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ABSTPlACT

We consider ladders with two, three and four coupled Ising spin chains, characterized
by interchain and intrachain couplings, to study their magnetic behaviour for different
ratios of interaction constants and different values of magnetic field, by using a transfer
matrix method and a complex algorithm realising the diagonalization and the differen-
tiation. It is interesting that when the competition between interchain and intrachain
interactions is different from zero the magnetization goes from the value one to the value
zero in a narrow interval of nonzero temperatures, where, also, the suceptibility exhibits a
very high peak. This narrow interval, increasing the number of chains, is displaced towards
the higher temperatures. A/so, in the case of interchain antiferromagnetic couplings, it
becomes clear the formation of interchain spin pairs.

The spin - ^ ladder or the system of coupled spin chains may be realized in nature by
vanadyl pyrophosphate [(VO)2P2Or) or similar materials. All these intermediate systems
are today important to gain further insight into the physics of one-dimensional spin chains
and the two-dimensional high—Ti spin systems, both of which have shown interesting and
unusual magnetic and superconducting properties. It is plausible that experimental and
theoretical studies of ladders may lead to other interesting physical phenomena.
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1 Introduction
The recent, discovery of two-dimensional Heisenberg spin systems in the copper- oxygen
planes of the high temperature superconductors has further increased the interest in lower-
dimensional Heisenberg ferromagnets. Today, to gain further insight into the physics of
one-dimensional spin chains and the two-dimensional high- Tc spin systems, one may
study systems which are intermediate between these two cases (Jl]). So, the orthorhom-
bic compound of vanadyl pyrophosphate (VO)2P2Oi clearly shows a ladder configuration
of 5" = i V4+ ions in its crystal lattice ([2]). Also, several Cu2+ compounds are known
from crystallographic studies at room temperature to form related one-dimensional spin
ladder configurations. Concretely, two ladder systems: Srn_,Cun+i02n series([3!-[4]) and
La4+AnCfia+-2n0u+an series([5]) have been investigated. In a parallel series of investiga-
tions the properties of spin ladders with ferromagnetic rung couplings (which are more
closely related Io spin -1 chains) have also been discussed([6]-[8])- Due to speculations
that the .<> = Ì square - lattice antiferromagnetic copper - oxygen planes might be a
vital coiiijioiiout of the mechanism of high- temperature superconductivity, many recent
studies of antiferromagnetic Heisenberg spin ladders have subsequently appeared in the
literature([<)]-[20]).

In [21] we have considered the simplest case of a spin ladder, which is an Ising spin
ladder, consisting of two chains of magnetic ions ( or spins) coupled by an interaction
of strength J, along the chains and J2 between them, to study in details the behaviour
of the specific heat. In the present work we shall consider ladders with two, three and
four coupled lsing spin chains, characterized by (ferromagnetic and antiferromagnetic)
interchain and (ferromagnetic) intrachaiu couplings, to study their magnetic properties as
magnetization and suscepbtibility, for different ratios of interaction constants and different
values of magnetic field, by using a transfer matrix method and a complex algorithm for
diagonaltzation and differentiation.

2 Ladder with two coupled Ising spin chains

2.1 The model and the transfer matrix method.
The related low-dimensional system investigated in this section is an Ising "ladder" with A'
columns or mugs. This system is the standard spin Ising model on a ladder of two coupled
spin chains, refered 1 and 2. The ladder Hamiltonian with a strength- Ji interaction along
the long (chain) axis of the ladder, and a J2 interaction across the rungs, is given by:

N N N

H = -.;, Y1 (SuSu+1 + SuStJi+1) - ^ J S1JiS^- B £ ( S U + Sw) (1)

(rftainj) (rtmjj)

where B is the magnetic field and .-;,. or S2,.' = ±1 at site ( l , t ) or (2,i) of the ladder. We
will consider also ladders with periodic boundary conditions in the long axis direction.

Developping the Hamiltonian in the "elementary segments" (corresponding to the mod-

ified squares) of the type:

i)l (2)



the partition function can be written as:

= 7>(TN) (3)

where ka is the Boltzinann constant, T - the absolute temperature and T - the transfer
matrix.

Denoting Ar, = (J1/kBT) = k = (1/0 (with t = (kBT/J,) - the reduced temper-
ature), k2 = (J2/kBT) = ek (with e = (J2/Ji) - the ratio of interaction constants),
ho = (B/kBT) = kh (with Ii = (B/Ji) - the reduced field) and x = exp(k), y = exp(ek),
z = exp(kh) the transfer matrix T, with 22 x 22 elements and symmetric related to the
main diagonal, constructed following the decreasing order of bits numbers from the con-
figuration (1111) (four spins S1-1-,Si,,>i,S2,i,S2fI-+i are "up") to the configuration (0000)
(four spins point "down"), is given by:

'xhjz2 z z

This matrix, in the limit of h = 0 (in absence of a magnetic field) and in the isotropie
limit e = 1 ( equal interchain and intrachain copulings) is equal to the matrix given in

I22I-
From the diagonalization of this matrix we find the larger eigenvalue Am0I. Since

the maximum eigenvalue Amor is equal to the grand partition function per "elementary
segment" (or 2 spins ), in the thermodynamic limit, the therniodynamic potential or the
free energy per spin , in unity of Ji, is derived as:

/ = -(fcsT/J,) Hm [(2/V)-1/n(A1n-X)*] = -~ln(\max) (5)

From the therinodynamic relation, for the magnetization per ;ipin m, we can write:

d

while for the susceptibility A' we have:

dm 1 92

Based on the relations (4)-(7) we have constructed a complex algorithm , which real-
izes progressively the diagonalization, the selection of the larger eigenvalue and the first
and second differentiation. Through this numerical procedure we shall study the be-
haviour of the magnetization and susceptibility related to temperature, interaction ratio
and magnetic field.



2.2 The magnetization and the susceptibility
In the case B = 0 (or h = 0) following the procedure and the algorithm mentioned above
we have studied the variation of the magnetization (per spin) m and the susceptibility
A' versus the reduced temperature t for different values of interaction ratio e(e > 0).
For illustrai ion, in Fig.la.b are represented this variations for some values of e (e =
0.1,0.2,1,2). Il is clearly visible from these (m — t) or (X — t) diagrams that in a narrow
critical region of the reduced temperature I the magnetization goes from the value one to
the value zero (Fig. Ia), while the susceptibility in this narrow interval of temperature has
a very high peak of the order of magnitude 108 — 109 (Fig.lb). For the e = 0 or in the
J2 = 0 -"chain limit", i.e., in the case of two chains without couplings across them, we
find the same variation as in the case of a single chain in absence of the magnetic field.
( Iu this case, diagonalizing the transfer matrix analitically for Amor we obtain a value
which is the square value of the eigenvalue for a single chain, i.e., based on (5), the same
thermodynainic potential as in a single chain.)

Quite interesting is the rase when e < 0 (h = 0). In this case, for / = 0, or in the
ground slate, lhc spins of each chain are parallel (inside one chain), but point in different
directions ("up" and "down", or "down" and "up") from one chain to another. Controlling
this case (even for very small values of c, in the limit of our numerical accuracy ) we have
seen that I he magnetization is zero in all region of temperatures. In Fig.2 is illustrated
this quite special behaviour for c = —0.01 (A = 0). It means that a coupled invertion or
a spin pairing across the chains is present, i.e., when a spin in one site of the rung is
flipping up its partner in other site of the same rung is turning down or vice-versa. In
the same ligure we have represented, also, the variation of m versus t in the case of an
anlifenoniagnetir interarhain coupling with e = —0.55 and in the presence of a magnetic
field // = ()..r).

In Fig.:la and l'ig.;tl>, for illustration, are represented the (m-( ) and ( A ' - 0 diagrams,
respectively, in the presence of the magnetic field (/i = 0.5 and Ii = 1), in the case of a
ferromagnetic isotropie interchain coupling (e = 1).

3 Ladder with three coupled Ising spin chains

3.1 The model and the transfer matrix method.
We consider three coupled Ising spin chains. The interchain and intrachain interactions
are taken as in section 2.1, i.e., J1 is the interaction along the long (chain) axis of the
triple ladder and J2 -the interaction across the rungs. The Hamiltonian is given by:

.V N

// = - . / , Y, (SuSu+i + S7JSK+1 + S3.iS3.i+l) - J2 Y. (S,,iS2.i + S7.iS3,i)-

(r/iitiru) (rungs)

JV

-B]T(S1,,+ S2-1+ £,,) (8)
i=l

where B is the magnetic field and Si,,-, S2,; or S3,; = ±1 at site ( l , i ) , (2.i) or (3,i) of the
triple ladder. VVe will consider also ladders with periodic boundary conditions in the long
axis direction.
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Developping the Hamiltonian in the "elementary segments" :

— [J,(S,,i5'l,,+l +^ , i^ . i+ l +53,,.?3,,+ l) + —(5'3li5'2|, + 'S2|,Sl,i + 5l,i'+l 52,i

+ j{S3,i + 5j,i + 5,,,- + S,,,+, + S2,,+, + S3,,-+,)] (9)

the partition function can be written in a similar way as in (3):

Z= Yl exp(-///fcflr) = Tr(TN) (10)

where T is now the (2r) x 23)- transfer matrix, constructed by the .same procedure as in
2.1.

Using I he. same notations as before, this matrix, witIi (M iionindependenl elements and
symmetric related to the main diagonal, is given by:

/ X3IJ2Z*

Xl/Z2

XZ2

x-'yz
xyz2

x~'z
x-'yz

{x~Y

xyz2

x~'z
x-'y-'z

.r"3

X3Z

xy~'
X

x-'yz-'

XZ2

x-'y-'z
x3y~2z
xy-'

x-'y-'z
x 3y-2

xy~l

x-'z-'

x-'yz
x~3

xy-'
x-'z~l

X

x-'y-'z''
X3Z-'

xyz-2

2

xyzX3Z

x-'y-'z
X

x-'z
xy-'
x" 3

x-'yz-'

x-'z
xy-'

X-3Ij-2

r-'y-'z-'
xy-1

x3y~2z-'
r-'y-'z'1

XZ'2

x-'yz
X

xy-'
X3Z-'

x~3

x-'y-'z'1

x-'z-'
xyz-2

x~Y >
x-'yz-'
x-'z~x

xyz~2

x-'yz-1

xz~2

xyz'2

XYz-3J
(H)

From t he diagonalizal ion of this matrix we find the larger eigenvalue Amor or the grand
partition function per "elementary segment'' (or 3 spins ). In the thcrmodynamic limit,
the thermodynamic potential or the free energy / , in unity of Ji , the magnetization m
and the susceptibility A', per spin, are derived, respectively, as:

' ( A ) ' ( \»ar) , A' = J^J^lll{Xmax) (12)

Based on these relations, using the same numerical procedure as in the section 2 we
study for the magnetization and susceptibility their behaviour related to the temperature,
the interaction ratio and the magnetic field.

3.2 The magnetization and the susceptibility
In the case h = 0 or h ^ 0 following the procedure and the modified algorithm mentioned
above, we have studied the variation of the magnetization (per spin) m and the suscepti-
bility X versus the reduced temperature / for different values of interaction ratio e(e > 0).
Also, in theses cases we obtain the same behaviour for (m —/) or (X — I) diagrams as in the
section 2.2, but the narrow critical interval is cisplaced to higher values of temperatures.
For the e = 0 or in the J2 = 0 -"chain limit" and h = 0, i.e., in the case of three spin
chains without couplings across them and with h = 0, we find the same variation as in



the case of a single chain in absence of the magnetic field. ( In this case, diagonalizing
the transfer matrix (11) analitically for Amar we obtain a value which is the cubic value of
the eigenvalue for a single chain, i.e., based on (12), we obtain the same thermodynamic
potential as in a single chain.)

Very different is the case when e < 0 (h = 0), in which, for t = 0, the spins of each
chain an- parallel (inside one chain), but point in different directions ("up" ano "down",
or "down" and 'up") from one chain to another. Controlling this case (even for very
small values of r, in the limit of our numerical accuracy ) we have seen that m —• 5 when
/ —> 0. Iu I'ig.l is illustrated this quite interesting behaviour for e = —0.001,e = —0.01
and e = —D.I (/1 = 0). It means that a coupled invertion or a spin pairing across only
two chains ( 1 and 2 or 2 and 3) is present, i.e., when a spin in one site of the rung is
(lipping up its partner in other nearest, neighbour site of the same rung is turning down or
vice-versa. The third chain behaves like independent. Thus, in three spins, situated in
one ruiift of the three chains, only one spin contributes Io the magnetization m in t = 0.

4 Ladder with four coupled Ising spin chains

4.1 The model and the transfer matrix method.

We consider now four coupled Ising spin chains (1, 2,3 and 4). The intrachain interactions
and the interchain (between the 1-st. and 2-nd chains and the 3-rd and 4-th chains)
interactions are taken as in section 2.1, i.e., J\ is the interaction along the long (chain)
axis of the i|iiadniple ladder and ./2 -the interaction across the rungs 1-2 and 3-4. The
interchain iiilrrartioii between the 2-nd and the 3-rd chain is taken J0JWK Hamiltonian
is given by:

•v N

It = - . / , Y, (•S'I..-S'I..+I + ^ , S J , + , + S L A . ; + ! + •SY;.<M.;+I ) ~ -1* Y. (5U5*,, + S31A.,-)
. = 1 i=l

(. /MI'IM) (runs*)

(runs»)

where Ii is the magnetic field and S,j. S2.,, Si1; or 5.|,, = ±1 at site ( l , i ) , (2,i) , (3,i) or
(4,1 ) of the double ladder. We will consider also ladders with periodic boundary conditions
in the long axis direction.

Developping the llamiltonian in the "elementary segments" :

+ 5 ) + ( S S + S S S S + S S

^ ^ i + 5 3 . , - + , + 5 4 , , - + i ) ] (14)

the par t i t ion function can be wri t ten in a similar way as in (3) or (10):

7') = T r ( T N ) (15)



where T is now the (24 x 24)- transfer matrix, constructed by the same procedure as in
2.1. Using the same notations as before, adding eo = (J1,/J1) and u = exp(Jo/tcBT) =
exp(eofc), this matrix, with 256 nonindependent elements and symmetric related to the
main diagonal, is expressed through x,y,: and u. We will not give here its expression.

From the diagonalization of this matrix we find the larger eigenvalue Amax or the grand
partition function per "elementary segment" (or 4 spins ). In the lhermodynamic limit,
the thermodynamic potential or the free energy / , in unity of Ji, the magnetization m
and the susceptibility A', per spin, are derived, respectively, as:

/,.(AW).,« = i |<»(A_),.Y = ^ M A _ ) (IG)

Based on I hese rclat ions, using I he same numerical procedili i; as in ( he section 2 and 3
we study the behaviour of the magnetization and susceptibility related Io the temperature,
the interaction ratio and the magnetic field.

4.2 The magnetization and the susceptibility
Following the procedure and the modified algorithm mentioned above, we have studied the
variation of the magnetization (per spin) in and the susceptibility A' versus the reduced
temperature / for different values of interaction ratios e and co. For Ii — O and e > O,
eo > O we obtain a similar behaviour for (m — t) or (A' — ') diagrams as in the section
2.2 or '.i.'.i. but the narrow critical interval is displaced to higher values of temperatures.
This is illustrateli in Fig.5a,b for the isotropie cases of three considered variants when
e = I or c = <„ = 1 and Ii = 0. Also, we have seen that Uw.- influence of e (of J2) is
bigger than that of eo (of J0) in increasing these temperatures, which based on interaction
configurations is (|uite normal. Iu the case co = 0 or J0 = 0 (and e / 0) the results for
the ladder with four chains are reduced Io them of a simple ladder (section 2.2), while in
the case f = 0 or Ji = 0 (and eo ^ 0) the double ladder is reduced to a single ladder and
two independent single chains. In the last case for h = 0 when I —> 0 (/ =̂  0) the average
value of magnetization per spin, considering all spin configurations ( the magnetization
HI of single chains is equal Io zero for / ^ 0) tends to (1/2), i.e., HI —» 0.5, which is quite
clear in Fig.fi, but. strictly at / = 0 there is a "transition" jump (the inset in Fig.6) to
m = 1 (for single chain m = 1 at. ( = 0).

Very different are I he cases when one, or both of the inlerrhain interactions are an-
tiferromagnetic (and different from zero). For / = 0. the spins of each chain are parallel
(inside one chain), but can point to different directions from on<: chain to another. There
are three possible cases: a)e > 0 and co < 0; c)e < 0 and eo > 0; a) e < 0 and eD < 0. In
all these cases the magnetization m is zero for h = 0, which can be explained easily by
antiferromagnetic spin pairings.

5 Conclusions
In this paper we have considered Ising spin ladders with two, three or four chains to
study in detail the behaviour of the magnetization and the susceptibility related to the
different values of the temperature, the ratio of interaction constants and the magnetic
field. An important feature for the system is the spin pairing when an antiferromagnetic



interchain coupling is present. Also, increasing the number of chains from two to four we
see clearly I he displacement of the narrow critical regions towards the higher values of the
temperature.

To undcistaml better the behaviour of this kind of low-dimensional systems for an
arbitrary, ImI. limited number of chains, we are trying to construct a general algorithm
to generalo HIP elements of the transfer matrix and after to realize progressively the di-
agonalization. and the selection of the larger eigenvalue, and finally, the first and second
differentiation. This will be the object of a future work.
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Figure Captions

Fig.la. The variation of m versus t for some values of e (e = 0.1,0.2,1,2) and A = O
(the simple ladder).
Fig.ll>. The corresponding (A' — I) diagrams.

Fig.2 Two variations of m versus / in the case of antiferromagnetic interchain couplings
for r = -0.01. It = 0 and r = -0.55, h = 0.5.

Fig.:ia. The (/n — 0 diagrams in the presence of a magnetic field (h = 0.5 and h = 1),
in the case of a ferromagnetic isotropie interchain coupling (e = 1).
Fig.3h. The corresponding (.V — /) diagrams.

Fig.'l. The variation of the magnetization in versus the temperature ( for the ladder
with three chains when p = -0.00l,c = -0.01 and c = -0.1 (/i = 0).

Fig.5. The displacement, of the critical narrow region towards the higher values of the
temperai inc. l'or isotropie interactions and // = 0, represented in:
a) (//( — /) diagrams
b) (A' — /) diagrams

Fig.(i. The {in — I) diagram for two extreme cases: e = 0, eo = 1 and e = 1, e0 of the
ladder with four chains (// = 0).
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