## Eucalip3 -0.77643  0.5318  0.902637 -0.84872  1.90616 -1.49156
## Eucalip4 -1.20256  1.0830  0.685743 -0.89444 -0.16342 -0.87193
## Eucalip5 -0.99294  0.4472 -0.227171  0.80894 -0.71615  0.60554
## Eucalip6 -0.74313 -1.4356 -0.617769 -0.20748 -0.87298  0.02136
## Eucalip7 -0.53871 -1.3844 -0.292870 -0.54116 -0.05337 -0.95704
## Eucalip8 -0.39734 -1.5486 -0.369172 -0.04068 -0.07734 -0.37185
## Pinhal1   0.18782 -1.2099  0.318893 -0.03086  0.52915 -1.38288
## Pinhal2   0.23282 -1.4062 -0.061265  0.33855  0.52477 -0.78594
## Pinhal3   0.27892 -0.2193 -0.638832  3.05769  0.44809  0.23520
## Pinhal4   0.06598 -0.9885  0.643808 -0.43734  0.35672  1.61298
## Pinhal5   0.29016 -0.7996  0.599201  0.22062 -0.44519  0.69684
## Pinhal6  -0.35292  0.6012  1.057962  0.42225  0.97228  2.41756
## Pinhal7   0.77362 -0.7442  1.476561  0.14841  0.65444  0.46418
## Pinhal8   0.33392  0.1281  0.987506  0.12912 -2.17349  0.94164
## Sobro1    0.76593  1.3335 -0.064933  0.28099  2.07343  0.48075
## Sobro2    1.19962  0.6491 -0.228898 -0.72637 -0.21643 -0.19991
## Sobro3    0.82461  0.6593  0.002506 -1.84708  0.46705  0.65598
## Sobro4    0.87917  0.1031 -3.775111 -0.95601  0.39607  0.86836
## Sobro5    1.99442  1.0410  0.400087  0.92582 -1.50583 -1.35850
## Sobro6    1.41722  1.0218  0.134275 -0.41928 -0.92556 -0.91294
## 
## 
## Biplot scores for constraining variables
## 
##                   CCA1    CCA2     CCA3    CCA4     CCA5 CA1
## Perc.floresta  -0.9402 -0.1418  0.06674  0.1045 -0.28363   0
## Agua           -0.6362  0.6024 -0.01142  0.3892  0.28406   0
## Altura         -0.5474 -0.7157  0.06631  0.4279  0.02579   0
## Idade           0.5211  0.3345 -0.70051 -0.3370  0.11056   0
## Activ.agricola  0.8294  0.4350 -0.26062 -0.1403 -0.18782   0

and finally we plot the triplot that contains the information on the sites and the species information, as the previous analysis did, but now it also contains directly the information about the environmental variables. The ecological interpretation would now have to be done considering the 3 sets of variables, as the environmental variables were used to constrain the axis.

plot(cca.herp)

Exercício 5

Obteve dados relativos à abundância de diversas espécies de aves em três tipos de habitat. Efectue várias análises de ordenação (análise de componentes principais, análise de correspondências e análise canónica de correspondências). A análise canónica de correspondências permite integrar informação de uma segunda matriz de dados. Indique em que situações esta análise poderá ser mais informativa e como poderia tentar obter informação análoga nas outras duas análises efectuadas.

We read the data in, both the species matrix and the environmental variables matrix

aves <- read.csv("DataTP10aves.csv", sep=";")
avesamb <- read.csv("DataTP10avesamb.csv", sep=";")
row.names(aves)=row.names(avesamb)=aves[,1]

We look at both of these, first the species data

str(aves)
## 'data.frame':    22 obs. of  11 variables:
##  $ Habitat    : Factor w/ 22 levels "Bosq 1","Bosq 2",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Erithacus  : num  0.05 0.02 0.01 0.01 0.02 0.08 0.03 0.02 0 0.01 ...
##  $ Turdus     : num  0.22 0.18 0.18 0.15 0.12 0.03 0 0.02 0.03 0 ...
##  $ Passer     : num  0 0.04 0.05 0.01 0.04 0 0 0 0.01 0.01 ...
##  $ Parus      : num  0.2 0.13 0.11 0.1 0.02 0.02 0.02 0.02 0.01 0 ...
##  $ Athene     : num  0.03 0 0 0.01 0 0.02 0 0 0.01 0.01 ...
##  $ Anas       : num  0.06 0.15 0.13 0.17 0.37 0.21 0.19 0.19 0.2 0.23 ...
##  $ Sylvia     : num  0.16 0 0.09 0.1 0.12 0.12 0.34 0.2 0.26 0.11 ...
##  $ Carduelis  : num  0.03 0.05 0.08 0.04 0.08 0.16 0.11 0.31 0.25 0.21 ...
##  $ Motacilla  : num  0.06 0.04 0.06 0.05 0.02 0.05 0.1 0.03 0.08 0.1 ...
##  $ Dendrocopos: num  0.16 0.36 0.32 0.33 0.16 0.32 0.17 0.2 0.14 0.27 ...

We have 22 observations for 11 variables, which correspond respectively to locations and taxa (genera of amphibians). The first column does not represent a genera, but it contains the labels of the locations, which are separated by habitats, of which there are the following 3

unique(substr(aves[,1],1,4))
## [1] "Bosq" "Prad" "Ripi"

which we assume correspond to “Bosque”, “Pradaria”, and “Ripícola”.

We can see if there are locations with much more abundance than others

sort(rowSums(aves[,-1]))
## Ripic 3 Ripic 4 Ripic 5 Prado 6 Prado 7 Ripic 2 Ripic 1  Bosq 5 Prado 8 
##    0.90    0.91    0.91    0.92    0.92    0.92    0.93    0.95    0.95 
## Prado 2 Prado 5  Bosq 7 Prado 4  Bosq 1  Bosq 2  Bosq 4 Prado 3  Bosq 8 
##    0.95    0.96    0.96    0.96    0.97    0.97    0.97    0.98    0.99 
## Prado 1 Ripic 6  Bosq 6  Bosq 3 
##    0.99    1.00    1.01    1.03

(as before, some standardization must have been made before analysis)

or if there are species which dominate the communities.

sort(colSums(aves[,-1]))
##      Passer   Erithacus       Parus      Turdus      Athene      Sylvia 
##        0.18        0.34        0.67        0.95        1.17        1.66 
##   Motacilla Dendrocopos        Anas   Carduelis 
##        1.89        2.70        5.52        5.97

In fact, Anas and Carduelis seem to dominate the community in terms of abundance.

Now we look at environmental variables

str(avesamb)
## 'data.frame':    22 obs. of  4 variables:
##  $ Habitat : Factor w/ 22 levels "Bosq 1","Bosq 2",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Perc.veg: int  75 85 62 56 59 89 84 86 12 12 ...
##  $ Agua    : int  25 23 32 34 35 36 34 28 7 8 ...
##  $ Solo    : int  50 52 62 52 54 58 59 63 23 25 ...

We have 22 observations for 4 variables, which correspond respectively to locations and environmental variables (genera of amphibians). The first column does not represent a variable, but it contains the labels of the locations.

A number of different analysis could be attempted on this data, as shown below. We use the PCA unscaled, but this is wrong given the raw abundances (for the environmental variables analysis might be equivalent scaled or unscaled, as they seem to be measured in similar scales). Your task is to repeat the analysis with the correlation matrix and compare the results.

Environmental variables

We could see how the sites would group as a function of the environmental variables, both considering a PCA and a CA

PCA

pca.avesamb<-princomp(avesamb[,-1])
summary(pca.avesamb)
## Importance of components:
##                           Comp.1     Comp.2    Comp.3
## Standard deviation     37.473629 25.5582232 5.3671214
## Proportion of Variance  0.673092  0.3131008 0.0138072
## Cumulative Proportion   0.673092  0.9861928 1.0000000
biplot(pca.avesamb,cex=0.7,xlabs=substr(avesamb[,1],1,4))

We can see a very clear separation of the 3 habitat types based on the sites environmental variables.

CA

ca.avesamb<-ca(avesamb[,-1])
ca.avesamb
## 
##  Principal inertias (eigenvalues):
##            1        2       
## Value      0.093586 0.011924
## Percentage 88.7%    11.3%   
## 
## 
##  Rows:
##            Bosq 1    Bosq 2    Bosq 3    Bosq 4    Bosq 5    Bosq 6
## Mass     0.050744  0.054127  0.052774  0.048038  0.050068  0.061908
## ChiDist  0.404234  0.475416  0.200678  0.167570  0.177074  0.365468
## Inertia  0.008292  0.012234  0.002125  0.001349  0.001570  0.008269
## Dim. 1  -1.315845 -1.549911 -0.641840 -0.536668 -0.568257 -1.162157
## Dim. 2   0.338420  0.317972 -0.379574  0.307247  0.308511  0.775381
##            Bosq 7    Bosq 8   Prado 1   Prado 2   Prado 3   Prado 4
## Mass     0.059878  0.059878  0.014208  0.015223  0.016576  0.019621
## ChiDist  0.343336  0.384992  0.316218  0.319674  0.179729  0.197294
## Inertia  0.007058  0.008875  0.001421  0.001556  0.000535  0.000764
## Dim. 1  -1.108038 -1.258329 -0.113654  0.021691  0.034577 -0.632347
## Dim. 2   0.499884 -0.054639 -2.878278 -2.926849 -1.643051 -0.355071
##           Prado 5   Prado 6   Prado 7   Prado 8  Ripic 1  Ripic 2
## Mass     0.020636  0.023681  0.020974  0.015900 0.069012 0.067997
## ChiDist  0.247898  0.226933  0.368830  0.228426 0.338865 0.322988
## Inertia  0.001268  0.001220  0.002853  0.000830 0.007925 0.007094
## Dim. 1   0.136803  0.628879  0.555023  0.403498 1.104777 1.051996
## Dim. 2  -2.237598 -1.102222 -2.998450 -1.760127 0.225210 0.250809
##           Ripic 3   Ripic 4  Ripic 5  Ripic 6
## Mass     0.071719  0.066644 0.072057 0.068336
## ChiDist  0.301397  0.269222 0.430147 0.286161
## Inertia  0.006515  0.004830 0.013332 0.005596
## Dim. 1   0.985218  0.864708 1.266927 0.913179
## Dim. 2  -0.005636 -0.458255 1.708621 0.568026
## 
## 
##  Columns:
##          Perc.veg     Agua      Solo
## Mass     0.316982 0.279432  0.403586
## ChiDist  0.428703 0.362222  0.161991
## Inertia  0.058257 0.036663  0.010590
## Dim. 1  -1.391381 1.109118  0.324890
## Dim. 2   0.467768 1.161271 -1.171424
plot(ca.avesamb,labels=2)

Again, the separation across habitats is very clear.

Species data

PCA

pca.aves<-princomp(aves[,-1])
summary(pca.aves)
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4
## Standard deviation     0.2222533 0.1168578 0.08479853 0.06517432
## Proportion of Variance 0.6307611 0.1743747 0.09182164 0.05424020
## Cumulative Proportion  0.6307611 0.8051358 0.89695745 0.95119765
##                            Comp.5      Comp.6      Comp.7      Comp.8
## Standard deviation     0.04942171 0.027323770 0.019466369 0.012803054
## Proportion of Variance 0.03118917 0.009533439 0.004838807 0.002093127
## Cumulative Proportion  0.98238683 0.991920266 0.996759072 0.998852199
##                              Comp.9      Comp.10
## Standard deviation     0.0077115470 0.0055153726
## Proportion of Variance 0.0007593664 0.0003884347
## Cumulative Proportion  0.9996115653 1.0000000000
biplot(pca.aves,cex=0.7,xlabs=substr(avesamb[,1],1,4))

CA

ca.aves<-ca(aves[,-1])
ca.aves
## 
##  Principal inertias (eigenvalues):
##            1        2       3        4        5        6        7       
## Value      0.445292 0.12603 0.069639 0.044091 0.031472 0.023908 0.012269
## Percentage 58.33%   16.51%  9.12%    5.78%    4.12%    3.13%    1.61%   
##            8        9       
## Value      0.008908 0.001775
## Percentage 1.17%    0.23%   
## 
## 
##  Rows:
##            Bosq 1    Bosq 2    Bosq 3    Bosq 4    Bosq 5    Bosq 6
## Mass     0.046081  0.046081  0.048931  0.046081  0.045131  0.047981
## ChiDist  1.508272  1.321314  1.133841  1.036599  0.796308  0.818294
## Inertia  0.104828  0.080451  0.062906  0.049516  0.028618  0.032128
## Dim. 1  -1.837804 -1.690296 -1.552097 -1.478447 -0.785535 -0.679849
## Dim. 2   1.241071  1.700734  0.952661  0.517997 -0.216784 -0.900073
##            Bosq 7    Bosq 8   Prado 1   Prado 2  Prado 3   Prado 4
## Mass     0.045606  0.047031  0.047031  0.045131 0.046556  0.045606
## ChiDist  1.107109  0.615837  0.721845  0.583780 0.386926  0.625996
## Inertia  0.055898  0.017837  0.024506  0.015380 0.006970  0.017872
## Dim. 1  -0.658662 -0.327748 -0.317424 -0.272950 0.286386  0.592153
## Dim. 2  -2.684345 -1.349816 -1.677101 -0.986909 0.100543 -0.037683
##           Prado 5  Prado 6  Prado 7  Prado 8  Ripic 1  Ripic 2  Ripic 3
## Mass     0.045606 0.043705 0.043705 0.045131 0.044181 0.043705 0.042755
## ChiDist  0.458169 0.741372 0.732269 0.620944 0.781261 0.743498 0.691484
## Inertia  0.009573 0.024022 0.023436 0.017401 0.026966 0.024160 0.020443
## Dim. 1   0.536833 0.830987 0.861648 0.697250 1.084080 0.877864 0.998400
## Dim. 2  -0.353691 0.069624 0.282541 0.074841 0.606658 0.554429 0.449455
##          Ripic 4  Ripic 5  Ripic 6
## Mass    0.043230 0.043230 0.047506
## ChiDist 0.868291 0.812487 1.117646
## Inertia 0.032593 0.028538 0.059341
## Dim. 1  0.990091 1.078401 1.237441
## Dim. 2  0.307511 0.488870 0.967568
## 
## 
##  Columns:
##         Erithacus    Turdus    Passer     Parus   Athene      Anas
## Mass     0.016152  0.045131  0.008551  0.031829 0.055582  0.262233
## ChiDist  1.217291  1.622363  1.792900  1.715545 1.042239  0.459361
## Inertia  0.023934  0.118787  0.027487  0.093676 0.060377  0.055334
## Dim. 1  -0.859618 -2.105453 -1.544222 -2.117302 1.152327  0.340921
## Dim. 2  -0.640447  2.075667  1.326694  2.144726 1.129084 -0.183568
##            Sylvia Carduelis Motacilla Dendrocopos
## Mass     0.078860  0.283610  0.089786    0.128266
## ChiDist  1.214767  0.636643  0.565053    0.982436
## Inertia  0.116370  0.114951  0.028667    0.123800
## Dim. 1  -0.978853  0.856413  0.429250   -1.311213
## Dim. 2  -2.612553  0.195041  0.065533   -0.255203
par(mfrow=c(1,2),mar=c(4,4,0.5,0.5))
plot(ca.aves,labels=2)

Note that in a CA we can also overlay on the ordination biplot, if available, a set of environmental covariates. We do this using function envfit (to do so we need to fit the CA with function cca in package vegan)

ca.aves2<-cca(aves[,-1])
ca.aves2env<-envfit(ca.aves2,avesamb[,-1])
par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(ca.aves2)
plot(ca.aves2env)

CCA

cca.aves<-cca(aves[,-1]~., data=avesamb[,-1])
summary(cca.aves)
## 
## Call:
## cca(formula = aves[, -1] ~ Perc.veg + Agua + Solo, data = avesamb[,      -1]) 
## 
## Partitioning of scaled Chi-square:
##               Inertia Proportion
## Total          0.7634     1.0000
## Constrained    0.3587     0.4699
## Unconstrained  0.4047     0.5301
## 
## Eigenvalues, and their contribution to the scaled Chi-square 
## 
## Importance of components:
##                         CCA1    CCA2     CCA3    CA1     CA2     CA3
## Eigenvalue            0.3280 0.02924 0.001425 0.1688 0.08045 0.05299
## Proportion Explained  0.4297 0.03830 0.001866 0.2211 0.10539 0.06941
## Cumulative Proportion 0.4297 0.46802 0.469886 0.6910 0.79640 0.86581
##                           CA4     CA5     CA6     CA7      CA8      CA9
## Eigenvalue            0.03458 0.03081 0.01695 0.01137 0.007464 0.001256
## Proportion Explained  0.04530 0.04037 0.02221 0.01489 0.009778 0.001646
## Cumulative Proportion 0.91111 0.95148 0.97368 0.98858 0.998354 1.000000
## 
## Accumulated constrained eigenvalues
## Importance of components:
##                         CCA1    CCA2     CCA3
## Eigenvalue            0.3280 0.02924 0.001425
## Proportion Explained  0.9145 0.08152 0.003972
## Cumulative Proportion 0.9145 0.99603 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## 
## 
## Species scores
## 
##                CCA1     CCA2      CCA3      CA1       CA2      CA3
## Erithacus   -0.7768 -0.19685 -0.065959  0.18436 -0.077779  0.24382
## Turdus      -0.9648 -0.23347 -0.002096 -1.24513  0.026119  0.10185
## Passer      -0.6850  0.02306  0.113574 -0.95215 -0.142186 -0.92793
## Parus       -1.0307 -0.21659 -0.029620 -1.20241  0.033001  0.55886
## Athene       0.7737 -0.22104 -0.123545  0.06307 -0.227752  0.37841
## Anas         0.1512  0.24331 -0.011338  0.13870 -0.189073 -0.14366
## Sylvia      -0.7323  0.08601 -0.011922  0.35166  0.873994  0.09333
## Carduelis    0.5073 -0.13729  0.031330  0.23570 -0.106902  0.06677
## Motacilla    0.2809  0.06105  0.017772  0.07177  0.002034  0.18827
## Dendrocopos -0.7739 -0.03457  0.011154 -0.32177  0.184739 -0.35045
## 
## 
## Site scores (weighted averages of species scores)
## 
##            CCA1      CCA2    CCA3      CA1        CA2      CA3
## Bosq 1  -1.9920 -3.130118 -8.8184 -1.69906  0.3412784  3.09366
## Bosq 2  -1.7911 -1.888582  2.5962 -1.45636 -1.6684158 -0.61482
## Bosq 3  -1.6737 -1.516559  4.0742 -1.83093  0.4307769 -0.96136
## Bosq 4  -1.6444 -0.864148 -0.9645 -1.65590  0.8319174 -0.71830
## Bosq 5  -0.9269  1.788843  1.0347 -0.36205 -0.0350761 -1.66804
## Bosq 6  -0.9199 -0.002147 -1.9069  1.26653 -0.7150326 -0.64443
## Bosq 7  -0.9902  1.794148 -1.2132  1.99500  1.8709653  0.41297
## Bosq 8  -0.4996  0.098511  4.2427  1.85373 -0.1426594  0.08602
## Prado 1 -0.4851  0.884286  3.5376  0.06650  2.6371451  0.02591
## Prado 2 -0.4075  1.058940  4.9426 -0.23050  1.3348065 -1.39378
## Prado 3  0.3345  0.626284 -3.9496 -0.13035 -0.1440932  1.23049
## Prado 4  0.6681  2.554465  2.2132  0.55476 -1.3515627 -0.33915
## Prado 5  0.5626  1.356450 -1.4583  0.46104 -0.3868010  0.06131
## Prado 6  0.9488  2.468812  2.6743  0.36616 -1.0540694 -0.03454
## Prado 7  0.9990  0.584783 -0.4481  0.35392 -1.1336281 -0.06426
## Prado 8  0.7921  1.646708 -5.7737  0.27631 -0.8460425  0.70205
## Ripic 1  1.3131 -1.080066 -1.8547 -0.03093  0.0005633  0.05120
## Ripic 2  1.0748 -0.077492 -6.5715 -0.22769  0.1093549  0.01896
## Ripic 3  1.1950  0.085138 -1.0070  0.04955 -0.1143608 -0.24653
## Ripic 4  1.1537 -1.536710  9.1861  0.35968 -0.1316139  0.07247
## Ripic 5  1.2864 -0.961352  2.2643 -0.11797  0.1860379 -0.67368
## Ripic 6  1.5511 -3.599707 -2.6757  0.22163 -0.1628344  1.52354
## 
## 
## Site constraints (linear combinations of constraining variables)
## 
##             CCA1     CCA2       CCA3      CA1        CA2      CA3
## Bosq 1  -1.31648 -0.24662 -0.2960733 -1.69906  0.3412784  3.09366
## Bosq 2  -1.66810 -0.43045 -0.1310699 -1.45636 -1.6684158 -0.61482
## Bosq 3  -0.65583 -0.47859  1.0734735 -1.83093  0.4307769 -0.96136
## Bosq 4  -0.50655 -0.09351 -0.3818036 -1.65590  0.8319174 -0.71830
## Bosq 5  -0.57171 -0.19692 -0.3174287 -0.36205 -0.0350761 -1.66804
## Bosq 6  -1.52015 -0.70390 -0.9236776  1.26653 -0.7150326 -0.64443
## Bosq 7  -1.38010 -0.66702 -0.3701555  1.99500  1.8709653  0.41297
## Bosq 8  -1.51834 -0.80233  0.8309498  1.85373 -0.1426594  0.08602
## Prado 1  0.23409  1.44511  0.1563554  0.06650  2.6371451  0.02591
## Prado 2  0.26899  1.37955  0.3271438 -0.23050  1.3348065 -1.39378
## Prado 3  0.24667  1.37789 -0.2362737 -0.13035 -0.1440932  1.23049
## Prado 4 -0.04446  1.29317 -0.8153716  0.55476 -1.3515627 -0.33915
## Prado 5  0.28423  1.09568  0.6085555  0.46104 -0.3868010  0.06131
## Prado 6  0.47614  1.02432  0.0006532  0.36616 -1.0540694 -0.03454
## Prado 7  0.46977  1.01766  1.2083258  0.35392 -1.1336281 -0.06426
## Prado 8  0.36439  1.41311 -0.2461690  0.27631 -0.8460425  0.70205
## Ripic 1  1.32532 -1.11375  0.3241837 -0.03093  0.0005633  0.05120
## Ripic 2  1.23941 -1.05818  0.2342329 -0.22769  0.1093549  0.01896
## Ripic 3  1.21733 -1.31891  1.0163511  0.04955 -0.1143608 -0.24653
## Ripic 4  1.03051 -1.18296  1.9005736  0.35968 -0.1316139  0.07247
## Ripic 5  1.48182 -0.84024 -3.4193528 -0.11797  0.1860379 -0.67368
## Ripic 6  1.03817 -0.99541 -0.5173174  0.22163 -0.1628344  1.52354
## 
## 
## Biplot scores for constraining variables
## 
##             CCA1    CCA2     CCA3 CA1 CA2 CA3
## Perc.veg -0.7484 -0.6559 -0.09883   0   0   0
## Agua      0.5344 -0.8183 -0.21145   0   0   0
## Solo      0.2911 -0.9544  0.06580   0   0   0
plot(cca.aves)

We conclude that with the direct gradient analysis (i.e. the CCA) the same separation across habitats is present, and we can relate the environmental variables to the abundances. Naturally, the percentage of vegetation is larger on Bosques than on the Pradaria or Ripicola areas, and there is more water near rivers (Ripicola). It is however not easy to see in the CCA output what are the species contributing more to this segregation. That is simpler to do in the CA/PCA plots, where it seems clear that Turdus and Parus are characteristic of Bosques, as is Sylvia (segregating sites on the second component), and Athene of Ripicola. Prados are harder to characterize in terms of species in the CA, but the PCA shows that Anas seems frequent.

Final thoughts

All of these multivariate techniques reduce the information in a large matrix (or sets of matrices) to explore the relationships between the sites and the species, or in the case of the CCA, to see how the species distribute themselves over the sites using linear combinations of the environmental variables to explain that variation.

This process of dimension reduction inevitably leads to distortions. Try to find examples of points that were well represented in the resulting reduced space. A good starting point might be e.g. site Eucaliptal 7 in exercise 3. Look at its position in the biplot and try to imagine what might be the values of the different genera in it. What do you expect to be the most abundant genera say? Then go to the original data frame and check if your predictions were correct. Do the same with other sites to check the distortion that some sites suffered in the reduced space.