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First Principles 
 
The density field of the inhomogeneous Universe is not constant everywhere, but 
it varies with spatial location.  
 
 
The density values at different locations do not differ much from the mean density  
 

 à they are perturbations. 
 
 
It is usual to define the density contrast δ(x), i.e., the deviation with 
respect to the mean density (averaged over space): 
 
 
 
 
 
During the evolution of the Universe, the density contrast at each point also 
evolves, either increasing or decreasing, driven by gravity. The process of 
evolution of the density contrast is called structure formation, turning density 
fluctuations in cosmological and astrophysical structures. 



How do initial fluctuations around the mean arise? 
 

  from quantum fluctuations of density. 
 
 
In the quantum universe, there is a large number of random steps, i.e., in 
the very early Universe the value of density at a given location is changing 
all the time as the result of a stochastic (random) process. It is not 
possible to know the value of density at a given location at a given time, in 
a deterministic way.  
 
We just know that the value is a realization of a probability distribution. 
Due to the large number of random processes involved, the central limit 
theorem tell us that the resulting probability distribution is a Gaussian 
 

 à the quantum density field  is a Gaussian random field. 
 



Later, the inflationary mechanism makes the passage from quantum to 
macroscopic world  
 

 à it  produces a density field of macroscopic perturbations - called the 
primordial perturbations - this field is the initial condition for the subsequent 
time evolution of δ(x), but again its actual value is not known, it is a particular 
realization among all possible realizations. 
 
 
Note that the depending on the inflationary model, the Gaussianity of the density 
random fields may or may not be preserved during inflation à search for possible 
primordial non-Gaussianity is a test of inflation.   
 
(This is the goal of the measurements of the f_NL parameter in CMB 
observations)   
 
	
  



Now, the value of density at a given location is then (most likely) a value taken from 
a Gaussian distribution.  
 
 
So the actual values of δ(x) at each point are not known.  
 
We just know that the density contrast at each point is a random variable, and its 
value is one among the various possible realizations of a Gaussian distribution,  
 
 
 
 
 
 
 
The density contrast random field is then described by the parameters of its 
Gaussian distribution. As we know, a Gaussian distribution has only parameters (its 
moments): mean and variance. 
 
Note however that there is one Gaussian distribution for each spatial location 
(hence the subscript in δ above). In principle each location may have its own mean 
and variance. 



Consider a discretization of the density contrast field.  
 
We need N distributions P(δi)   (one for each position x; of course the problem is 
continuous Nàinfinity). 
 
However, the N variables δ1 ... δN are not independent  
 

 à The value at a point depends on the values of neighboring points 
(due to the gravitational interactions between them). 
 
 
So we cannot describe the system by considering N independent Gausian 
distributions, but we need a N-dimensional Gaussian:  
 

(In our case the vector of k δ random fields on k locations is the random variable x with 
dimension k, and the k-dimension Gaussian distribution has a k-dim vector of means µ and a 
k x k covariance matrix Σ ) 



For example, if there were only 2 random variables (i.e., binning the density field 
such that it would have only two locations), we would need a 2-dimensional 
Gaussian; 

where ρ is the correlation coefficient ρ = σxy / (σx σy) 
 

Since the two random variables are not independent, the correlation coefficient is 
different from zero, and the covariance matrix is not diagonal. 
 
The joint probability of having a value δ1 at the location 1(called x in the notation 
above) and having at the same time a value δ2 at the location 2 (called y in the 
notation above) is  
 
 P(δ1 ,δ2) = P(δ1) P(δ2 |δ1)    (where P(δ2 |δ1) is the conditional probability) 
 

with 



It seems the complexity of the problem increases with the stochasticity! 
 
If the problem was deterministic:  

  system described by the field δ(x) à N values 
 
 
But the problem is stochastic:  

 system not described by the actual values of δ(x) but by the moments of 
the N-dim distribution (of which the values of δ are realizations). 
 
The number of moments of an N-dimensional Gaussian is  

 à N(N+1) (N values of mean, NxN values in the covariance matrix) 
 
 
In case the correlations are symmetric, there are only N(N-1)/2 off-diagonal 
correlation coefficients à  a total of N(N+1)/2 elements in the covariance matrix  

 à  a total of  N(N+3)/2 moments. 
 
 
So the N Gaussian random variables are described by N(N+3)/2 variables (the 
moments of the distribution). 
 
 



Fortunately, the complexity is reduced by introducing the 
 
  Generalized cosmological principle:  
 
 
“The universe is statistically homogenous and isotropic” 
 
 
This means that there are perturbations to the homogeneity but 
they are described by a probability distribution with a homogeneous and 
isotropic set of moments.  
 
 

 à The moments of the distribution do not depend on location or 
orientation. 
 
(instead of the values of the density field themselves) 



Statistical Homogeneity  
 
implies that: 
 
i) The means do not depend on location à all N means are identical (one for 
each random variable δi).  
 
 

 Can we measure the means of the distributions? 
 
 
If we had a sample from the distribution, we could just measure its average in 
the usual way (summing the values and dividing by their number) - this is called 
the ensemble average. This statistic (the ensemble average) is known to give an 
unbiased estimate of the mean of a distribution (if the sample is large enough). 
 
 
Problem: However we only have one realization - which is the Universe itself - 
instead of a full sample (unless there are parallel universes), i.e., we can only 
measure one value of δ in a given location, and we cannot repeat the 
experiment to get more values. 
 
  



Solution: We assume that the whole Universe provides a representative set of 
all possibilities, i.e., the Universe includes in itself all possible realizations of the 
distribution. 
 
In other words, distant parts of the field in separate parts of the Universe are 
independent of each other.  The values of  δ there are not correlated with the 
values of δ here. Those values are independent realizations of the same 
distribution that provides the values here (the distributions are the same due to 
statistical homogeneity).  
 
In this way we can have access to different realizations of the same distribution, 
and get a sample  
 

 à we can then make spatial averages instead of ensemble averages in 
order to find the moments. This is called the ergodic hypothesis. 
 
 
Using the ergodic hypothesis, we can easily compute the mean of the distribution 
of δ.  

 From its definition, the values of δ  are:  
 
 



the mean value of the distribution can then be computed by the ensemble (now 
equivalent to spatial) average of the values of δ across the spatial field.  

  
  The result follows immediately: 
 

   <δ>=0             (Note: <> denotes ensemble or spatial averages) 
  

This means that the value of δ on any point of the Universe is a random value 
around the mean δ = 0. 
 
This also implies that the amplitude of cosmological perturbations will not 
be given by the mean value of their distribution but by the variance of the 
distribution (a larger variance allows for the possibility of producing 
realizations with larger values of δ). 
 
 
The N-dimensional distribution is then essentially described by the NxN covariance 
matrix. Its elements are: 
 
Variance: i.e. the N terms of the diagonal  (also called auto-correlation) 
 
Covariances: i.e., the N(N-1) off-diagonal terms  (also called the cross-correlations) 



Statistical homogeneity further implies that: 
 
ii) The variances do not depend on location à all N terms of the diagonal are 
identical.  
 

 Can we measure the variances of the distributions? 
 
Yes, by measuring a sample of values of δ at different locations and computing the 
variance with the usual statistic: 
 
 
 
 
 
 
iii) The correlation coefficients do not depend on location à this does not mean that 
all N(N-1) terms of the off-diagonal are identical. It means that the correlation 
coefficient between a pair of points separated by a given vector is the same 
for all pairs separated by identical vectors. 
 



Statistical Isotropy  
 
implies that: 
 
iv) The correlation coefficients do not depend on orientation à the correlation 
coefficient between a pair of points separated by a given vector modulus 
(i.e. a given distance, irrespective of the orientation) is the same for all pairs 
separated by the same distance. 
 
Eg: σ14 = σ37  (covariance between locations 1 and 4 and between locations 3 and 7) 
 
 
 

  



Can we measure the variances of the distributions? 
 
Yes, by measuring a sample of values of δ at different locations and computing 
the covariance using only pairs of points at the same separations: 
 
 
 
	
  

In summary, the density contrast random field (discretized in N positions of a 
regular grid) is described by N values: 
 
•  1 variance (auto-correlation) 
 
•  N-1 covariances (since the condition iv reduces the original N(N-1) correlation 

coefficients to N-1) 
 

(the Dirac delta indicates the sum only includes 
points at a separation d from each other) 



The N-1 covariances form a function known as the 2-point correlation function :  
  
     (r=|x -x’|) 

 
                (δ* accounts fot the possibility of having complex fields) 

These N quantities contain the full cosmological information of a Gaussian 
δ(x) map. 
 
The randomness aspect and the generalized cosmological principle, make that the 
most natural spatial quantities to use in the treatment of the inhomogeneous 
Universe are not locations but separations between locations. 

Two-point functions 

Correlation Function 



The correlation function of the density contrast field contains all the statistical 
information on the Gaussian density contrast field. In particular it tell us the 
conditional probability of having a value δ2 at a location “2” separated by “r” from a 
location “1” where there is a value δ1  à it describes the clustering properties of 
the field. 
 
For example, consider that we have sampled the field δ on N locations (for example 
by measuring the positions x,y,z of N galaxies, assuming the galaxies trace the 
locations of the overdensities) 
 
 
 

dV1	
  

dV2	
  

Case	
  of	
  uncorrelated	
  distribu4on	
  

There are N galaxies on the full volume V,  
and a number density of n=N/V 
 
The probability of having a galaxy in the 
shell volume dV1 is given by the number 
of galaxies within that volume divided by 
the total number of galaxies N: 
dP1 = n dV1 / N = dV1 / V 
 
The probability of having a galaxy in the shell 
volume dV2 is independent of dP1 : 
 dP2u = n dV2 / N = dV2 / V 



dV1	
  

dV2	
  

Case	
  of	
  correlated	
  distribu4on	
  

In the case of correlated distribution, the 
probability of having a galaxy in the shell 
volume dV2 depends on dP1 .  
 
In other words, the value of dP2 depends on 
the correlation between the locations 1 and 2,  
 
i.e., it depends on the correlation at the 
separation r12 : 
 
 dP2c = n dV2 ( 1+ξ(r12) ) / N = dV2 (1+ξ(r12) ) / V 
	
  

So, the number of galaxies found is no longer just a function of the size of dV2 
 
If there is a: 
  
     correlation,  ξ > 0 à dP2c > dP2u 
     (anti-)correlation, ξ < 0 à dP2c < dP2u 
 



The total number of galaxies as function of r, on the full volume, is given by N 
times the integral of the probability dP(r): 
 
N(r) =   n (1+ ξ(r) ) dV/dr dr  Note that n dV(r) is a “distance function”, the 

       number of objects per distance bin dN (r) 
 
(the use of shell volumes dV is very practical to obtain a function of r) 
 
In the uncorrelated case N(r) ~r3 , but in general the slope will be different, 
depending on the correlation function slope ξ(r)  à the number is higher on a 
highly correlated area (small separations). 
 
The dark matter correlation 
 function predicted  
in the ΛCDM model is 
 positive and decreases  
with separation:  

large	
  scales	
  



The amplitude of the correlation 
function naturally increases with 
structure formation (as the clustering of 
matter increases) à it decreases with 
redshift. 
 
 

Correlation as an excess ratio between the clustered and the random cases: 

Now, if we compare the probabilities dP(r) we just found for the correlated and the 
uncorrelated cases, 
 
dP2u = n dV2 / N  
 
dP2c = n dV2 ( 1+ξ(r) ) / N  
 
we see that 1+ξ(r) is given by the ratio of the probabilities, i.e., by the ratio of 
the two “distance functions” (the number of galaxies as function of r): 
 

    1+ξ(r) = Nc (r) / Nu (r) 
(see homework) 



The correlation coefficient of 2 points separated by r tells us about structure - the 
central property of the inhomogeneous universe that we want to describe. It 
quantifies the clustering of the density field (the “degree of collapse”) - the 
formation of structure.  
 
For example, if there is correlation on all separations up to a separation r and then 
the correlation drops, it shows that (on average) there are overdensity regions 
from x to (x+r), i.e. halos of size r  
 
 
However the relation between correlation as function of separation, and size of 
the overdensity is not  a one-to-one relation à from this example, we see that we 
need to know the correlation at various separations to find out if there is an 
overdensity of a given size. 
 
 
 
 

Correlation Function in Fourier space 

We would like to have a function that directly shows the clustering 
amplitude on a given size. Is this possible? 



Let us consider the Fourier transform of the density contrast field 

(Note that the factor (2π/k)^3 is needed in this convention of Fourier transforms because we 
are writing the plane waves as ikx and not i2πkx  ) 
 
(Note that V accounts for finite volume, and δ(x) and δk are dimensionless) 

This defines a set of Fourier modes k (3d vectors), with associated sizes 2π/k 
(or wave numbers) 

Let us compute the correlation function in this approach (i.e., compute the 
2-point correlation function in k-space) :  

1 1 1 1



where the first term is a Dirac delta (the Fourier transform of  f(x)=1), 
 
 
 
 
 
and the second term is the Fourier transform of the correlation function, which is 
called the power spectrum P(k) (it is its definition). Note that due to isotropy it only 
depends on the modulus of the k-mode vector. 
 

1 1

where y is the separation vector between x and x’, and for fixed x the integration 
over x’ is the same as an integration over y.  
 
Continuing, 



So the result is, 

=Δ2 (k) 

Note that the power spectrum P(k) has dimensions of volume, and  Δ2 (k) = k3 P(k) 
is called the dimensionless power spectrum, also known as the power spectrum 
per interval of ln(k). 
 
 
The important result we obtained here is that 
 

  the correlation function of the Fourier transform of the density contrast field 
is the Fourier transform of the correlation function in real space multiplied by the 
Fourier volume k3 and by a Dirac delta function, i.e.  
 

 it is the dimensionless power spectrum multiplied by a Dirac delta function  
 
The presence of the Dirac delta makes the coefficients δk to be independent, 
i.e., 

 the correlation between two different modes k, k’ is zero. 
 



So, while the original correlation function describes the density contrast field 
using a set of N-1 non-independent covariance (cross-correlations) variables 
(plus one variance) that depend on separation on the real space,   
 
the power spectrum describes the same field using a set of N independent 
variance (auto-correlations) variables in the harmonic space: the set of  

large	
  scales	
  



The fact that the dimensionless power spectrum contains variances instead of 
covariances, means that it gives directly the information of a mode - or scale -  
(instead of relying on separation between points). 

Note that  A small value of k is called a large scale 
  A large value of k is called a small scale 

 
because the inverse of the scale  - 2π/k -  corresponds to a physical size  
 
So the value of the dimensionless power spectrum on a given Fourier mode, 
is the variance on that scale, i.e., the degree of clustering (the clustering 
amplitude) that exists on that scale of the Universe on average. 
 
(Remember it is a moment of a distribution, so it does not mean that all regions of the 
Universe of that size will have that density contrast, it only means that their values will be 
realizations of that distribution with that variance). 
 
(Note again that the dispersion of a random variable of mean zero is a direct indication of its 
amplitude - and not the mean! - ) 

Power spectrum vs. Correlation function 

Both descriptions - in real and Fourier space - have the same information.  
Both are valid to describe the cosmological field. 



Let us consider now the power spectrum as the basic quantity and compute the 
correlation function from it:  
 
We need to compute the inverse Fourier transform of  the power spectrum: 

The correlation function is real so we just need to consider: 
 
 
 
 
and the power spectrum is isotropic (it depends only on the radius |k| à we  
can integrate over the angular part:  
  

(in spherical coordinates the integral element is 



The result is: 

This means that the correlation function is a filtered linear combination 
 of the power spectrum à one separation r is a combination of various  
scales k à k are the independent and fundamental cosmological scales, the 
separations r are not independent. 
 
 
There is not a one-to-one correspondence between separation and scale 
(unless the filter in the integral, also called window function, is very narrow). 
 
The filter (the function that multiplies k2 P(k) in the integral) is the spherical Bessel 
function of the first kind for n=0  :  j0 (kr) 
 



The shape of j0 (the solid line) shows that most of the contribution for the correlation 
at a separation r  -ξ (r)-  comes from larger scales: k < 2.6/r  (the range where the 
contribution is large, with filter amplitude > ~0.2) 

In summary: power spectrum and correlation function have the same 
information, but the N components of the power spectrum are 
independent and give directly the amplitude of clustering as function of 
scale, while the N components of the correlation function do not. 



Even though the 2-pt correlation function is highly correlated and does not give 
direct information on an individual scale, it is a useful quantity to consider because 
 

 it is defined in real space à it can be measured directly from data 
measured in the sky. 
  
(The power spectrum needs to be estimated from data in an indirect procedure). 
 

The fundamental modes in the harmonic space (i.e., the wavenumber or scale k) 
are thus the natural choice to define the cosmological scales. 
 
Note: an analogy, is that the notes (A,B,C,D,...) produced by a musical instrument 
are not independent (they are like the separations), each one contain various 
fundamental notes defined by a tuning fork (which are the fundamental ones, like 
the cosmological scales). Each instrument has a sound spectrum, which in 
fact is a Power spectrum: 
 

G tuning fork is 
independent from the 
other fundamental 
notes (the “scales”) 



G clarinet is a linear  
combination of the 
fundamental notes 
 
 
 
 
 
G saxophone is a different  
linear combination 
of the fundamental notes 
 
 
 
 
 
(The sound power spectrum  
defines the timbre of the 
instrument) 
 



Alternatively to using discrete quantities (i.e. separations r between discrete 
locations x, x’), the clustering properties in the real space can be determined 
using a smoother measure of density:  
 

 the variance of number counts in cells   

Smooth spatial distribution: counts in cells and sigma_8 

Placing cells of a fixed size R on a δ map (discrete or continuous) 
allows to smooth the map on a scale R, defining a δR as a convolution of 
δ(x) with a window function (a filter) of size R à δR is a weighted 
average of δ in a cell of size R. 
 
We can then compute the variance of this δR on cells R across the whole 
map. 
 
Doing this for N values of R, we can define a vector of variances of δR. 
 
 



A B 

Compute  δR in each map for the two different values of R, obtaining 4 quantities.  
 
Then compute the variance of each of those quantities, by moving the circles on the 
maps. The result is: 
 
i) The variances in B are larger than in A (for both scales R), because B has more 
density contrast than A. In B the circles can fall in high-density regions or in low-
density regions à large variance. While in A all regions are more similar à B has 
more structure than A. 
 
ii) Placing the larger circle (for both A and B) it is more likely to find similar regions 
along the maps than with the smaller circle à the variance decreases with R à the 
smallest cell R to approach zero variance defines the homogeneity scale à there is 
no structure above that scale. 

A B 

Example: Consider two density maps A and B and two different scales R (shown by 
the circles). 



Now, since the variance of δR is a second-order moment, it is certainly related to the 
power spectrum. 
 
Let us derive that relation.  
 
First, how can we write a theoretical expression for the smooth density δR ? 
 
Let us consider a top-hat window function WR, i.e., a filter of constant amplitude. 
 
 
δR can be written as the convolution of δ with the top-hat:  

The Fourier transform of the smooth field is simply  
the product of the Fourier transforms of δ and the top-hat: 



The variance of the smooth density is then, 

i.e., it is a filtered integral of the power spectrum, where the filter is the square of 
the Fourier transform of the top-hat WR(k): 

This filter is very diferent from the j0 Bessel function.  
It is relatively narrow and peaked at k ~ 2π/R.  
 
We conclude that a vector of  σ2

R  (for various cell sizes R) is a linear combination  
of the power spectrum amplitudes, just like the correlation function was. 



However, its components are less correlated than the correlation function ones à 
since the filter is very peaked, there is roughly a one-to-one correspondence 
between R and scale k.  
 
For this reason, the value of  σ2

R  gives a good indication of the clustering 
amplitude at the scale R (like the power spectrum also does).   

As we will see later, to compute structure formation (i.e., the time evolution of the 
density contrast field), we need an initial condition for the density contrast field δ(x,t).  
 
As we know, the field is fully represented by a 2-pt quantity. So the initial condition 
must be the value of a 2-pt function at a fixed time (redshift). In particular, the 
amplitude of an initial 2-pt function at a given scale is a comological parameter of 
the inhomogeneous Universe. 
 
There are two alternative parameters that set the primordial amplitude of the density 
contrast field:  
 
 - The amplitude of the primordial power spectrum at a large scale k = 0.02 h/Mpcà 
parameter As 
 
 - The amplitude of today’s power spectrum (z=0) at a smaller scale R = 8 Mpc/h à 
parameter σ8  (“sigma eight”) 



- Why is a large scale  [k=0.02 h/Mpc à R ~ 300 Mpc/h] used for early-times 
normalization? 
 
The scale factor is small à there is no resolution to access small scales 
 
 
- Why is R=8 Mpc/h used for late-time normalization? 
 
It is the scale where the observed dark matter power spectrum P(k,z=0) has 
amplitude ~1 à It is the threshold that separates linear scales (the larger ones) 
from non-linear scales (the smaller ones) today à so the value of σ8 in a given 
model shows immediately the level of clustering in the universe today, compared 
with a σ8 = 1 reference universe. 

From early times to late times, the power spectrum evolves in amplitude and 
shape à the two amplitude parameters are related; the relation between the 
values of A_s and σ_8 depends on all cosmological parameters. 



The 2-pt correlation function of a continuous density contrast field δ(x) - with positive 
and negative values around a zero mean - may be measured in a δ(x) map by: 
 
 - computing the covariances of δ(x) 
 
 - computing the covariances of the smoothed δR(x) 
 
 
However, we usually do not have a continuous field: 
 
We may have measurements of δ(x) on some points of the field (or on some points 
of some other related field, not directly δ(x) ) 
 
We may observe the positions of galaxies, and assume their concentration traces 
the δ(x) field à i.e., there are more galaxies where δ(x) is larger. 
With this assumption we can define a δg (x), which is basically N_gal (x). 
 

 the number of galaxy pairs as function of separation  can be written as  
schematically as 1x1 + 1x0 + 1x0 + 1x1 + …. à it is “a kind of” <δg(x) δg(x)> 

Correlation function estimator 



Note however that the number of galaxies at a location is 0 or 1; it cannot be 
negative à the N_gal (x) is not entirely equivalent to a δ(x) field 
 
In other words, the correlation found from this method is not normalized, its absolute 
value is not correct. What we can do, to be able to use this information, is to 
compare the N_pairs (x) with the N_pairs (x) from a uncorrelated field. 
 
The ratio of the two has the correct information. 
 
This method requires that we build a sample of mock galaxies (the “randoms”), in 
the same survey volume and geometry, with the same spatial sampling as the data 
sample, but with uncorrelated positions, (i.e. with P(1) independent of P(2)). 
 



Using this we can measure: 
 

 DD (r) - number of galaxy-galaxy pairs as function of separation 
 RR (r) - number of  mock-mock pairs as function of separation 
 DR (r) - number of  galaxy-mock pairs as function of separation 

 
 
Several estimators of the correlation function can be defined, based on different 
ways of making the data-random comparison: 
 

The 4 estimators have 
different noise properties.  
 
Number 4 has the best 
signal-to-noise ratio. 



The typical result obtained for the correlation function (of galaxies positions) is a 
power-law, with slope γ= 1.7 (where r0 is a critical separation that depends on the 
type of galaxies, a typical value is r0 ~ 5 Mpc/h) 

Note that the correlation function obtained from galaxy surveys is different from the 
one measured directly on the δ(x) field (from simulated dark matter fields using N-
body simulations), which is not a power-law slope. 



This shows that there is an important bias between the spatial distributions of 
galaxies and dark matter, i.e.,  
 

 δg(x) = b(r,z) δ(x)   (in a linear approximation) 
 
The bias “b” is not a constant. It can be modeled as function of redshift and scale, 
introducing additional nuisance parameters. 
 
(It is known to be larger for brighter galaxies  - like the galaxies in clusters -  à there is also an 
environment dependence) 
 
 

 So, light only follows matter in an approximate way 



Power spectrum estimator: shot noise 

Measurements of discrete galaxies positions can also be used to estimate the  
power spectrum of the underlying continuous δ field.  

Consider N galaxies (particles) of mass m=1 in a volume V, corresponding to a 
mean density 
 
 
 
Assume there is no galaxy bias, i.e.,  
galaxy positions trace perfectly  
the mass distribution 
 
 
The density ρ at a location takes values  
0 (at a point x with no particle)  
or 1 (at a point x with a particle). 
 
(This also implies that the volume occupied by 
1 galaxy is Vg=1 à ρ= 1/1) 



With this set up, the density contrast may be written using the Dirac delta function 
(which will be convenient later on): 
 
Note that the integral of the Dirac delta is 1 (over the full infinity range), or zero (if 
the sum range does not contain the peak).  

Now, in order to compute the power spectrum, we need first to Fourier transform 
δ(x): 

where the Dirac delta 
sets x=xi in the  
plane wave 



and compute the correlation function in Fourier space 

To evaluate the 1st term - we may separate the terms i=j from i≠j : 



  

Note: What is the sum of a ‘bracketed’ quantity? 
 
The ensemble average of a random variable ‘x’ is the sum over all its 
realizations (all elements in a sample).  
 
If we do not have a sample but know the probability function of ‘x’ we could 
generate a sample and average.  
Or, more precisely (and without recurring to numerical methods), we need to 
sum over ‘x’ multiplied by its probability à it is a weighted sum. 
 

 In general an ensemble average of a function f is then 
 

  <f> = integral (dx f(x) p(x)) 
 

 or, in 2 dimensions: 
 



So in order to proceed with the derivation and compute the ensemble  
averages in this first term, we need first to write the probabilities. 
 
In the case i=j, we need to compute <exp(-ikxi) exp(ik’xj)> 
It is a 1-dimensional problem, the ensemble average is an integral over xi 
 

 What is the probability of having a particle in xi? 
 

 It is just  P(xi)=1/V 
 
So now we can proceed and get: 
 
 
 
 
 

(where the integral gives a Dirac delta and the sum is over the N cases i=j) 



This is the probability of xi times the conditional probability of xj given xi. 
 
If they are independent this is just  P(xi,xj) = P(xi) P(xj) = (1/V)2 
 
But if there is a correlation, the probability of finding a particle in xj depends on 
having or not a particle in xi. 
 
If they are (positively) correlated the joint probability is larger than (1/V)2 : 
 

 P(xi,xj) = P(xi) P(xj|xi) = ( 1+ξ (|xi-xj|) ) / (V2)  
 
This is, of course, the definition of correlation function. 

In the case i≠j, we need to 
consider the joint probability  
of having two particles,  
one in xi and another in xj.  



So the ensemble average introduces in a natural way the correlation  
function of the continuous field in the derivation. 

The sum has N(N-1) cases and (1+ξ) separates in 2 terms:  
 
 - an integral over the plane waves à giving 2 delta functions  
 
- and the Fourier Transform of the correlation function (where z=|xi-xj|).  



Going back to the expression for  
 
 
The 2nd term has nothing to compute, 
 
 
 
and the 3rd and 4th terms  
 

  are similar to the i=j part of the 1st term: 



Putting all terms together: 
 
The first term of the i≠j term and the 2nd, 3rd and 4th terms are all double Dirac 
deltas, and all cancel each other. 
 
The result is then the i=j term, plus the second term of the i≠j term : 

We derived that the correlation function in the Fourier space is the power spectrum 
plus a constant term (V/N). 

(Instead of being just the power spectrum, as we had seen before) 



This is a general property of any power spectrum estimated from a 
discrete spatial distribution. 
 
 

 Why is now the result  P(k)+V/N  instead of P(k) ?  
 
 
The extra contribution comes from the i=j term of the derivation à it is a 
term of auto-correlation and not a term of covariance à it has no 
cosmological information related to a scale, because a scale needs a 
separation à it is a monopole term. 
 
 
In our derivation, starting from measurements in the real space, it would be very 
easy to avoid ending up with this term à we just needed to discard auto-
correlations in the estimator à consider only pairs of galaxies where the 2 
galaxies are different. 
 



But when we estimate directly the power spectrum from a discrete map,in a more 
indirect way, the result will always implicitly include this monopole à this term 
cannot be avoided: 

Notice that, since a scale k is a linear combination of all separations r 
within the window function, the i=j monopole affects the estimated amplitudes 
of P(k) for all scales à it is an overall constant shift in amplitude. 
 



 
However, the fact that the monopole amplitude is given by V/N tells us that its 
amplitude will decrease in future surveys à larger V and larger N 
(with V being limited while N can tend to ∞) 
 
So, the galaxy power spectrum estimator is not biased: 
 
 
 
 
 
The monopole adds uncertainty to the estimated power spectrum, but does 
not bias the measurement.  It does not to be subtracted, it is part of the noise and 
contributes to the error bars.  The monopole term is known as the shot noise (also 
called discreteness noise). 

If we want to limit the shot noise in a future survey, we should build a deeper 
survey rather than a wider one (i.e., increase the density of galaxies n = N/V). 



Projected two-point functions 

The 2-pt functions that we saw until now are defined in the cosmological volume, 
i.e., in a 3D density contrast field. 
 
 
We can also define angular two-point functions, which are function of two-
dimensional (angular) separations and are obtained by  projecting the 3D 2-pt 
functions on the sky. 
 
 
A projected 2-pt function is more directly measured in the sky than the original 3-
dimensional one à we can always measure an angular separation, but not a 
radial separation (which needs redshift information) à in general what we really 
observe is a map of the projected density. 
 
 
 
 
 
 



Angular correlation function 

An angular correlation function is a 2D correlation function, i.e., obtained by 
projecting the 3D correlation function on the sky. 
 
A projected quantity may be written in general as a weighted (filtered) integral over 
the third dimension: 
 
 
where, 
 
-   the 3D coordinates are        = (fK(χ) θx , fK(χ)θy, χ), with 
 

 χ is the radial coordinate (comoving) 
 

 θx is the angular separation (in the x direction) to a reference axis  
(the line-of-sight)  
 

 fK(χ) θx is the comoving physical separation corresponding to that angular 
separation, i.e, the angular separation times the comoving angular diameter 
distance. 



-   g(χ) is the weight function used in the projection: for example the redshift 
distribution of the density tracers (galaxies). In this case coordinates χ (redshift z) 
with more galaxies contribute more to the integral. 
 
(A filter (or window or weight function)  
is needed to account for the various  
contributions to a given  
position θ on the sky). 
 
 
 
Let us then use this general form to write the  
projected correlation function: 
 
 
 
 
 
which is function of separation 
 



In the projection, each angular separation has contributions from pairs with elements 
at any radial distance. 
 
We may aproximate it by considering that 
 
•   since the 3D correlation function is a decreasing function of separation, only 

physically close pairs contribute (i.e., close in the 3D space and not only in the 
projected sky) à we consider only pairs with χ ~χ’ 

 
•  the window function has a slow variation in redshift:  g(χ) ~ g(χ’) 
 
This is called the Limber approximation.  
 
In the Limber approximation,  the two window functions are function of χ and can be 
written inside the first integral.  
 
Notice that the product of the two window functions is g2 only in the case that they are 
not correlated. In general, they are correlated by the correlation function itself à the 
joint probability P(g1 ,g2) is a conditional probability à there is source clustering and 
so we should write: 
 



But this is a second-order effect (order ξ2). To first order, the angular correlation 
function is linear in the 3D correlation function: 
 
 
 
 
The 3d correlation function ξ = <δ(x)δ(x’)> is the Fourier transform of the power 
spectrum, and so we can write  
 
 
 
 
 
Note the power spectrum evolves in time, and so it also depends explicitly on the 
redshift z  (which is related to χ). 
 
The 3D vector scale can be decomposed in a 2D transversal and a 1D 
longitudinal component, 
 
 
and we can write, 
 
 



In this expression, there remains no dependence on χ’ à the integral over dχ’  (or 
over d(χ-χ’) which is the same) is a Dirac delta function  2π δD (k3) à k3 =0, i.e: 

This is the result, also called the Limber equation - the relation between the 
angular 2-pt correlation function and the power spectrum. 

Note on notation - the standard notation is: 
 
ξ(r) - 2-pt correlation function 
w(ϑ) - 2-pt angular correlation function  
P(k) - power spectrum 
C(l) - angular power spectrum 

It shows that only scales in the plane contribute to the angular 2-pt function.  



The angular power spectrum is the transform of the angular correlation function in 
the harmonic space.  
 
For flat-sky (valid for small fields), plane-waves  
are an orthonormal basis of functions that can be used to make the  Fourier 
transform. 

Angular power spectrum: flat sky 

This introduces the 2D angular scale ‘l’, the reciprocal of the real-space angular 
separation θ. 
 
 
The relation between the Fourier angular scale and the real-space angular 
separation is: 

    
  θ = 2π/l 

 
à  the scale l=100 corresponds to a separation of 3.6 deg 
à  the scale l=1000 corresponds to a separation of 21.6 arcmin 



Now, the Fourier transform of the 2-pt angular correlation function is: 

Inserting in the Limber equation, we find the relation between the angular power 
spectrum and the power spectrum:   

The last integral is a Dirac delta: 

This means that ‘l’ only depends on the transversal components of k, and not on 
the full 3D k vector,  
 
and allows us to make the dk integration setting 

  
   k_transverse = l / fK(χ).   



This shows that the amplitude of C for a given angular scale l,  is a 
weighted sum of the amplitudes of P at scales l/fK(χ)  
 
i.e., at different redshifts, the scales k that contribute to the same 
angular scale l are different. 

The result is: 

Due to statistical isotropy, the correlation functions only depend on the separation 
modulus à C(l) is only function of the modulus of ‘l’, as P(k) was function of the 
modulus of ‘k’. 
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Decomposing a map in plane waves: the dark matter density contrast 

(Note that obviously we still need to study  
structure formation to find the power spectra, we 
are just looking at the relations between the 
various power spectra and correlation functions) 



 
 
 
 

In the spherical full-sky, the flat-sky approximation is not valid for large scales à 
plane waves are no longer an orthonormal basis. 
 
 A better basis are the spherical harmonics Ylm 

Since we are in 2D there are 2 indexes to these functions, just like for 
Fourier modes l=(lx,ly). For spherical harmonics the indexes are called 
(l,m) and are associated with spherical coordinates θ and φ. 

Angular power spectrum: spherical sky 

The spherical harmonics form an orthonormal set of functions on the spherical surface:	
  



which in turn are defined from the ordinary Legendre polynomials Pl 

which are the solutions of Legendre’s differential equation 

and can be written as, 

The spherical harmonics are defined from the associated Legendre polynomials 
Plm 



Contrary to cartesian coordinates (where the range of lx and ly are independent), 
in spherical coordinates the range of  l and m are not independent:  for each ‘l’, 
‘m’ runs from -l to l. à there are 2l+1 values of ‘m’ for each ‘l’ à summing over 
‘m’, for a fixed ‘l’ gives the closure relation: 

The first spherical harmonics are: 



The first spherical harmonics look like this:  

l=0 l=1 l=2 

m = - l 

l=3 

m 

The amplitude goes from highest positive 
(blue) to lowest negative (red) 



We see that the (2l+1) ‘m’ configurations of spherical harmonics for a given ‘l’ have  a 
similar pattern à they divide the surface of  a sphere in (2l) regions of equal area.  
 
l = 0 is constant à monopole 
l = 1 is a gradient between 2 poles (the maximum and a minimum) à dipole  
(the different basis configurations show the gradient along latitude or along longitude) 
l = 2 à quadrupole 
l = 3 à octopole  

Notice that the relation between the spherical harmonics angular scale and the real-
space angular separation is not unique.  
 
As an approximation, we may consider that the 2l regions of equal area that divide 
the surface of the sphere are placed along the meridians. In that case, the width of 
each region at the equator is  
 

  θ = 2π/(2l)  
 
   and so a good indicator is θ ~ π/l   (different from the flat sky case) 
 
à scale l=2 corresponds to a separation of 90 deg (the quadrupole) 
à scale l=100 corresponds to a separation of 1.8 deg 
à scale l=220 corresponds to a separation of 49 arcmin (CMB first peak) 
à scale l=2500 corresponds to a separation of 4.2 arcmin (Planck last data point) 



Now, the spherical harmonic transform of the delta field is: 

δ(θ,φ) =  

The multipole coefficients alm  are the equivalent to δk  in Fourier space  (to be 
precise, this notation alm is usually reserved for the transform of the CMB 
temperature contrast δT) 
 
 
The correlation function of the transform of the delta field is <alm	
  al’m’>. 
As we saw for the 3D case, the derivation can be made by inserting the inverse 
transform, which makes appear the correlation function in real space, and various 
spatial integrals that will result in Dirac deltas and the power spectrum.   
 
The result is:  
 
 
 
where, once again, the Dirac deltas show the independence of the power 
spectrum scales. 



The correlation function is isotropic à it depends only on the angular separation 
 (l ßà θ), and not on the direction (m ßàφ ).  We can thus integrate over m, and 
get:  

=  

This defines the isotropic angular 
power spectrum, as an average over 
all directions 

Finally, we can also write the correlation function in real space, as function of the 
isotropic angular power spectrum, 

<δi δj> =  

This has an impact on observations à the power spectrum on large scales (low 
multipoles l) corresponds to an average over a small number of independent 
functions à the large scales are measured with much less precision than small 
scales àthere is a fundamental limit of statistical uncertainty on large scales (called 
the cosmic variance). 
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Decomposing a map in spherical harmonics: the CMB temperature contrast 

The observed map is one realization 
(i.e., one specific m for each l)  
of the theoretical Cl  computed from the 
cosmological model, which is  
<alm alm> (any m, all are equivalent) 

2D	
  angular	
  temperature	
  dimensionless	
  power	
  spectrum	
  l(l+1) CTT(l) 

Cosmological perturbations are 
functions defined as perturbations 
around a mean value à its own 
mean value is zero à the monopole 
is zero for density contrast fields. 
 
So in cosmology, the monopole is not 
used and the  ‘l’ range is 1,2,…∞  



Planck	
  

l	
  

The Planck map was obtained 
to higher order of the spherical 
harmonics than the WMAP 
one. 
 
This is noticeable in the map 
(better resolution and better 
defined small-scale features) 
 
 and in the power spectrum 
(function measured to higher 
‘l’) 

2D	
  angular	
  temperature	
  dimensionless	
  power	
  spectrum	
  l(l+1) CTT(l) 



Decomposing a map in spherical harmonics: the Earth 

The	
  land	
  distribuFon	
  
is	
  not	
  an	
  isotropic	
  
field	
  à	
  the	
  
“theoreFcal”	
  power	
  
spectrum	
  is	
  a	
  specific	
  
realizaFons,	
  it	
  is	
  not	
  
averaged	
  over	
  all	
  the	
  
m	
  funcFons.	
  



If the distribution is not Gaussian, the covariance matrix (and consequently the 2-pt 
correlation functions and power spectra) do not contain the whole cosmological 
information. 
 
If the δ distribution is not symmetric à there is a non-zero skewness 
 
If the δ distribution is cuspy à there is a non-zero kurtosis  

Higher-order statistics 



In this case, we can define n-point correlation functions:  
 
    <δ1 δ2 δ2>                 <δ1 δ2 δ3 δ4>  
 

The joint probability (and so the clustering properties) 
of having a galaxy in locations 1,2,3 depends on the 
full conditional probability between the triplet, and also 
on all combinations of conditional probabilities 
between pairs:  

Note that an n-point correlation function can be written as a sum of terms 
involving low-order correlations plus an  irreducible  (or connected) term à this 
is the Isserlis theorem of probability theory. 

(there is a version of this theorem 
used in quantum mechanics à Wick’s 
theorem). 



3-pt function 

Using Wick’s theorem, the 3-pt correlation function ζ_123 may be decomposed as 

This shows that for variables with zero mean à the 3-pt function is just the connected 
term. 
 
For a Gaussian distribution the connected term is zero, and the 3-pt function is 
zero à note that this does not imply that the joint probability becomes just the product 
of the 3 individual probabilities (with zero correlation) since the conditional probability 
also depends on the 2-pt correlations. 

We can also define the harmonic transformation of the 3-pt function, which is called 
the bispectrum: 



4-pt function 

In this case the joint probability is 

Using Wick’s theorem, the 4-pt correlation function, µ_1234, may be written as 

note the number of terms in the sum is  (n=4, in this case) 

  

For a Gaussian distribution the connected term is zero, but the 4-pt  
function is not zero à however the kurtosis is zero (notice its definition). 

The harmonic transformation of the 4-pt function is called the trispectrum: T(k,p,q,s) 



- Primordial non-Gaussianities 
 
     Perhaps not: certain models of inflation can produce non-Gaussian features 
from the original Gaussian quantum fluctuations 

- Secondary non-Gaussianities 
 
      Definitely not: late-time evolution and other late-time effects produce mode 
coupling and the cosmological random fields are no longer Gaussian today 
 
 
The dark matter density field becomes non-Gaussian in the recent universe due to 
non-linear evolution à δ may only be Gaussian in the linear regime, i.e., while its 
value is small. 
 
Higher-order moments (eg: order 3 and 4) are in reality non-zero and contain 
additional cosmological information.  

Is the density contrast really a Gaussian random field? 
	
  



Same cosmological model (identical 
statistical moments, P(k), etc) 
Same distribution (Gaussian)  
Different realizations  
à 
The maps are statistically equivalent, 
although not identical  

Different cosmological models (different 
statistical moments, P(k), etc) 
Same distribution (Gaussian)  
Different realizations 
à 
Fundamentally non-equivalent 

Same cosmological model (identical 
statistical moments, P(k), etc) 
Gaussian distribution (left) and non-
Gaussian with identical Gaussian part 
(right)  
Different realizations 
à 
Non-equivalent from NG effects 

Comparing left and right panels 



Uncertainty of the angular power spectra estimator: cosmic variance 

The power spectrum measured from a map is one realization of the 
theoretical power spectrum predicted from the cosmological model. 
 
For example, for a given multipole l, the measured power spectrum amplitude 
may be: 

 Cl = <al4 al4> (or any other value of m) (and other values of m for other 
multipoles). 
 
Other parts of the map may correspond to other realizations (each sub-map is 
independent). The maximum number of independent measurements of Cl from 
a map is 2l+1 
 
On the other hand, the theoretical power spectrum we want to estimate is Cl with 
any value of m. 
 
However, the measurements have uncertainty and are not exactly identical. So, the 
best way to estimate the theoretical power spectrum is to take the average of all 
possible measurements: 
 
 
 



This estimator is unbiased and if there were many measurements it would give 
exactly the theoretical power spectrum:  

However, since there is a limiting number of independent measurements of each 
multipole (2l+1), the measured value will estimate the theoretical value with some 
minimum uncertainty. This is called the cosmic variance. 
 
The total uncertainty is in general larger than this, since other measurement 
errors  need to be added to this minimal one. 
 
The uncertainty of the estimator (i.e. the cosmic variance) is computed from 
the definition of a covariance: 

Note this is written as a covariance, i.e., considering l and l’. However, since the 
multipoles are independent the covariance matrix is diagonal à only the 
variances are non-zero à l = l’ 



(where <Cl> = Cl is the 
theoretical value) 

To evaluate the cosmic variance we need then to compute  
as function of Cl . Naturally, this is: 

Notice the variances are 
power spectra squared, 
i.e., 4-pt functions 



Wick’s theorem allows us to write a four-point function in terms of lower order 
functions. In particular for Gaussian fields of zero mean, the 1-pt and 3-pt 
functions are zero, and we can write: 

Using the result 
 
 
it is just a question of counting all the terms contributing to the various sums, to find 
the result: 
 
(see homework) 

And so the cosmic variance is: 



This result shows that this ultimate limit  of cosmological observations depends on 
the amplitude of the angular power spectrum and the scale.  
 
Thinking of the ergodic hypothesis, independent regions of the sky are  
different realizations à could correspond to different universes (with different 
parameter values) à creating an intrinsic variance on the measurements à (this is 
the reason for this limit to be called the cosmic variance). 
 
Also note that since cosmic variance depends on the cosmological parameters, it is not taken 
into account in Fisher matrix analyses. 
 
Since each scale has (2l+1) independent ‘measures’ contributing to it à large scales 
have less independent measures in the full sky than smaller ones à cosmic 
variance dominates on large scales, we only have 1 universe to observe. 
 

i.e.,  



The calculation is valid for a full sky survey. If the survey covers a smaller area, by 
a factor f_sky = Area_survey / Area_fullsky, there are less independent measures 
contributing to each scale, and the cosmic variance scales accordingly: 

If we want to limit the cosmic variance in a future survey, we should build a wider 
survey rather than a deeper one (i.e., increase the survey area). 

Note that for the largest possible  
angular scale (l=1), the minimum  
uncertainty achievable (in the ideal  
case of a full sky survey and no 
experimental noise) is a fractional  
uncertainty of  
σ_l / C_l = (2/3)^0.5 = 81%   
 
This is the large uncertainty seen 
in CMB plots, and is a fundamental 
limitation of cosmological data.  


