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ABSTRACT

We consider ledders with two, three and four coupled Ising spin chains, characterized
by interchain and intrachain couplings, to study their magnetic behaviour for different
ratios of internction constants end different values of magnetic feld, by using o transfer
matrix method apd & complex algorithm realising the diagonalizntion and the differen-
tiation. It is interesting that when the competition between interchain and intrachain
interactions is different from zero the megnetization goes fromn the value one to the wvalue
zero in a narrow interval of nonzero temperatures, where, also, the suceptibility exhibits a
very high peak. This narrow interval, increasing the number of chains, is displaced towards
the higher temperatures. Also, in the case of interchain antiferrotnagnetic couplings, it
becomes clear the formation of interchain spin pairs.

The spin -— ladder or the gystem of coupled spin chains may bc realized in noture by
vanadyl pymphosphate {(V O}y P20O4) or similor materials. All these intermedinte systems
are today important to gain further insight into the physics of ohe-dimensional spin chains
and the two-dimensionel high-7;, spitt systems, both of which have shown interesting and
unusnal magnetic and superconducting properties. It is plausible that experimental and
theoretical studies of ladders inay lead to other interesting physical phenomena.
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1 Introduction

The recent discovery of two-dimensional Heisenberg spin systems in the copper- oxygen
planes of the high temperature superconductors has further increased the interest in lower-
dimensional Heisenberg ferromagnets. Todzy, to gain further insight into the physics of
one-dimensional spin chains and the two-dimensional high- T, spin systems, one may
study systems which are intermediate between Yhese bwo cases {[1}). So, the orthorhom-
bic compound of vanadyl pyrophosphate {V0); P07 clearly shows a ladder configuration
of § = L V1 ioms in its crystal lattice {19]}. Alsa, several Cu*t compounds are known
from crystaliographic studies at room temperature to form related one-dimensional spin
ladder configurations. Concretely, two ladder systems: Srn_yCups1Oza series([3]-[4]) and
LaypanCttasunOrspun series{[s]) have been investigated. In a parallel sefies of investiga-
tions Ll praperties af spin ladders with ferromagnetic rang couplings (which are more
closely related Lo spin -1 chains) have also been discussed([6]-[8]). Due to speculations
that the § = ’3 square - lattice antiferromagnetic copper - oxygen planes might be a
vital compunent of the mechanism of high- temperatuce superconductivity, many recent
studies of antiferromagnetic Heisenberg spin ladders have subsequently appeared in the
literature(f9]-[20]).

In [21] we have considered the simplest case of a spin ladder, which is an Ising spin
ladder, consisting of two chains of magnetic ions { or spins) coupled by an interaction
of strength J; along the chains and J between them, to study in details the behaviour
of the specific heat. In the present work we shall consider ladders with two, three and
four coupled lsing spin chains, characterized by {ferromagnetic and antiferromagnetic)
interchain amd {ferromagnetic) intrachain couplings, to study their magnetic properties as
magnetization aud suscepbtibility, for different ratios of interaction constants and different
values of magnetic field, by using a transfer matrix method and a complex algorithm for
diagonalization and dilferentialion.

2 Ladder with two coupled Ising spin chains

2.1 The model and the transfer matrix method.

The related low-dimensional system investigated in this section is an Ising "ladder” with ¥
colummns or rungs. This system is the standard spin lsing medel on a ladder of twe coupled
spin chainsg, refered | and 2. The ladder Hamiltonian with a strength- Jy interaction along
the long (¢lain) axis of the ladder, and a J; interaction across the rungs, is given by:

N N N
H=—J 3 (51:8n + S1iSn) — &2 3 $180—BY (St S) (1)

i=] i=1 =1
{chains} {rungs)
where B is the magnetic field and .~;, or Sz; = 1 at site (1,1} or (2,7) of the ladder. We
will consider also ladders with periodic boundary conditions in the long axis direction.
Developping the Hamiltonian in the "elementary segments” (corresponding to the mod-
ified squares) of the type:

J B
=[S S+ 5520 4+ -?2(53,;5;,; + 81520 )+ '3‘(52,{+51.i+ Stirr+Szin N (@
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the partition function can be written as:

Z= S exp(~H/ksT) = Tr(T) (3)

51,0052,

where kg is the Boltzmann constant, T - the absalute temperature and T - the transfer
matrix.

Denoting &, = (Ji/ksT) = k = (1/t) {with § = (kgT/J)) - the reduced temper-
ature), kz = {JofkgT) = ek (with e = {J2f ) - the ratio of interaction constants),
f, = (B/keT) = kh (with & = (B741) - the reduced field} and «r = exp(k), y = ezp(ek),
z = exp[kh) the transler matrix T, with 2% x 27 elements and symmetric related to the
main diagonal, constructed following the decreasing order of bits numbers from the con-
figuration {1111} (four spins Sy;, Sy ivs Saiy S2440 arC "up™) Lo the confliguration (0000)
{four spins point "down™}, is given by:

riyst z 2 =y
P e ==
T=1 . 2 gt (4)
oz R

This matrix, in the limit of £ = 0 (in absence of a magnetjc lield} and in the isetropic
limit e = | { equal interchain and intrachain copulings) is eqnal to the matrix given in
(22].

From the diagonalization of this matrix we find the larger eigenvalue Ansc. Since
the maximum eigenvalue An,: is equal to the grand partition function per "elementary
segment” (or 2 spins ), in the thermodynamic limit, the therniodynamic potential or Lthe
free energy per spin , in unity of J;, is derived as:

— —(koT ) Jie [(28) A} ™) = —-é]-I;ln(.\m,] ()

From the thernodynamic relation, for the magnetization per spin m, we can write:

af 19

dﬂm{ = EEBTLI"{A,M‘) (5)

m =

while for the susceptibility X we have:

. _dm 1 &

= Fh = 2R gk ) 0

Based on the relations (4)-(7) we have constructed a complex aigorithm , which real-
izes progressively the diagonalization, the selection of the larger eigenvalue and the firat
and second differentiation. Through this numerical procedure we shall study the be-
haviour of the magnetization and susceptibility rclated Lo temperature, interaction ratio
and magnetic field.
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2.2 The magnetization and the susceptibility

In the case If = 0 (or k = 0) following the procedure and the algorithm mentioned above
we have studied the variation of the magncelization (per spin} m and the susceptibility
X versus the reduced lemperature ¢ for different values of interaction ratio e(e > 0).
For illustration, in Fig.la,b are represented this variations for some values of e {e =
0.1,0.2,1,2). It is clearly visible from these {m —t} or (X ~t) diagrams that in a narrow
critical region of the reduced tetnperalure ¢ the magnetization goes from the value one to
the value zero (Fig.1a), while the susceptibility in this narrow interval of temperature has
a very high prak of the order of magnitude 10° — 10% (Fig.1b). For the e = 0 or in the
Ja = U -"chain liit”, ie., in the case of two chains without couplings across them, we
find the swme variation as in the case of a single chain in absence of the magnetic field.
( TInn this ecase, dingoualizing the transfer malcix analitically for Agqar we obtain a value
which is the square value of the eigenvalue for a single chain, i.c., based on (5), the same
thermodynamnic potential as in a single chain.)

Quite inferesting is the case when ¢ < 0 (k = 0). In this case, for # = 0, or in the
ground stale, the spins of each chaiu are paralle] (inside one chain), but point in different
directions ("up™ amd "down™, or "down” and "up”} from one chain to another. Contirolling
this case (even for very small values of e, in the limil of our numerical accuracy ) we have
scen that the magnetization is zero in all region of temperatures. In Fig.2 is ilfustrated
this quite special behaviour for ¢ = —0.01 (A = 0). It means that a coupled invertion or
a spin palring across the chaius is present, i.e., when a spin in one site of the rung is
flipping up ils partuer in other site of the same rung is turning down or vice-versa. In
the same ligure we have represented, also, the variation of m versus ¢ in the case of an
antiferromagnetic interachalu conpling witlh e = —0.55 and in the presence of a magnetic
field & = (0.5,

In Fig.da and Fig.3b, lor illustration, are represented the {m—t) and (X —1) diagrams,
respectively, in the presence of the wagnetic field (& = 0.5 and & = I), in the case of &
ferromague! ic isolropic interchain coupling (e = 1),

3 Ladder with three coupled Ising spin chains

3.1 The model and the transfer matrix method.

We consider three conpled Ising spin chains. The biterchain and intrachain intcractions
are taken as in section 2.1, iwe., Jy is the interaction along the long (chain) axis of the
triple ladder aud J; -the interaction across tlie rungs. The Hamiltonian is given by:

N N
H=—d Z (51:80iet + 52i80in + SuiSrin) = 2 Y (51652 + 525340
i=1 i=1
[rherres) (rengs)
N
-B Z(Sl.i + 82,0 + 5a,) (8)
i=1
where B is the magnetic field and §;;, Sz or §3; = %1 at site (1,7) , (2.) or (3,¢) of the
triple ladder. We wilt consider also ladders with periodic boundary conditions in the long
axis direction.



Developping the Hamiltonian in Lthe "elementary secgments”

J.
~[A{SisS1it1 + 52Tt + 5282001 ) + '2—2(53,“52..' + 824804 Svipt Snir + Sai41 53001 )+

B
+ E(S;;,.' + 52 + S+ Sripr + Sz + Sain)] (9)

the partition Tunction can be writlen in a similar way as in (3}

z= 3 up(_u;xcf,ar');:rr('r“‘) (10)

S8 2,00%,

where T 3s now the (2% x 27)- transfer matrix, construcled by the same procedure as in
21,

Using the saine natations as before, this matrix, with 64 nonindependent elements and
syminetric related to the main diagonal, is given by:

2yt rpd? rzt rly: ryst Tz rtyz y?
Lys? £l :"’J“ z™ Ttz oy~ T z~ Jz"
N TR ry! iyl gy o e z -1
gz 3 J,y—l et z aelytpet el ryzd
Iyz* Iz iyl ra rl: J‘y" 2 o lyz!
i ry! P e Pyl pmtylpt gl
gz r ry~t izl rot iy 'z'l ozt zyz?
3?2 it ! PR ) T Tzt ryzt iyt

(11)

Front the diagonalization of this matrix we find the larger vigenvalue Ay, o the grand
partition function per "elementary segiment™ {or 3 spins ). In the thermodynamic limit,
the thermodynamic potential or thie free energy f, in unity of Ji, the magnetization m
and the susceptibility X, per spin, are derived, respectively, as:

L .y (12)

[
f = —_I”{ mcr)v"‘ = I”['\ma:}w\ =

a*
H O 3L h?

Based on these relations, using the same numerical procedure as in the section 2 we
study for the magnelization and susceptibility their behaviour related 1o the temperature,
the interaction ratio and the magnetic field.

3.2 The magnetization and the susceptibility

In the case it = 0 ar & #£ D following the procedure and the modified algorithin mentioned
above, we have studied the variation of the magnetizalion (per spin) = and the suscepti-
bility .X versus ihe reduced tetnperature { for different values of interaction ratio e(e > 0).
Also, in theses cases we obtain the same behaviour for (m—1) or (X —1) diagrams as in the
section 2.2, but the narrow critical interval is ¢isplaced to higher valucs of temperatures.
For the e = 0 or in the J; = 0 -"chain limit" and 4 = 0, i.e., in the case of three spin
chains without couplings across them and with A = 0, we find the same variation as in



the case of a single chain in absence of the magretic ficld. { In this case, diagonalizing
the transfer matrix (11} analitically for A, we oblain a value which is the cubic value of
the eigenvalue lor a single chain, i.c., based on (12}, we obtain the same thermodynamic
potential as in a single chain.)

Very dillerent is the case when e < 0 {h = 0), in which, for ¢ = 0, the spin3 of each
chain are parallel (inside one chain), but point in different directions {"up” and "down”,
or "down™ aud “up”) [rom onc chain to another. Controlling this case {even for very
small values of ¢, in the limit of our numerical accuracy ) we have seen that m — £ when
t — 0. [n Fig.) is illastrated this quite interesting behaviour for e = —0.001,e = —0.01
and ¢ = —0.1 {h =0). It means that a coupled invertion or a spin pairing across only
two cliains (1 and 2 or 2 and 3) is present, i.e., when a spin in one site of the rung is
lipping np it pariner in other nearest neighbour site of the same rung is turning down or
vicesversa, The third chain bebaves like independent. ‘Thus, in three spins, sitvated in
ote rung of the three chains, only one spin contributes to the magnetization m in ¢ = 0.

4 Ladder with four coupled Ising spin chains

4.1 The model and the transfer matrix method.

We consider now four coupled Tsing spin ¢hains (1, 2,3 and 4). The intrachain interactions
aud the imterchinin (between the l-st and 2-nd chains and the 3-rd and 4-th chains)
imeractions are taken as in section 2.1, ie., Jy is the interaction along the long (chain)
axis of 1he guaslenple ladder and J; -the interaction across the rungs 1-2 and 3-4. The
interchain interaction hetween the 2-nd and the 3-vd chain 15 taken J,. The Ilamilienian
is given by:

N N
Ho=—1 Z (NS 52082041 + SaiSaip + 505 S ) — Z {51382+ 53,:844)
i=1 i=1
(o haina) {rungs}
e N
- Z Sy Sni— B Z{-"‘l..‘ + Sy + Sppck Saa) {12)
= izl
{runga)

where 8 is the magnetic field and 8. S, Sioor 8, = £1 at site (1,8}, (2,1), (3,7) or
(4, 1) of the double ladder. We will consider also ladders with periodic boundary conditions
in the Jong axis direction.

Developping the Hamiltonian in the "elementary segments™ :

_ . . J .
—[-11{5'1.:-'1'1.;“+-‘1'-;.f."z_r+1+-"a..'-c"3.-'+|+Sq.='5'-|.='+1)+?2(54,f53.£+32..51 Sl S S )+

doee o Lo w ) . LG
+ o (SaaSait S Saip)+ E(S"'i + Sz Szt S Stin+S2in H 3+ Sain)] (14)
the partition lunction can be written in a stmilar way as in {3} or (10):

Z= Y. enpl=~H/kaT) = Tr(TV) {15)

SpaeS2,0.510.8,



where T is now the {2* x 2)- transfer matrix, constructed by the same precedure as in
2.1. Using the same natations as before, adding e, = (J,/J1) and v = exp{J./ksT) =
czp(eok), this matrix, with 256 nonindependent elements and symmetric related to the
main diagoual, is expressed through z, ¥,z and u. We will not pive here its expression.
Froin the diagonalization of this matrix we find the larger eigenvalue A, or the grand
partition function per "elementary segment” {or 4 spins ), In the therinodynamic limit,
the thermodynamic potential or the free energy f, in unity of Jy, the magnetizalion m
and the susceptibility X, per spin, are detived, respectively, as:
; pk
f= —::Ifu(.\,,,,,,.).m = .lik%hr[(\,,m,],_\’ = :i%é%,:fn(.\mu) (16)

Based o these celations, using the same numerical proceduse as in the section 2 and 3
we stwly the behavionr of the magaet ization and susceptibility related to the temperature,
the interaction ratio and the magnetic field.

4.2 The magnetization and the susceptibility

Following 1 e procedure and the modified algorithm mentioned above, we have studied the

variation of Lhe magnetization {per spin) tn and the susceptibility X versus the reduced
teniperature f {or different values of interaction ratios ¢ and ¢,. For h = 0 and e > 0,
€, > 0 we obtain a similar hehaviour for (im — ) or {X —#) diagrams as in the section
2.2 or 3.3, but the narrow critical interval is displaced to higher values of temperatures.
This is illustrated in Mig.5a,) for the isotropic cases of three vousidered variants when
e=lote=r,=1and h = 0. Also. we have scen that Lhe influence of e (of J3) is
higger thau that of e, (of J,) in increasing these temperalures, which based on interaction
configuralions is quile norinal. ln the case e, = 0 or J, = 0 (and ¢ # 0} the results for
the ladder with four chains are reduced 1o them of a simyple ladder (section 2.2), while in
the case ¢ = 0 or .J; = 0 {and €, # 0} the double ladder is reduced to a single ladder and
two independent. single chains. In the last case for i = 0 when £ — 0 {t # 0) the average
value of magnetization per spin, considering alt spin configurations ( the magnetization
mn of single chains is equal to zero for f 5£ 0) tends {o (1/2), i.e., 0 — 0.5, which is quite
clear in Fig.6, but strictly al # = 0 there is & "transition” jump (the insct in Fig.6) to
nt = | {for single chain m = 1 at { =0).

Very different are the cases when one, er both of the interrliain interactions are an-
tilerromagnetic {and different from zcre). For { = 0. the spins of cach chain are parallel
(inside one chain), but can puint to different directions from on« chain to another. There
are three possible cases: a)e > 0and e, < O;clJe<Dand e, > 0;a)e<0Dande, < 0. In
all these cases the magnctization m is zero for i = 0, which can be explained easily by
antiferromagnetic spin pairings. )

5 Conclusions

In this paper we have considered Ising spin ladders with two, three or four chains to
study in detail the behaviour of the magnetization and the sunceptibility related to the
different values of the temperature, the ratio of interaction constants and the magnetic
field. An important feature for the systein is the spin pairing when an antiferromagnetic
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interchain conpling is present. Also, increasing the number of chains fromn two to four we
see clearly the displacement of the narrow critical regions towards the higher values of the
temperalure.

To understand better the hehaviour of this kind of low-dimensional systems for an
arhitrary, hut limited munber of chains, we are trying to construct a general algorithm
to generate the elements of the Lransfer matrix and after to realize progressively the di-
agonalization, and the selection of the larger eigenvalne, and finally, the first and second
differentiation. This will be the object of a future work.
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Figure Captions

Fig.1a. The variation of m versus t for some values of e {e = 0.1,0.2,1,2) and £ =0
(the simple ladder).
Fig.1b. "The correspouding (X — 1) diagrams.

Fig.2 I'wo variations ol m versus { in the case of antiferromagnetic interchain couplings
for e = —0.0L. b = 0 and r = —0.55, h = 0.5.

Fig.da. The (i — 1} diagrams in the preseuce of a magnetic field (A = 0.5 and h = 1),
in the case of a ferromaguetic isotropic interchain coupling (e = 1).
Fig.3h. The corresponding (X — 1} diagrams.

Fig.d, The variation ol the magnetizalion m versus the temperature { for the ladder
with three chains when e = =0.001,c = ~0.01 and ¢ = —0.1 {h = 0}.

Fig.h. The displacenmest of the critical narrow region towards the higher values of the
tamperature, for isotropic interactions and fr = 0, represented in:
a) (s - 1) diagrams
h) (X — 1) diagrams

Figi. The {m = 1) diagram for two extreme cases: e =0, ¢, =1 and e = 1, g, of the
ladder with four chains (4 = 0).
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