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Homework 1 (Exam style)

=

Explain in less than five lines:

Q

Virtual potential temperature and its relevance.

=3

The existence and properties of the “residual layer”

When can we accept the hydrostatic approximation?

o

The following figure represents three mean variables in a boundary layer taken
from the list: temperature, potential temperature, specific humidity, relative
humidity, wind speed. (a) identify A,B,C justifying your choice; (b) classify the

Boundary Layer.
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Homework 2 (Exam style)

2. Consider the term —u; % , Where q is specific humidity. Use the Reynolds

decomposition and averaging to expand into mean and turbulent sub-terms. Simplify
in conditions applicable to boundary layer flow.

3. The Ekman (spiral) solution describes the wind in the boundary layer in the form:
u =1uy(1—e"*cos(yz))
v = uge "*sin(yz)
a. List the assumptions taken to arrive to that solution.

b. Defining the boundary layer height as z = @ /y, prove the existence of “Ekman
pumping” (mass transport across isobars towards low pressure).



Homework 3 (Exam style)

4. Consider the equation:

de g - —_0du 1low'p’ ow'e’
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a. Explain the different terms.
b. Which terms are always negative?
c. Which are always positive?

5. Assume that variation of TKE (turbulent kinetic energy) with z (height above
ground) is controlled by the following variables: g, 6, z;, w'6’.

a. How many Pl groups can be defined for this problem?

b. Compute the Pl groups using the control variables as key variables.



Ekman (K,,= const)
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The surface layer

Is a “constant” flux layer (turbulent+molecular)

/<100m



Constant flux layer, but not constant mixing (as
eddies tend to zero at the surface)
0
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If K,,, is proportional to z near the surface, implying lim K = 0:
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Integrating:

Where z; is the roughness length.

Flat sea: 0.0002 m

Snow: 0.005 m

Grass: 0.03 m

Shrubs: 0.1 m

Forest, scattered houses: 1m
City:>2 m



Lettau (1969) suggested a method for estimating the aerodynamic roughness length
based on the average vertical extent of the roughness elements (h*), the average silhouette
or vertical cross-section area presented to the wind by one element (s), and the lot size per
element [S; = (total ground surface area / number of elements)]

S

Z, = 0.5 h(gi) (9.7.2a)
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Fig. 9.6  Aerodynamic roughness lengths for typical terrain types. (After
Garratt 1977, Smedman-Hogstrém & Hdgstrém 1978, Kondo &
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Displacement distance

9.7.3 Displacement Distance

Over land, if the individual roughness elements are packed very closely together, then
the top of those elements begins to act like a displaced surface. For example, in some
forest canopies the trees are close enough together to make a solid-looking mass of leaves,
when viewed from the air. In some cities the houses are packed close enough together to
give a similar effect; namely, the average roof-top level begins to act on the flow like a
displaced surface.

Fig. 9.7 Flow over forest canopy showing wind speed, M, as a function of
height, z. The thick canopy layer acts like a surface displaced a
distance, d, above the true surface. zo= roughness length.

Above the canopy top, the wind profile increases logarithmically with height, as
shown in Fig 9.7. Thus, we can define both a displacement distance, d, and a roughness
length, z,, such that:



General logarithmic profile

— Uy (z-d)
M = < In Z, (9.7.3a)

for statically neutral conditions, where we now defineM =0at z=d + z,. Given wind
speed observations in statically neutral conditions at three or more heights, it is easy to use
computerized non-linear regression algorithms such as the Marquardt Method or the
Gauss-Newton Method to solve for the three parameters, u,, z,, and d.



9.3.4 Classes of Similarity Scales

The most common classes of similarity scaling are Monin-Obukhov similarity,
mixed-layer similarity, local similarity, local free convection, and
Rossby-number similarity. When dealing with one of these well-defined classes of
problems, it is appropriate to use the associated scaling variables as the key variables in a
dimensional analysis.

Monin-Obukhov Similarity. This class is usually applied to the surface layer
(Monin and Obukhov, 1954; Wyngaard, 1973; Sorbjan, 1986), and hence is sometimes
called surface-layer similarity. Earlier we defined the surface layer as that part of the
boundary layer where the fluxes vary by less than 10% of their magnitude with height,
To a first order approximation, this layer is a constant flux layer. We can thus

simplify our description of the surface layer by utilizing the flux at just one height —
usually the surface.



Monin-Obhukov length

Relevant variables:

5 variables

(W’Q;)S = Kms™1!
- 3 dimensions

w'u's = u? = m?s~?
9_1] =K, g= mS_Z,Z = m 2 Pl numbers
Length scale:
L uséo,
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Monin-Obhukov (constant flux)

Monin-Obukhov similarity works only when the winds are not calm, and u, not zero.

Relevant scales based on these surface fluxes and their typical orders of magnitude are
listed here:

L Order (1 m to 200 m)

Zo Order (1 mm to 1 m)

u, Order (0.05 to 0.3 m/s)
0,5t Order (0.1 to 2.0 °C)

q. 5t Order (0.1 t0 5 g, 41e/KEair)

Scales for pollutant concentration can be patterned after the humidity scale. Lists of
Monin-Obukhov similarity relationships are tabulated in Sections 9.4 to 9.6, and a more
detailed analysis of the log-wind profile in the surface layer is given in Section 9.7.



Mixed-layer similarity

Mixed-Layer Similarity. This class is applied to mixed layers that are in a state of
free convection (Deardorff, 1972; Deardorff, et al., 1980; Sorbjan, 1986), assuming calm
or light winds. Free convection conditions can occur during cold air advection over a
warmer surface, or with solar heating of the land during the daytime in light wind
conditions. The relevant scales and typical orders of magnitude for the mixed layer are:

z; Order (0.2 to 2 km)
w, Order (2 m/s)

g ML Order (0.1 K)

q M- Order (0.1 g/m?)

u ML Order (0.02 m/s)

- Other scales, such as for pollutant concentration, can be defined in analogy to the moisture
scale. More details are discussed in Section 9.6.



Neutral Boundary Layer Similarity Relationship

Surface-Layer Parameterizations:

kz oU _ | 9.5.1¢)
u, oz
kz 06 _ .4 (9.5.1d)
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Stability effects (through L): convective

Surface-Layer Relationships:
-1/4

kz U Z
W — = = (1 - ISE) (9.6.1¢)
-~ Type gquation he el/2
kz 00
Oy = eSL._a_Z_ = 0.74 T 1 - 9t‘) (9.6.1f)

L ]

Neutral L = cox



Stability effects (through L): stable

Y 22 |
0y = l:lz (%l;) +(%_ZY_) = 1+4.7% (9.4.1c)
4 = %3—2 = 074 + 4.7{j (9.4.1d)
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-

Neutral L = o



Non-neutral

Businger-Dyer Relationships. In non-neutral conditions, we might expect that
the buoyancy parameter and the surface heat flux are additional relevant variables. When
these are used with the variables from Section 9.7.1, Buckingham Pi analysis gives us

three dimensionless groups (neglecting the displacement distance for now): M/u,, z/z,,
and z/L, where L is the Obukhov length. Alternatively, if we consider the shear instead

of the speed, we get two dimensionless groups: ¢,y and z/L . Based on field experiment
data, Businger, et al., (1971) and Dyer (1974) independently estimated the functional
form to be:

477 z z
=14+ L for T >0 (stable) (9.7.5a)
oy =1 for = =0 (neutral) (9.7.5b)

15z 1/4
z
= { 1 ( _L-” for T <0 (unstable) (9.7.5¢)



Businger-Dyer
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Fig. 8.9 (a) Range of dimensionless wind shear observations in the surface
layer, plotted with interpolation formulas. (b) Range of dimensionless
temperature gradient observations in the surface layer, plotted with

___interpolation formulas. After Businger, et al. (1971).




Spectral similarity
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As discussed in Chapter 5, there are many situations where middle size turbulent
eddies "feel" neither the effects of viscosity, nor the generation of TKE. These eddies get
their energy inertially from the larger-size eddies, and lose their energy the same way to
smaller-size eddies. For a steady-state turbulent flow, the cascade rate of energy down the
spectrum must balance the dissipation rate at the smallest eddy sizes. Hence, there are
only three variables relevant to the flow: S, x, and €. This similarity approach was
pioneered by Kolmogorov (1941) and Obukhov (1941).

By performing a Buckingham Pi dimensional analysis, we can make only one
dimensionless group from these three variables:

We know that this Pi group must be equal to a constant, because there are no other Pi
groups for it to be a function of.
Solving the above equation for S yields:

23 __-5/3

S(x) = o, € K 9.9.1)

k

where the o, is known as the Kolmogorov constant. The value of this constant has
yet to be pinned down (Gossard, et.al., 1982), but it is in the range of oy = 1.53 to 1.68.
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