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Abstract: Although the Standard Big Bang Cosmology is the most accepted concept about the beginning and evolution
of the Universe, it has problems: the flatness problem, the horizon problem and the inhomogeneity problem. Here
I present an overview of bouncing cosmologies as alternatives to inflation and as sources for the cosmological
perturbations which are observed today. I focus on the motivation for considering bouncing cosmologies, how they
solve the Standard Cosmology problems and the challenges they face. I explain the "wedge diagram", an intuitive
way to illustrate how cosmological models with a non-singular bounce generically solve fundamental problems in
cosmology. The same approach is used to compare with other cosmological scenarios.
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1. Introduction

Even though the evolution of our Universe from redshift z ∼ 1000 to today is very well studied and modeled,
what happened before that and after is still a great mystery. All we have are theoretical speculations of what could
have happened. Based on those speculations, theoreticians created models that need to match the observations and
explain the complex structure that we see today. Observations show that the Universe has been expanding and cooling
for about 13.8 Gyrs and that the complex structure observed today emerged from a nearly uniform Universe when it
was about 1/1100 of its current radius, as demonstrated by the Cosmic Microwave Background (CMB) maps of the
last scattering surface.

Despite the fact that inflation solves many problems of the Standard Big Bang cosmology and makes predictions
that have been successfully verified, it still faces a number of challenges and some predictions are not specific to
inflation so, for those reasons, the search for alternative scenarios was motivated.

The bouncing scenario comes as a very ambitious and different idea than what has been dominating cosmology
from the past 50 years or so. This theory has been developing recently and still needs further work but, so far, it
hasn’t reached any obstacle that it can’t overcome. In a bouncing cosmology, there are two main parts to focus on:
the contraction phase and the bounce. I will start by describing the contraction phase where the equations for an
expanding Universe can also be applied since Einstein equations continue to be valid both for the expanding and
contracting Universe. The difference arises at the bounce since it requires new physics to explain it, but it can be
described, at least to leading order, by classical equations of motion.

2. Contraction phase

As already known, the scale factor, a(t), is a dimensionless quantity that describes how much a patch of space
changes in size due to expansion (or contraction) and the Hubble parameter, H, defined as H = ȧ/a tell us how much
the expansion or contraction changes with time. If H is positive the Universe is expanding and if it’s negative, the
Universe is contracting. The Universe can be, in good approximation, assumed as spatially flat (k = 0) today since
current observational evidence shows that the spatial curvature is negligible and a(t) can be normalized as unity at the
present, a(t0) = 1.

When analyzing expanding Universes, we rely on the Friedmann equations and those same equations, as I
already mentioned, can be applied for a contracting Universe. The Friedmann equation, which tells us how the Hubble
parameter depends on what the Universe contains, can be written as:

3H2 =
ρm

a3 +
ρr

a4 +
ρφ

a2ε
− 3k

a2 (1)
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Where the first term is with respect to matter, the second term is for radiation and the fourth term is from
the curvature. The third term is generic and stands for other energy component which have an equation of state
ε = 3/2(1 + w) where w measures the ratio of the pressure to the energy density (w = p/ρ).

In the Friedmann equation the dependence on the scale factor changes for different forms of energy. That
difference in the exponent of a(t) depends precisely on ε so, in general, it’s just H2 ∼ a−2ε. In the Standard Big Bang
model, for the first 50.000 years the Universe is radiation dominated so p/ρ is equal to 1/3 which means that ε is
equal to 2 so H2 ∼ a−4. For the remaining 13.8 Gyrs it is dust dominated corresponding to ε = 3/2 because matter is
pressureless (p = 0) so H2 ∼ a−3. This leads to the dominance of different types of energy at different times, depending
on the value of a(t) and its dependence on it.

From equation (1) we get H−1 ∼ aε where H−1 is called the Hubble radius (if we consider c = 1) which is a key
concept in General Relativity. In an expanding Big Bang Universe (where ε > 1), it is equal up to a factor of order
one to the particle horizon size, which is the maximum distance light or particles could travel for a given time and,
hence, the maximum distance an observer can see at time t. Ignoring the proportionality factor of O(1) we can treat the
particle horizon size as equal to the Hubble horizon. Alternatively, it can be seen as to what parts of the Universe are
causally connected at a given time.

From this expression the time dependence for a(t) can determined, a ∼ |t|1/ε where the modulus appears to allow
it to be used both for contraction and expansion. When ε < 1, there is a “fast” expansion/contraction because the
scale factor grows more rapidly than time. When ε > 1, it’s a “slow” expansion/contraction.

The acceleration of the Universe (ä) can be described by the following equation:

ä
a
=

1
2

ρ(1− ε)

where it’s shown to be proportional to (1- ε) so if ε < 1 => ä > 0 which means an accelerated expansion/contraction. If
ε > 1 => ä < 0 so the expansion/contraction of the Universe is decelerating.

If we were to analyze the solutions of these equations it would be complex and time consuming so, Anna Ijjas
and Paul J. Steinhardt (2018) came up with a simpler idea of representing this cosmology in a visual way: the “wedge
diagram” (or cunha, in Portuguese).

3. Wedge diagram explained

Figure 1. Wedge diagram for the Big Bang model. The evolution of a patch of interest starts at the singularity (vertex on
the left) and evolves into the present (t = t0). The thin dotted lines represent the evolution of a smaller patch of space.
Credits: Anna Ijjas and Paul J. Steinhardt (2018).

The two edges of the wedge describe the evolution of a given patch of space that grows linearly with a(t) between
the Big Bang (the vertex on the left where a = 0) and today (the outermost arc where the scale factor is equal to a(t0)).
The arcs connecting the sides represent the physical sizes of some patch of interest and, for today, a(t0) = 1 so the arc
representing the patch that we see today is represented in figure (1) by the dashed solid black arc. For a smaller patch
in space (for the same time) we get a smaller wedge as shown by the thin dotted lines and for a larger patch, even
larger than what we can observe, we would get a wider wedge, not represented in the figure.

https://arxiv.org/abs/1803.01961
https://arxiv.org/abs/1803.01961
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If we want to know what a patch looked like at earlier times, we just connect the sides for the a(t) at that time as
shown in the next figure.

Figure 2. [Left] Observed patch for the present (a(t0) = 1). [Center] Observed patch for a(t) = a(t0)/2. [Right] Observed
patch for a(t) = a(t0)/4. Credits: Paul Steinhardt’s (talk).

It is, however, important to recall that there was evolution between the different times, but this diagram is only
meant to describe the sizes and not the fine-structure details.

4. The problems

One must note that all these wedges have a starting point at the tip of the wedge, which for the Standard
Cosmology would be the Big-Bang, but since it’s still very poorly understood, it can be seen as what it really is: a
singularity problem. This problem arises because, when trying to apply the Einstein equations for a(t) very close to
zero, the equations stop working (it goes to infinity) and it is a problem that happens in every cosmology that is based
on the Big-Bang. Therefore, looking for cosmologies that don’t rely on the Big-Bang seemed like an option to pursuit.

From the Friedmann equations, as already mentioned, the horizon size is proportional to aε. In Standard Big-Bang
models, the value of ε depends on the phase considered since different types of energy (that have different ε) dominate
at different times. For the radiation dominated phase, ε = 2, then there is a quick transition and ε starts to be 3/2 in a
matter dominated phase. However, in this simple visualization, the exact value is not important but rather the fact
that it is above 1. In this case, the patch size grows with a(t) but the horizon size grows with a(t)ε and if we consider
both to be equal at the present and extrapolate back in time, the patch size is always larger than the horizon size (pink
shaded area) as seen in top part of figure (3).

Figure 3. Wedge diagram for the Standard Big Bang model, comparing the patch size (the full wedge) to the horizon size
(pink shaded region). The magnified section represents the wedge where a(t)∼1/1000, highlighting the period between
the Big Bang and the last scattering surface. Credits: Anna Ijjas and Paul J. Steinhardt (2018).

https://www.youtube.com/watch?v=KHhqZfsI0Hs
https://arxiv.org/abs/1803.01961


4 of 8

In particular, zooming to the time when a(t) ∼ 1/1100 it is clearer that the arc that represents the last scattering
surface (CMB) is much larger than the horizon size. Nevertheless, the CMB measurements show that the density and
temperature were nearly uniform across the entire patch which constitutes the horizon problem since it’s not clear
how to explain the uniformity of the CMB over lengths scales greater than the horizon size.

There is an additional problem because CMB measurements also reveal a spectrum of small amplitude density
fluctuations that are nearly scale-invariant. This inhomogeneity includes hot and cold spots that are much bigger than
the horizon size at the time of last scattering (Super-Horizon Problem) and finding a physical mechanism capable of
generating this nearly scale-invariant spectrum, constitutes the homogeneity problem.

The third problem is the Flatness Problem, and it comes from the curvature term in equation (1). In an expanding
Universe, the curvature term decreases but in a contracting Universe it grows and starts to become significant. Starting
from equation (1) and dividing all terms by 3H2:

1 =
ρm

3H2a3 +
ρr

3H2a4 +
ρφ

3H2a2ε
− 3k

3H2a2 (2)

1 = Ωm + Ωr + Ωφ + Ωk; with Ωk ≡ −
3k

3H2a2 (3)

Ωk ∝
(

H−1

a

)2

∝ (Hubble size/patch size)2 (4)

In this context, the wedge diagram is very informative since it allows us to estimate the ratio of the Hubble size to
the patch size:

(Hubble size/patch size)2 ∝
(

a(t)ε

a(t)

)
(5)

For an expanding Universe, a(t) grows so Ωk also grows with time (depending on the power of ε but let’s continue
to consider ε > 1). This is a problem because, if one computes the exact value, it would return an enormous value
which meant we should clearly see a curved Universe but that’s not the case.

These are the main problems that each cosmology faces. It is clear that some of the problems come from the fact
of having a “starting-point” or singularity so, an “out of the box” idea is therefore to get rid of the starting point and
consider a “big bounce” instead. This “big bounce” can be described by Einstein equations both for the contracting
and expanding phase, except for the bounce that I will discuss later.

5. Does bouncing cosmology solve the problems?

Let’s see if changing from a Big Bang to a “big bounce” can solve some of the problems we’ve encountered and
consider the wedge diagram for a generic classical (non-singular) bouncing cosmology.

Figure 4. Wedge diagram for non-singular bouncing cosmology. The figure illustrates the period of contraction (lhs) that
is followed by a bounce (small yellow shaded area, middle) and the current period of expansion (rhs). Credits: Anna
Ijjas and Paul J. Steinhardt (2018).

https://arxiv.org/abs/1803.01961
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By adding a contracting phase and bounce, the causal structure is fundamentally changed. The black line,
representing the evolution of a(t), is now decreasing in the left-hand side (lhs) as the Universe is contracting. The
horizon size continues to scale as a(t)ε with the difference that now a(t) is decreasing so the horizon size (blue area)
also decreases. As illustrated in the image, the Horizon Problem is solved since there is a huge amount of time before
the bounce (far left) where the horizon is larger than the patch size so there is enough time for it to be in causal contact.
That means the patch that will eventually evolve into the Universe we observe today is not only causally connected at
some point before the bounce (i.e., within a particle horizon), but it remains within the Hubble horizon and causally
connected arbitrarily far into the past.

At closer look, we can also point out that the diagram is not symmetric, and the reason comes from the value
of ε in the Friedmann equation. As the contraction is taking place, a(t) is getting smaller so terms with larger ε will
dominate and, if there is some form of scalar field, it will dominate near the bounce because, after solving the Einstein
equations for the scalar field, it is seen that ε = 3 (for a case without a potential). If it had a potential the value would
be higher than 3 making it dominate even more. After the bounce, if the scalar field is unstable and decays, it turns to
radiation leading to the radiation dominated phase but, in that phase, ε has a different value than before and that’s
why the horizon size (aε) has a different shape.

This means that this diagram is not the same as simply gluing together a Big Bang and its time reverse. As we’ve
seen the equation of state ε is generically greater in the period before the bounce than in the period after the bounce;
the wedge doesn’t end on the left-hand side, in fact, in the case of a one-time bounce as considered here, the wedge
extends far into the past and the "starting point" is replaced by a bounce in which the scale factor shrinks to a finite
size, well above the Planck length, and then rebounds.

From this interpretation we see that the flatness problem is solved because a(t) is decreasing (so the curvature
is decreasing); ε is bigger on the left hand side than on the right hand side (makes it decrease even more) and the
contraction occurs for a longer time period, so it causes a “super-flattening” effect that is much more effective than,
for instance, inflation.

In Standard models, if there is a scalar field in the beginning, as the Universe is expanding the quantum
fluctuations in that field evolve into density perturbations and then curvature perturbations so, to avoid that, they
require substantial fine-tuning that isn’t very successful at describing earlier times which then ends up creating
multiverses, as the fluctuations become uncontrolled. For a bouncing cosmology with a contracting phase the opposite
occurs: the perturbations shrink, and the final result is a smooth Universe. But this is also a problem because the
observations show hot and cold spots that are not predicted here with one scalar field. However, if we add another
scalar field that doesn’t contribute to the contraction, it will undergo quantum fluctuations that won’t disappear after
the bounce making it possible to explain the hot and cold spots in the CMB.

To understand this effect let’s represent the horizon size by a circle and a perturbation wave that has a wavelength
smaller than the horizon size at some initial time t1 (left image in figure 5).

Figure 5. [Left] Representation of the horizon size (blue circle) and a perturbation wave (yellow) at some initial time.
[Center] Perturbation wave becomes bigger than the horizon size. [Right] Perturbation wave becomes a super horizon
fluctuation at later times. Credits: Paul Steinhardt (talk).

Since the horizon size is shrinking faster than the patch size, there will be a moment when the wavelength
becomes bigger than the horizon size (figure 5 in the center) because the wave has shrunk but the horizon shrunk
more. After some time, the wave is much bigger than the horizon and becomes a super horizon fluctuation (figure 5

https://www.youtube.com/watch?v=KHhqZfsI0Hs
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on the right). Then some different physics in the bounce convert it to a true curvature fluctuation which makes this a
possible explanation for the perturbations in the CMB.

As for the problem of entropy, it is only a problem if we assume that the Universe begins small (Planck size).
Inflation explains it by the exponential expansion of space that leads to an exponential increase in the total energy
density of matter. This energy density is converted into radiation during the reheating phase at the end of inflation,
producing the large entropy that our current Universe contains. For the models that I will briefly discuss later, like the
Matter Bounce and Ekpyrotic cosmologies, it is assumed that the Universe starts large and cold so there is no problem
whatsoever in explaining the current entropy.

6. The bounce

Achieving a mechanism capable of making a smooth transition from the contracting to the expanding phase
without disrupting the properties we have seen is more complicated. The evolution before and after the bounce can
be classically described so It’s expected that the bounce can also be classically determined, at least in leading order.
This means that the Universe should bounce at a lower energy level than proposed by Big-Bang models therefore not
needing to include quantum effects.

For simplicity, I have only considered the case of a single bounce separating the period of contraction from the
current period of expansion, although cyclically bouncing models are also possible in principle. Those theories are
particularly interesting because they do not just describe the early evolution of the Universe, but its entire history.

If there is a contracting Universe before our expanding Universe, then we have to be able to explain the transition
from one phase to the other. If we consider General Relativity and matter that satisfies the null energy condition, then
a singularity is inevitable. In order to avoid such singularity, the null energy condition must be violated and to achieve
it, quantum fields, modified gravity or even a theory of quantum gravity could be used.

7. Observational Signatures

Alternative models for the early Universe must be able to explain all of the existing data and must be consistent
with the current constraints. It is also very important that they make new predictions with which they can be
differentiated from the current and widely accepted inflationary paradigm. Given that in the near future new
telescopes will provide a wealth of data this is an ideal time to consider such predictions. In most cosmological models,
matter is modelled in terms of a scalar field φ with a non-trivial background dynamics φ0(t). Linear fluctuations of
geometry and matter about the background can be classified according to how they transform under spatial rotations.
There are scalar modes, vector modes and tensor modes (gravitational waves).

7.1. Power-spectrum

In every early Universe model, we need to be able to compute the power spectrum (Pr) of curvature
perturbations (a combination of perturbations in the metric and of matter density) that is given by the expression
Pr ∝ As(k/Kpivot)

ns−1 where k is wave number, As is amplitude and ns is spectral index that describes the slope of the
spectrum.

Measurements of ns put it as 0.965± 0.004 (Planck 2018) so not exactly one which means that Pr, that is a function
of k, is almost but not completely independent of k. Theoreticians called it a “red-tilt” and it is very well measured.
The value of the index ns = 1 would correspond to a scale-invariant spectrum, i.e., a power spectrum which was
independent of the scale k.

One way to obtain such scale-invariant power-spectrum theoretically is to consider the Sasaki-Mukhanov
equation defining z̈/z as 2/τ2 where z2 ≡ 2εa2 and considering initial vacuum conditions. If that’s so, the resulting
power-spectrum is independent of k. But why impose such definition? If we assume a constant equation of state
(p/ρ = constant) then z̈/z = ä/a that must be equal to 2/τ2. If a(t) is described by a power-law a(t) = a0(−τ)n then:

ä
a
=

n(n− 1)
τ2 =

2
τ2 ⇒ n = −1, 2 (6)

https://arxiv.org/abs/1807.06209
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This leads to two solutions: a(τ) = 1
H(−τ)

and a(τ) = a0(−τ)2. The first solution leads to an exponential

expansion a(t) ∝ eHt and corresponds to the inflation scenario. The second one leads to a(t) ∝ (−t)2/3 which is a
matter-dominated contraction that is the idea behind a scenario that I will later discuss called the Matter-Bounce
Scenario.

7.2. Running of the Scalar Spectrum

For simple single field inflationary models, the red tilt of the scalar spectrum is due to the fact that the Hubble
expansion rate H is very slowly decreasing during the period of inflation, so the slope of the spectrum is smaller at
larger values of the momentum which implies that the running of the spectrum (α = dns/dln(k)) is negative.

In the matter bounce scenario, on the other hand, at large values of k, the spectrum converges to a scale-invariant
one, so the running of the scalar spectrum is positive. Thus, a measurement of the running of the scalar spectrum
would allow us to differentiate inflation models from the matter bounce scenario.

7.3. Tensor to Scalar Ratio

The tensor to scalar ratio r is defined by r = Pt/Pr where Pt and Pr are the power spectra of the tensor and scalar
modes, respectively.

In the matter bounce scenario, both the tensor and the scalar fluctuations have a scale-invariant spectrum, and
the tensor to scalar ratio before the bounce phase is predicted to be of order one since the scalar and tensor modes
obey the same equation of motion. However, during the bounce, it is possible that the scalar modes are enhanced
relative to the tensor modes, so a large value of r is predicted afterwards. Hence, the value of r does not provide a
good window to differentiate between inflation and the matter bounce.

The situation is completely different in the case of the Ekpyrotic scenario. In this case that will be discussed
shortly, both the scalar spectrum and the tensor spectrum retain their original vacuum slope which means that the
fluctuations are negligible on cosmological scales. In fact, any sizeable measurement of r would immediately rule out
the Ekpyrotic scenario unless some yet-unknown mechanism is invoked.

The value of r is, however, very highly model dependent in bouncing cosmologies.

8. Different models of bouncing cosmology

There are different classes of bouncing models that predict different contracting phases. For a contracting phase
that is the time reverse of the Standard cosmology expansion phase which corresponds to a symmetric bounce, as
showed in section 7.1, it is called the Matter Bounce scenario. The origin of the fluctuations in bouncing cosmologies
depends on the model. It is often taken to be quantum vacuum perturbations (Ekpyrotic and Matter Bounce scenarios)
but for example, in String Gas cosmology, it is of thermal nature.

8.1. Matter bounce cosmology

This scenario, as I already showed earlier, allows for scale invariant curvature perturbations on super-Hubble
scales but if we add a component to matter which corresponds to the current dark energy (e.g., a small cosmological
constant), we get a slight red tilted spectrum.

Regarding the flatness problem, this cosmology is neutral because in the case of a symmetric bounce the impact
of the spatial curvature term decreases during the period of contraction by the same amount that it increases during
the expansion phase.This theory is favorable because it’s easily modeled although it suffers from instabilities with
respect to anisotropies.

8.2. Ekpyrotic Cosmology

This scenario comes from string theory where there are two 4D branes in 5D that have a negative exponential
potential which causes the two boundary branes to approach each other. The period when the two branes are
approaching each other is a contracting phase and the time when the two branes collide corresponds to a singular
bounce.
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This model predicts ns – 1 = 2 which is not consistent with the measurements, however, some new proposals
suggest the addition of a spectator scalar field χ evolving in a similar negative exponential potential that will couple
with φ, the field that generates the Ekpyrotic contraction, at the background level thus leading to ns -1 ≈ 0 as expected.

For the flatness problem the situation is better: the contribution of spatial curvature decreases faster during the
period of contraction than it increases during the expanding phase resulting in a flat Universe.

Ekpyrotic cosmology washes out the anisotropies because there is an additional term in the Friedmann equation
(ρek/a3(1+w)) that dominate at higher energies (where a(t) is small), therefore, not needing to fine tune the model.

8.3. String gas cosmology

String gas cosmology is another model of Bouncing cosmology and it also comes from string theory and is, in
fact, based on fundamental principles of superstring theory. It can make some predictions that match the current
observations, but it needs further work because string theory is still poorly understood. For more information on its
status, see “String Gas Cosmology” by Robert H. Brandenberger (2008).

9. Conclusions

Bouncing cosmologies still have a long way to go before they can be considered as sound as the inflationary
paradigm, but the aim of bouncing cosmologies is more ambitious since it strives (among other goals) to solve the
singularity problem of our current cosmological models. To do this, one has to go beyond General Relativity and use
matter that doesn’t obey the usual energy conditions.

There are various scenarios in which a scale-invariant spectrum of cosmological perturbations emerges that can
explain the current data. We have discussed the Matter Bounce and Ekpyrotic scenarios, and very briefly mentioned
String Gas cosmology. However, none of the bouncing cosmologies considered here are at the present time fully
understood. Of course, nothing prevents that the actual history of our Universe contains an inflationary phase
preceded by a bounce. In fact, most mechanisms for constructing a cosmological bounce allow for the inclusion of an
inflationary phase after the bounce but it is unclear if we will ever be able to find discriminating measurements.
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