
 
 

The	  Inhomogeneous	  Universe	  
 
 

Newtonian approximation 
 
 

 



Newtonian Treatment 

 
 
We can apply the alternative approach of Newtonian physics if  
 
 - scales are sub-Hubble,  

 i.e., much smaller than the scale of curvature of the spacetime 
 
 - the fluid is non-relativistic  (in terms of velocity) v << c 
 
 - the fluid is non-relativistic  (in terms of matter) p << ρ 
 
 
Remember:  H(a) is a decreasing function. 
 
Since the comoving Hubble radius grows (and a comoving scale does not grow) 
all scales gradually enter in the Hubble radius (becoming ‘Newtonian’) à the 
universe becomes ‘less relativistic’ with time à the Newtonian description is 
more accurate for the late universe (assuming no dark energy) 



Under these conditions, the Newtonian treatment of a cosmological fluid 
accurately describes structure formation.  
 
In this description the evolution of the 3 scalar unknowns: Φ, δ, v  (assuming Φ = 
Ψ) is fully described by 3 equations (2 conservation + 1 constraint): 
 
 - continuity equation 
 - Euler equation 
 - Poisson equation 
 
Remember this set of equations has similar information than the set of 3 equations 
used to describe the evolution of the homogeneous universe: 
 
 - Energy density conservation à a continuity equation 
 - Friedmann eq. à the zero-order equivalent to Poisson equation.  
 - Raychaudhuri eq. à a second-order equation of motion (like Euler eq.). 

 Note that even though it is originally a constraint eq (Einstein eq) 
 and not a conservation eq, they are related in the homogeneous case 
 where only 2 independent eqs are needed.   



Newtonian perturbed fluid equations 

Continuity equation 

The continuity equation is the equation of conservation of mass. Extending it to the 
relativistic framework, it becomes an equation for the conservation of energy. 
 
This equation tells us there is no creation of energy à at a certain location of a fluid 
within a fixed volume, energy (or density) may change in time because it may flow to 
another location (within the volume). So the local fluid flow, determined by its velocity, 
is the responsible for the change of density. 
 
So besides expansion (that automatically induces a change of density), there is 
another way to make the density change (the peculiar velocity)  à it is an 
inhomogeneous contribution to the evolution of density, which was not present in the 
energy conservation equation in the homogeneous universe).  
 
In physical coordinates (r) the equation is: 
 
 
 

u is the flow velocity of the fluid 



Now, if the fluid flows in an evolving background (as is the case in cosmology), the 
volume changes in time, i.e., the physical coordinate ‘r’ changes with time and it has a 
dependence on both space and time. It is a “coordinate that moves”. 
 
So the derivative             is in fact a total time derivative, which also includes spatial 
derivatives:  
 
 
 
 
This is also called a convective derivative or a material derivative. Notice that 
it is also similar to a covariant derivative in General Relativity, where the 
covariant derivative is equal to a partial derivative plus the terms that involve 
the connections (that represents the change of the reference frame - in that 
case not due to expansion but due to curvature - ). 
 
Now, in the expanding universe, the velocity in the expression above concerning the 
change of the physical position vector with time is the mean velocity of the expansion 

     
   (no peculiar velocity involved here in the coordinates change), where x 

represents the (x,y,z) comoving coordinates, the “truly spatial”, i.e., independent of 
time, coordinates x=rx/a, y=ry/a, z=rz/a 



local contribution 
(perturbation, peculiar, inhomogeneous) 

comoving contribution  
(background, homogeneous) 

Notice also that since the expansion makes the physical sizes to increase, while 
the comoving sizes are constant, this is equivalent to consider that the physical 
orthonormal reference frame shrinks (such that the corresponding sizes increase), 
i.e., 
 
 
So the total time derivative of the density is, 
 

This deals with the first term of the continuity equation.  
 
Considering now the second term, the flow velocity of the fluid, this may be also 
decomposed in local and comoving contributions à the sum of the expansion 
velocity with the peculiar velocity v.  
 

- 



Remember: peculiar velocity is the inhomogeneous contribution to the velocity à it means that 
the scale (the perturbation) does not follow exactly the expansion à the perturbed region may 
expand slower than the mean universe.  

Inserting the total velocity u and the comoving coordinates in the second term 
continuity equation we get the comoving continuity equation: 

(in this derivation notice that 
the divergence of the 
comoving vector (x,y,z) is 3) 

Notice that after all these steps, the comoving continuity equation looks like 
the original equation (classical, non-expanding, with partial time derivative 
and local peculiar velocity flow) plus an extra term that shows the 
contribution of the expansion to the evolution of density (i.e. the relativistic 
correction). 
 
Note this is the same term that appears in the well-known energy conservation 
equation for the background (also called the continuity equation). 



It is very similar to the original Newtonian 
 local continuity equation.  

The zero order - the background counterpart - is the well-known energy-
conservation equation. 

If we now insert the density contrast through 
 
we will have terms in the equation involving only background quantities and 
others involving perturbations. 
 
If we consider only linear terms in the perturbed quantities (since they are small 
<<1), we can extract from the equation a zero-order and a first-order equation. 

The first-order is the comoving, perturbed and linearized continuity equation: 
 



Poisson equation 

Poisson eq. connects the gravitational potential with the matter density.  
 
In physical coordinates (r) the equation is: 
 
In comoving coordinates (x=r/a) it is: 
 
Once again, we can insert the density contrast to separate the equation in zero and 
first-order parts.  
We may also define a homogeneous and a perturbed potential:  
 
 
 
With this definition, the equation is immediately separated. 
 
The first order equation is the comoving, perturbed and linearized Poisson 
equation:  
 
 



Note that the background counterpart is just: 
 
We do not see immediately that this is the Friedmann equation (which as we 
know, is the zero order counterpart of Poisson equation). 
 
But the Friedmann equation tells us that  
 
and so 

Integrating it, we get  
 
 
i.e., the “potential of the universe” is given by the square of the “velocity of the 
universe”, which is consistent with the dimensional result of a potential being a 
velocity square (ex: virial theorem).  

3 (isotropy, x, y, z, equivalent) 



The Euler eq. tells us how the velocity field changes in time given a gravitational 
potential. 
 
It is the equation of motion of the fluid. In physical coordinates (r) the equation is: 
 
 
 
 
 
 
 
 

source 

Again, like in the continuity equation, this is a total time derivative, i.e., the 
acceleration of the fluid is not just the change of the velocity field at a given position 
but it also depends on the expansion.  
 
Inserting the total derivative (i.e., the comoving coordinates) and the velocity 
perturbations through                                     we get,   

Euler equation 



The second term is the only zero-order one. The zero-order equation is then:   
 
 
 
Note that inserting here the background Poisson equation (integrated once with 
respect to x, to get the gradient and not the Laplacian), this equation becomes: 

Inserting here the Friedmann equation, to replace        , we recover the 
Raychadhuri equation (or the other way around substituting     with Raychadhuri 
equation, we recover Friedmann equation)  
 

 à the background counterpart of the the Euler equation is then a 
combination of Friedmann and Raychaudhuri equations. 
 
Indeed in the homogeneous universe, we saw that it is possible to combine those 
two equations to obtain an energy conservation equation.  



The first order Euler equation is written directly from the remaining terms: 

Considering only linear terms in the perturbations, we get the comoving, perturbed 
and linearized Euler equation: 
 



In summary, the 3 resulting perturbed linearized equations are: 

(we will follow the standard notation of using ϕ for the potential perturbation 
instead of δϕ) 

In the case of energy density from the matter component of the cosmological 
fluid, 
 
 
the Poisson equation can be written in an alternative way,  

Density contrast evolution equation 



Let us look at some properties of this equation: 
 
 
2nd term  
 
The second term is a friction term à it works against the growth. 
 
Its coefficient is 2H(a),  showing that the background expansion works 
against structure formation à Hubble drag 
 

Now, combining the time derivative of the continuity equation with the divergence of 
the Euler equation and inserting Poisson equation, 
 
 we get the evolution equation for the density contrast: 

(linearized) 



3rd term  
 
The third term has a fixed sign (it is always negative), so the solution is monotonous 
solution - exponential, or power-law (depending on the relation between the 
coefficients of the second and third terms) -  it is not an oscillating solution à the 
density contrast may grow 
 
 
The cosmological parameters (and in particular the parameters of the 
homogeneous universe) are important for the efficiency of structure 
formation.  
 
For example: 
A larger amount of matter Ωm à  larger coefficient of the 3rd term à  solution with 
faster growth à more matter favours structure formation  
(the physical reason behind it is that a higher Ω_m creates a ‘deeper potential well’ 
through Poisson equation,  which favours clustering).  
 
Notice that the mean matter density Ωm  and the density contrast δ are independent 
quantities. There can be other cosmological random fields where the amplitude of 
clustering is lower if Ωm is larger (it is the case of the temperature anisotropies of 
CMB). 



Fourier transforming the 3 perturbed quantities that appear in the equations (density 
contrast, peculiar velocity and potential) the 3 equations become: 

Continuity 
 
 
 
Euler 
 
 
Poisson 

Now, remember: the density contrast is also a function of space. 
 
This equation only tell us about the time evolution of the density contrast.  
Can its spatial variation be separated from the time evolution? 
 
We need to Fourier transform δ(x,t) and study the time evolution of all δ_k 
scales. 



Note the evolution of a scale δ_k depends on a sum over all other scales 
 k’ à there is mode coupling. 
 
But we also see that mode coupling is higher-order in the perturbed quantities. 
It goes to zero in the linearized equations: 

This means that in the linear regime, the evolution of the modes is independent. 
 
Each scale has its own evolving equation, with no influence from the other scales. 
 
This simplifies a lot the problem à the equations are the same for all scales (in the 
Newtonian approach, i.e., not valid for relativistic large super-Hubble scales).  

Continuity 
 
 
Euler 
 
 
Poisson 

These equations are almost 
identical to the linear equations 
in real space.  
The only difference is that spatial 
derivatives are now replaced by  
multiplications with the scale k. 



   

Remember that the wavenumber k is a 3D vector.  However, from the isotropy stated 
in the statistical cosmological principle, we just need to consider the modulus of k. 
Or in other words,  the only relevant direction is the one set by the flow of the 
clustering matter (the 1D longitudinal k mode). The transversal modes (i.e. the 
ones orthogonal to the direction of the flow v) are suppressed  
 
So the internal product v.k  in the continuity equation implies that only the longitudinal 
component of the velocity field contributes to the growth, i.e., if v.k = 0 à δ would not 
grow à the orthogonal component of the velocity field produces no growth of 
perturbations.  
(of course, if the matter flow does not go to the center of the potential, there is no grow 
of density contrast). 
 
In addition if we impose irrotational and adiabatic initial conditions for the fluid 
perturbations in the energy-momentum tensor à the velocity perturbation is a  
pure potential flow (representing radial collapsing directions, i.e., parallel with the flow) 
à the velocity field is a gradient field, it is described by a scalar  
 
à Any of these two arguments show that the vector part of v does not impact the 
growth of δ.  
 



   

Now, combining the three linearized equations in Fourier space, we get the 
single equation that describes the evolution of all modes in  linear sub-
Hubble regimes. 
 
This equation looks exactly the same as the one in real space (and later on 
we will drop the k index) : 

On the other hand we also saw that vector metric perturbations decay à also no 
vector contributions from the metric perturbations to the growth of structure.  
 
Finally, notice no tensor contribution appear in the perturbed fluid equations.  
 
All these reasons show that metric tensor or vector perturbations as well as matter 
vector perturbations are not relevant here à structure formation is a scalar 
process. 
 



Note that even though the equation is the same for all scales, this does not mean 
that all scales will have the exact same evolution, since there will be differences 
because of: 
 
- domain of validity of the Newtonian approach (size of the scale) 

- cosmological component considered (dark matter, baryonic matter, radiation) 

- epoch of the Universe (matter, radiation or dark energy dominated regimes) 

The various regimes 
 
Remember that the mean densities (zero order) of the various components of the 
cosmological fluid evolve differently with time à the Universe is dominated by 
one component at a time, defining different regimes. 
 
This is easily seen by computing the time-evolution of the mean density, from the 
zero-order continuity equation 



Matter (dark matter and baryonic matter)  
 

 is defined by having pressure p=0, i.e., w=0 (equation-of-state) 
 
Inserting p=0 in the continuity equation, the solution is easy to find: 

ρ0 is an integration constant, i.e., an initial condition, the density at a0, and as we know, 
the initial conditions define the model parameters. 
  
If we choose to define the initial condition today, at a0 = 1, then ρ0 is the density today, 
which defines the well-known matter density cosmological parameter, 

Note that the parameter Ωm, not only parameterizes the matter density today, but 
also depends on the Hubble constant. So the values of Ωm in two Universes with 
the same matter densities but different expansion rates, would be different.  
 
For this reason, it is useful to introduce the physical matter density parameter, 
defined as ωm = Ωm h2 



Radiation 
 

 is a cosmological component consisting on relativistic particles, with v=c, 
and so eventual pressure perturbations propagate with speed of sound equal to the 
speed of light.  
 
However this does not imply  p = ρ, but p=ρ/3, i.e., w=1/3, because the flux of 
photons hitting a given surface may be spread over the 3D space, and so the net 
pressure over a surface is on average 1/3. 
 
Note that in a 5D space-time (with 4 spatial directions), the radiation equation of 
state would be w=1/4  
 
Note that, even in 4D space-time, if the Universe was not isotropic, the pressure 
would not be isotropically distributed, and the mean pressure could be different 
from 1/3.  
 
Anyway, inserting p=ρ/3 in the continuity equation, the solution is easy to find: 

where ρ0 defines the radiation density parameter   



Note that the energy density of a radiation fluid dilutes faster than a matter fluid, 
the extra a-1 factor explains the extra dilution due to the redshift of the photon 
frequency. 
 
Notice also that if we consider that the Universe is a black-body with temperature T 
and energy density ρr,  the energy is related to the temperature as ρr ~ T4 (Stefan-
Boltzmann law) à the temperature of the Universe decreases linearly with a, 
and this is why the temperature is used as a “time scale” in the early universe (as the 
redshift is also used). 
 
Dark energy 
 

 is a component that produces accelerated expansion. 
 
From the second Friedmann equation (Raychadhuri equation)  
 
 
 
 
we see that the acceleration is positive if w < -1/3 
 
Notice that in GR pressure is a source of gravity (just like mass or energy density), a 
negative pressure contributes to a repulsion, and may accelerate the expansion. 



There are many models of dark energy. The simplest and most used one is the 
cosmological constant, where w = -1 
 
Inserting p = - ρ in the continuity equation, we find the solution, 
 

 ρ = constant 
 
i.e. the dark energy cosmological constant does not dilute as the Universe expands. 
 
 
The evolution rate of the densities is not all the information needed to 
determine which is the dominating component, since the amplitudes of the 
densities depend on the initial conditions. 
 
For example, consider the three  
following ΛCDM models: 

ln a 

r 
m 

Λ 
i) 



ln a 

ii) 

ln a 

iii) 

In model i) all components start with the same amplitude.  
This model is always dominated by dark energy  
 
 
In model iii) radiation never dominates 
 
 
The concordance model looks like model ii) 
We saw that from the measurement of the CMB temperature à Ωr ~ 0.00008, 
and also that the various cosmological probes point to Ωm ~ 0.3 and ΩΛ ~ 0.7 
 



Given these amplitudes at a=1, we can search for valid times in the history of the 
Universe (with a>0 and a<1) where the densities were identical: 
 
ρr (aeq) =  ρm (aeq)  à aeq =  Ωr  / Ωm  ~ 0.00027 à zeq ~ 3500 
 
ρΛ (aΛ) =  ρm (aΛ) à  aΛ  = (Ωm / ΩΛ)1/3 ~ 0.75 à zΛ  ~ 0.3 
 
ρΛ (at) =  ρr (at) à  at = (Ωr / ΩΛ)1/4 ~ 0.1 à zt  ~ 8 
 
 
We see that the Universe starts to be radiation dominated, until the equality redshift  
z ~ 3500, where it starts to be matter dominated. At z ~8 the decreasing radiation 
density reaches the value of the cosmological constant, but this does not define 
another regime since matter continues to dominate (at z ~8, Ωr = ΩΛ  ~ 0.7 and  
Ωm ~270). Finally, from z ~0.3 until today and into the future, the universe is dark 
energy dominated. 
 
Note that this does not mean that the Universe expansion started to accelerate  
at z = 0.3. We are only computing the redshift where dark energy and matter have 
the same mean densities. 
 


