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1. Introduction
In the end, there will be a list of abbreviations that will appear throughout the paper.

Our current understanding of the evolution of the universe is based upon the FLRW cosmological model which
can describe the universe at times as early as 10~*3 seconds! But in 1946 Lifshitz [3] fog{,\ that the gravitational ‘NYDQ'
potential cannot grow within lineangerturbation theory and he concluded that galaxies we\ﬁd not hawve formed by

e . .1 ¥eFove . e . A
gravitational instability, we needed to introduce Relativistic Perturbation Theory. Yote !

So in this essay we are going to go over what is Relativistic Perturbation Theory (RPT) and how it is constructed
Structure of the Big Bang Model. In other words RTP attempts to explain how the universe forms astronomic structures
such as stars, quasars, galaxies and clusters from perturbations during inflation.

To setup the stage that we are going to be using when analysing RPT we must consider a first important note:
RPT applies to an universe that is predominantly homogeneous which is considered to be a good approximation on
the largest scales, but on smaller scales we need different techniques.

2. Perturbations of the Metric aJ al
v 2%

We shall begin in the same fashion as we aboard common GR problems: by constructing the Metric Tensor that

we are going to work with and, in this case, we want to define our perturbed metric tensor! So we first recall that for a
spatially homogeneous and isotropic universe with the FLRW metric we have -] ht(
2 2 ?‘- 2 i 1.5 b4 U—M ‘l'}— 5 h
twrer — dimenlignaf spR 457 = guwda’'de” = a*(1)(—dn” + giyda’da’) 504 21)
where a(n)ks the scale factor (units are chosen so that the speed of light is unity), g;; is the unperturbed metric tensor

for a threelspace. However, as we said previously the FLRW model is still an incomplete model. So we start our
journey we.eefine the perturbed metric tensor as

by &F:’mm?-
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where we have the full space-time/metric into a background g,,,,, which is a known solutionef the Einstein equations,
plus some Perturbatlons 8G9 V.Vh ch are aﬁs’%r?fgzgcto be s.,mall. It's important to notice that the{index i, j, % refér to
the 3D spatial components whilefl,, v, - - fex 4D space-time components. Unfortunately we do not have a spatially
homogeneous universe so we have to parameterize the perturbations to the homogeneous background metric with

goo = —a*(1+2A4), go; = —a®Bi, gij = a* (Gij + 2hij) (2.3)

where A, B; and h;; are functions of space and time where the function A (n, xl) is called the lapse function, and
B, (n,z") the shift vector and so the perturbed metric, can be written in a general way as
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ds? = a®(n) [~ (1 + 24)dn* — 2B; da* dn + (35 + hyj) do’ da?] (2.4)

which would give us an metric tensor defined as

1424 —2B; —2Bsy —2Bs3
2B, (1+hy) h h
9 1 11 12 13
_ 25
gur = a*() —2Bs hi2 (1+ ha2) ha3 @5)
—2B3 h13 ha3 (1 + hss3)

This is to set a general idea for what we want to achieve during this essay and to start build up what will come next.
In the metric presented above the variables presented will be explained in the next chapter and further on why we
were able to build the metric in such way and what considerations were made to get that result.

3. Scalar-Vector-Tensor decomposition

In order to proceed to have a proper treatment of cosmological perturbation theory it is very helpful to separate the
space-time into two different space-times or manifolds: the perturbed space-time, that is close to a simple, symmetric,

space-time, the background space-time, that we already know, ¢4 ¥ . o smald tku\'\nc&'i oW
S 5% Fig A P
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gure 1. The background space-time and the perturbed space-time. a““ WB

In order to do this we need to preform a Scalar-Tensor-Vector split which is based upon the idea of decomposing
a vector into longitudinal and transverse parts. The longitudinal/transverse decomposition allows us to write a vector
field in terms of a scalar (the longitudinal or irrational part) and a part that cannot be obtained from a scalar (the
transverse or rotational part). This way we can write h;; function presented in equation (2.4) as [’ﬂ&\]

—— =~
scalar vector tensor

where we define, as mentioned above, from the gradients of a scalar and a transverse vector

A N . 3.2

8(iE') = % 5Z‘Ej +8jEi) (32)
The decomposition performed above splits the metric perturbations into 4 + 4 + 2 scalar, vector, tensor degrees of
freedom making a total of 10 degrees of freedom which has

— Scalars: A,B,C, E
— Vectors: B;, E;
— Tensors Eij
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An interesting note is that as a property of the GR field equations due to the invariance of the form of physical laws
under arbitrary coordinate transformations, out of the 10 degrees of freedom only 6 of which are physical and 4 are
not. This implies that we need to distinguish the physical perturbations from the fictitious ones. lﬁf

4. The gauge issue in cosmology

The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in
the Lagrangian. The transformations between possible gauges, called gauge transformations.

In GR perturbation theory, a gauge transformation implies a coordinate transformation between such coordinate

systems in the perturbed space-time. So when we split the metric into the background (unperturbed space-time) and

the perturbations around it and by choosing a coordinate system, we explicitly changifig the correspondence of the

physical Universe to the background homogeneous and isotropic Universe. This way we have the metric perturbations

to make a gauge transformation but c0n51der1ng that due to the invariance of the form of physical laws and so would_

be guage- -invarjant but the metrlc pgrturbatrons transform non—tr1v1ally (or gauge transform) - ;raéo % ”
L]

" To clarify let us imagine a 4-scalar s. The full quantity s = 5 + §s lives on the perturbed spacetrme However,

we cannot assign a unique background quantity 5 to a point in the perturbed spacetime, because in different

_gauges this point is associated with dlfferent points in the background, with different values of 5. Therefore

o '{“9 “there is also no unique perturbatron 65 j the perturbation is gauge-dependent. The perturbation ds

is obtained from a subtraction between two spacetimes, and we consider it as 11V1ng on the background
spacetime. It changes in the gauge transformation. ! st ¢’ uwa C lz\( G 5
This explanation is made in more detail in [9] on chapter 4, showing the key steps for the demonstration of what
was introduced in the citation. And so we arrive at the gauge issue in cosmology on how we distinguish the

physical perturbations from the fictitious ones and decide on which gauge to choose to describe our metric since the
perturbations are gauge dependent.

How can we deal with the gauge issue in Cosmology?

1. Define gauge invariant perturbations and solve the corresponding gauge invariant equations. (Al)
2. Fix a gauge choice and keep track of all perturbations and check how quantities transform. (A2)

One thing to note is that performing # gauge-invariant calculations may be technically more difficult, but has the
advantage of treating only physical quantities. As a simple example let us consider the coordinate transformation:

r—x, and t:/adn—>t_:t+f(x,t) 4.1)

And where for convenience we define the following proprieties,energy densityj ¢(z,7) = o (77)7and pressurey p(s}in
an unperturbed homogeneous Universe:

) 4

—F———t=const
f < ’/;',—/

=T = t+(x,)

x=cons : ]

b &)

N\

t ﬂgce({( Cl\poﬁﬁ

t= c?nst
energy density doesn't
depend on x

Figure 2. Comparison of the coordinate transformation referenced in the equationsﬁf?{]
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Looking at the-figure-abeve-(Figure 2) the Universe is homogeneous, but in the new coordinate system it looks

like inhomogeneous: !

c(t) = e(F— f(a,8)) ~ () — %f B - 42)

These inhomogeneities/ perturbations are not real.

4.1. Gauge Transformations

To solve this problem we have to preform gauge transformations so let us consider the following coordinate

transformation
XF s Xt =Xt et(n,x), where =T, &=L =0L+L (4.3)

where we split the spatial shift L% into a scalar, L, and a divergenceless vector, L. From here we want to obtain a
metric for which we can treat perturbations and'Order to do that we have to choose a gauge transformation that solve§
the issues that we have discussed previously, o starting from the generic form of the metric

ds? = g, (X)dXHAXY = Gop(X)dX*dXP (4.4)
note that the choice of different notation in the second equality is for the new guage defined in (4.3),

oxe 9X* 98

age = O s (%) (45)

this simple manipulation allows us to relate the metric in the old coordinates, g,.,,, to the metric in the new coordinates,
Jap and with the SVT-decomposition w%q\eqwrite the metric perturbations in (2.4).

Without going into too much detail as is beyond the purpose of this essay we can write the gauge transformation
rules for the individual components of 4-scalar, 4-vector and type (1,1) 4-tensor perturbations as Ry

(nestos silueden
g2 ™hin con -5
(l:sww nwo fafe-

s = ds— 50
5o = bud 4 b — e

sw' = ouw + &4 ?

— - AD
5y = 543 — A o e
—~0 1 _ _
6A; =649+ YAk — 049
) ) + 3£,z k g,z 0 (46)
i . . |
§Ag = 6AY + £ AS — gf,’oAﬁ
i i Lok .0
8;1’; = 0Af — A} o&°
A — %5%‘5742 — 5Al - %5%’ 54k
and the gauge transformation laws
~ a,/
A=A4-¢f-=¢ (47)
’ a
B; = B; + ,i0 - fg (4.8)
~ ]_ k a/ 0
D =D+ gf,k + Eﬁ (4.9)

- 1/, ) 1
By =Eij -5 <£7j + fﬁ) + 5%5,’2 (4.10)
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which will come in handy when we actually start to use the Gauge Transformations further on the essay and these
calculations with a bit more guidelines can be found on reference [9].

4.2. Gauge invariant perturbations

We will now discuss on how to construct the gauge invariant perturbations. With the equations of motion for the
scalar and matter perturbations as well as the background quantities one can derive the gauge invariant equations
of motion, i.e. equations of motion. And how do we obtain them? by defining special combinations of the SE
perturbations that do not change under coordinate transformations. So using for example the Bardeen potentials

P=A+H(B-E)+(B-FE) S\W

‘I’ED—}—%VQE—H(B—E’) =) —-H(B-FE)
v

. I 0 . . .
where we have = a’/a and we define derivative as (’ ) = —— for convenience and note that the metric perturbation

on
dgi; is not invariant under this change of coordinates so for this reason the functions ¢, 1, B and FE are introduced to
rewrite the perturbation by) therj substituting\in the metric (2.4). These two Bardeen potentials can be considered as
the "real” spacetime perturbations since they cannot be removed by a gauge transformation!

4.3. Gauge fixing choices

As we said before we can fix the gauge and keep track of all perturbations both from the metric and matter. In
order to do this we have several choices (these are not only options, just a sample): fp 1 \
L]

= Newtonian gauge

The Newtonian guage consists on considering in the metric presentend in equation (2.4) witty B = E = 0
applying these conditions to the metric and to relate to the Bardeen’s potentials we define A = ¥, (' = —® giving 4?7
L]

2 _ 2 2 (1 i A‘;Q CD\J'D:_
ds® = a*(n) [(1 4 2®)dn* — (1 —2¥)d;; da’ da’ | 2dd oo ‘mr\uor(z{,g)?

this gauge has an unique proprety of being fixed completly! Which makes it rather simple and easy to work
with and will be used and explained in further chapters and ¥ plays the role of the gravitational potential.

= Spatially-flat gauge

This gauge is very good to derive the inflationary perturbations and has the conditions C' = E = 0. This guage
leaves the geometric part of the metric unchanged which is really useful for inflationary perturbations since in
the very beginning of the universe (according to the}ig%ang model) we had only perturbations in the inflaton
field and only after appears geometric perturbations. Note that ¥ and ® done n

= Uniform density gauge

In this gauge we choose the time-slicing in a way that the total density perturbation is set to zero i.e. jp = 0.

= Comoving gauge

We chose coordinates in a way that the total momentum density vanishes ¢; = (5+ P)v; =0and ¢; = B; =0
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5. General form of the equations for cosmological perturbations

We can now start to work towards the Field Equations for Scalar Perturbations. For this chapter, due to its
simplicity and usefulness, we will use Newtonian Gauge (often also referenced as the conformal-Newtonian gauge or the
longitudinal gauge). For this derivation we shall assume scalar perturbations only (since they are the ones responsible
for the structure of the universe). So our focus will be to obtain the Einstein Field Equations:

1
Ry = 59 R+ Agyu = 87G T (5.1)

5.1. Spacetime Curvature: Einstein Tensor

We will start this derivation by obtaining the Einstein Tensor (corresponding to the left side of equation (5.1)).
For this purpose we have to obtain the Ricci Tensor, so we must first start by revisiting the line element mentioned
previously with the gauge transformation laws shown in equation (4.10) for scalar fields are

!/
A=a-gv L0
a
B =B+ / + 0
i ¢ o (5.2)
D=D-;V%+—¢
3 a
E=FE+¢
and since we are going to use conformal-Newtonian gauge to obtain B = E = 0 we have to set
=-F
§ , (5.3)
&' =-B+FE

and so we finally obtain the line element for this Newtonian gauge in scalar perturbations as [_' ( 2

ds? = a(n)? [~ (1 +2®)dn* + (1 — 2¥)d;jdz"dz’ ] wl\i‘ h s 5. (5.4)

U\)\'H' a
S %Y\d

—1-2® 0

v —GQ[ 0 (1—2%)5;; ] (5.5)
we howt ’

Now with with this information, just as wexe seen in GR, we have to find the connection coefficients of the metric

e

where the metric is simply given by

which relate with the Ricci tensor, without perturbations, as

Ry =T8, ,— T2, , +ToT0, —ToT8 (5.6)
1y aff v

Vo

but we want to separate the background and the perturbations as Weve ‘cjlone prev1ously so we consider

&{u«,s@_ a usar b vsmo

rgv _ Fa 4TS, Siwkpfe pato os raxoe (57)
onR . de loa € £om

and as we know saidcoefficients only require the metnc to obtain and-are-givenby — ~

‘pr connackyov c'wf—i ueun $} ’rha cw q)auvv' b3y Reclu ~ 7

oL .
29 (gau,u + gcru,u guu,a) \—1@-6 2 9.6(58)
which means that the only thing that we have to.ﬁiﬁ is.g_’ﬁ’__a.n.d proceed with the derivatives of the metric,%”g

g (5.9

0 (14 29)0;;

142 0 ]
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since we separated the background and the perturbations we can treat both efthe connections separately making the
calculations stragfforward. Firstly we obtain the connections for the bm%ground E .
Wbl i€

o, =% g ® $Teo a'i‘olmp pohabe) (5.10)

=1
I, =@ = 3’1‘& (5.11)
‘ﬂ'/iS Qoal(s {fo be o = % (5.12)
\ % ({b‘f‘aﬂ) P-pfhuylwp b= =0 -] (5.13)
Wb Conmachond Iy, = %51-]» - 2%(@ +¥) 4+ ¥ 5y (5.14)
0o == 4%/ +@ —3Y (5.15)
b= — (Y00 + ¥ i) + ¥ 0k (5.16)
T =d,—3¥, (5.17)
(5.18)

an important note is that in I'f, and T'{;, we neglected all terms of higher order of the small quantities ¥ and ®. In the
same fashion.we can deo the connectiorr coctlicients for the perturbations using equation (5.8)

0Ty = @' (5.19)
00 = P i (5.20)
05y = — [2H(® +¥) +¥'] 6 (5.21)
6Thy = D (5.22)
oTh; = —¥'o; (5.23)
0T}y = — (Y 16k + ¥ k6)) + ¥ 0k (5.24)

Now that we have the connection coefficients for the background and for the perturbations to arrive at the Ricci Tensor
teased in equation (5.6) by only expanding the Ricci Tensor using equation (5.7) as E RDF.]

Ryuy = Ry + 0TS, o — 0TS, , +T040T0  + T8 6T%, — T9,0T5, — T4 0TS, (5.25)

v, ap,v

Now substituting for the set of connection coefficients for both background and the perturbations we have

Roo = —3H' +3Y" + V2O + 3H (&' +¥)
Ry =2 (Y + H(I))J- (5.26)
Rij = (M +2H?%) 6 + [ + V¥ = H (D' +5Y) — 2 +4H?) (P +¥)] 6ij + (¥ — @) 45

With this information we can start by computing the Ricci scalar (or the curvature scalar) which is given by the sum of

RI = gMR,, (5.27)

for that we reason we have to raise of the index of R,,,, obtained before

RS = ¢"*Ray = (7" + 09"Y) (Raw + 0Raw) = R + 09" Ray + §H*0Raw (5.28)
and so computing with all the information already know we obtain[?pﬂ
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R =3a"*H +a 2 [-3Y" - V?® - 31 (P’ + ¥') — 6H'D]
R =—2a7% (Y + HP)

N2

Ry=—R} =2a"" (¥ +HP) (5.29)
Ry =a™? (W' +2H%) 6 +a7% [-¥" + V?¥ = 1 (O +5Y) — (2H' + 4H*) @] 655 + a > (¥ — @) 4
with this information we can now do the summation o obtain the Ricci scalar
R=R)+R.=6a"2(H +H*) +a 2 [-6%"+2V*(2Y — ®) — 6H (@' +3¥') — 12 (H'+ H?) @] (5.30)
all things considered we can finally obtain the Einstein tensor, presented in component form, given by
Guv = Ruw — %gm,R (5.31)

and so we derive that
Gij=a 2 (=20 —=H*) 6ij +a 2 [2¥" + V(P —¥) + H 2 +4¥') + (41 +2H*) @] 655 + a (¥ — D) 55 (5.32)

it
And with this we derived the 1st part of the Einstein equations! We just now need to apply what we just derived to
the perturbed Einstein Equations which reads as follows:

0GY = 8w GTY (5.33)
And obtain the set of values corresponding with the perturbed Einstein Tensor. And so we have [ﬂ,o{:]

G =0~ [2V2Y 1 6K (¥ + H®)] = —5nGiog
5GO = — 2072 (¥ + H®) . = —87G(5+ p)vY

K
0Gy =202 (¥ + H®P) , = 87G (5 + p)vY

N2

0GE =a 2 29" + VA(® —¥) + H (20 + 4Y') + (4H' + 2H*) @] 6 + a > (¥ — @) 4

(5.34)

And we can move onto obtaining the Perturbations of the Stress-Energy Tensor to finally obtain the Field equations!

5.2. Perturbations of the Stress-Energy Tensor OS‘: (h}bmu?n)nhﬂ- .7

We start now the second part of tile'rivbg the Einstein fi€ld equations, by deriving the perturbed Stress-Energy
Tensor‘hu.t flote that we will be considering the background energy tensor is necessarily of Fice) perfect fluid form but
this consideration arrives from the fact that the "imperfections” caused by the perturbations can only show up in the
energy tensor if there is inhomogeneity or anisotropy but gravity only cares about the energy tensor so we have

™ = (p+p)ata” + pg” (5.35)
T} = (p+p)u"ay + pol (5.36)

where u” is the 4-velocity vector field of the fluid and the energy tensor of the perturbed universe is

TH = TH + 5T (5.37)

To make a bit of a paralelism with the content mentioned in the beginning of the essay, the energy tensor perturbation
has 10 degrees of freedom, of which we were able to divide into a 4+4+2 formulation. Likewise the perturbation can
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also be divided into perfect fluid + non-perfect, with 5 + 5 degrees of freedom! As an important note, the perfect fluid
degrees of freedom in §T}' are those which keep T}' in the perfect fluid form

T} = (p+ p)u'uy + péy (5.38)

Thus they can be taken as the density perturbation, pressure perturbation, and velocity perturbation

o , 1
p=p+0op, p=p+0op, and u' =a" +ou' == -v; (5.39)
a

For convenience we shall define the velocity perturbation as

&”_‘_ v; = au’ (5.40)

which inJsf order is equal to the coordinate velocity so

u .
dn = @ == E =au' = (A (541)
We also define the relative energy density perturbation
4]
5g=2° (5.42)

p

So we now want to relate the vector field of the perturbations in terms of the velocity perturbation (or in other words
we want to express u* and v, in terms of v;) thus

ut = a* + out = (ail + 0uY, ailm,a*lv%a*lvg) (5.43)
uy = Gy + duy = (—a + dug, du, dug, fus) (5.44)
Noting that v, = g, u” and u,u* = —1. Now just to have a more general expression we will go back to the most

general form of pertrubed metric, similar to what we’ve seen in equation (2.5) at the beginning of the essay but
considering perturbations of onlyJgf order giving such that

‘Eiis‘\'

Guv = a (5.45)

-1-24 -B;
-B; (1—2D)6;; + 2E;;
Perturbations in the metric will make the momentum distribution of noninteracting particles anisotropic so we need

to take this anisotropic pressure into account. We can now go back to combining equations

up = goput = a*(—1—24) (afl + 5u0) —6a%Bia v, (5.46)
= —a—a’6u’ —2aA 507 +hp‘+ hjﬁ\w’ artt(d' (5.47)

m feswms Ace “"6@"{ LP-%- ")ﬂzﬂ&f)

Sug = —a?6u’ — 2aA4 (5.48)
du; = u; = giput' = —aB; + av; (5.49)
substituting now in equation (5.38) we obtain that
_ —p 0 —bp (p+ ) (vi — By)
T =T+ 0T} = : , 5.50
A 135}] l—(/ﬂ-ﬁ)vi o, 550

And this is the first part for the perturbed energy tensor we just have to replace by the definition of 6T;f given by
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. , 5

ST} = 5pdt+ X5 = P (; + H¢j> (5.51)

where we defined

IL; =% /P
. , 5.52

Tij = 6T — 5016T¢ (5:52)
but now going back to the Newtonian gauge as we are considering scalar perturbations only, so that v; = —v; and
B; = —B; and as we explained in a previous chapter we will now proceed to do the SVT separation from equation

(3.2) and we start by defining the quantity
A
L =0Tj — géééTk (5.53)
and preform the separation of I1;; into SVT as :
IT;; = 1T, + I, + I}, (5.54)

where S — Scalar, V' — Vector and 7' — Tensor and since that perfect fluid perturbations (I1;; = 0) do not have a
tensor perturbation component we have

1
I = (aiaj —~ 35ijv2) I (5.55)
1
I = — (Iij + 1) (5.56)

Now, with the information that we just got we can proceed onto finding the metric from the Newtonian gauge
we come towards the Conformal-Newtonian Gauge in which we just have to revist what was taught in equations (4.6)
we just have to apply them to our Stress-Enery Tensor! And we obtain t’ R @.?]

0Ty = —bp = OTY — TDe® = —op+ j'¢° (5.57)
—_— ) . _ 1_-
6T = —(p+ )% = 6T} + €% (T(? - 3T;§) (5.58)
L=k = Lok 2k 40 /00
0T =dp = (6Tk — ¢ ) — §p— e (5.59)
~i 1 =k - 1
0T — 50507, = pllij = T} — 55;.5:@5 = Il (5.60)
For scalar perturbations, v; = —v; and &= —&;, so that we have
t=v+¢
. : (5.61)
IT=11I

opN =dp+ 7 (B-FE')=dp—3H(1+w)j (B - E) (5.62)
opN =dp+p (B—E') =p—3H(1+w)c5 (B—FE') (5.63)
N =v—F (5.64)

v =11 (5.65)
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Considering scalar perturbations only, so that v; = —v; and B; = —B; and use the conformal-Newtonian gauge we
then finaly obtain the energy tensor perturbation in the form

—6pN —(p+p)vl

0T} = = =\, N Nsi | = 1 2
(p+p)oy  op™Nal +p (I — 5655 VII)

(5.66)

Toc Juc
Which is the last remaining stone to obtain tﬁ%@%‘ﬁeld equations! So by combining%_h‘e equation Finstein
Perturbed equations S‘how’l}_‘l? equation (5.33)|\and-the results.obtained-on the follawing set-of. equations with § L) that
we.just ebtained-infequation (5.66) we get the following relations mihe previovs 7
&

() -

3H (¥ + H®) — V2Y = —4nGa?sp" (5.67)
(' +H®) ;= 4nGa*(p + Pl (5.68)
1
Y+ H (D +2Y) + (2H +H?) D+ gv2(c1> ~¥) = 4rGa?sp”™ (5.69)
0,0, — 1512 (¥ — @) = 87Ga’p | 9;0; Lsiv2) 5.70
%~ 3% - =ona’p %5~ 3% (5.70)
Now the equatio can be simplified to
Y+ HP = 4nGa®(p + p)vY (5.71)
and combining with the equatio we obtain
V2Y = 4rGa2p [51\’ +3H(1 + w)oN } (5.72)
where we have defined 5 _
5= and w= % (5.73)
p

from the equatio one can obtain that
Y — & = 8rGa?pll (5.74)

and so the equations (5.72) and (5.74) we form our constraint equations and our evolution equations
9

3
. VY = S’ [aN +3H(1+ w)uN}
Y — @ = 3H>wIl
(5.75)
Y+ HD = %7—[2(1 +w)olV
1
Y+ H (D +2) + 2H +H) D+ gv2(c1> ~-¥) = %H25pN/ﬁ
where we used from the Friedman equation the following equality’s to simplify the result

H? = 87;G,5a2

(5.76)
4G
H = == (5+3p)a’

And the set of equations (5.75) form the Einstein field equations for scalar perturbations!
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6. Curvature Perturbation Q?‘?’f
We start now the journey towards understanding in what capacity Relativistic Perturbation Theory'allows us to

explain how the universe forms astronomic structures as we preferences this essay. And our next stepping stone is to
take the way we derived RPT on the previous section with a comoving gauge to obtain the curvature perturbation.
And we start, as we did last time, by defining the ¢ and ¢’ that gives us a comoving gauge

&=
0 v p ©6.1)

but note that this does not fully specify the coordinate system in the perturbed space-time, since only ¢’ is specified,
not £. Thus we remain free to do time-independent transformations

vl =l — (%), (62)

while staying in the comoving gauge. With these two equations we can now formulate our gauge transformation laws
similar to what we’ve done before ('fhe derivation can be found on [9] starting on chapter 16.2)

W have
A® =A—(v—B)' —H(v—-B) (6.3)
BY=B—v+(v-B)=0 (6.4)
DC = LV H(v— B) 65)
E¢ =E+¢ (6.6)
v =-R=1+H(-B) (6.7)
we have

and in this gauge we‘ have\defined the Curvature Perturbation in equation (6.7) we can formulate our field equations
similar to what welwe done before but now we will skip forward the steps needed to arrive at them since the
calculations are similar as wxzg explained earlier and we obtain

VY = g'H%C (6.8)
¥ — & = 3H2wIl (6.9)
Y+ HD = §'H?(l + w)olv (6.10)
S C
Y 4 (24 32) HY + HD' +3 (2 — w) H2D + v2(c1> ¥) = 77{2’% 6.11)

p

e ﬂal—!ﬂ[ -hs

-
So now we are ready to rewrite (6.7) using (6.5) irvTelation ta relateswith the Bardeen Potentials

2 — 1/
=Y-—— Y+ P 6.12
R sitw) VP (6.12)
and derivating we obtain a relation similar ‘o
—4nGa®(p+ P)R' = 4nGa*HOPyaq + H v2\1f (6.13)

where we have defined the non-adiabatic pressure perturbation

D/

p
§Paq = 0P — ?5p (6.14)



— nes. ato QS?-(‘:)
th Pooriey :}‘mﬂscofm Ajrqw’grf" G.I%i/@r)_\

the right-hand side of ¥quation (6.13) scales as

dlnR E\?
2 2
HE“D ~ HE*R — TIna (H) (6.15)

viot -/ AV L
We can see that on super-Hubble scales, k < H, R doesi’t evolve unless non-adiabatic pressure is significant! This is
crucial for relating late-time observable, such as the distributions of galaxies, to the initial conditions trom inflation!

7. Structure Formation

So finaly, at the end of this long essay we talk about the evolution of structure and we solve the perturbation
equations for this particular epoch, and find that the solutions are characterized by quantities that remain constant
for the whole epoch. The evolution of the large scale structure and the CMB cén B Ef)ég:lﬁed during the

Paeyowe

radiation-dominated fepoch, ﬁﬁh&ﬁﬂf’éa?& that all Scales[K\of interest are outside the horizon Jsowe Limif
thistime periad to starf after BBN. The comoving horizon h is %
Soeon pllec %\aaoma u:!losyn"'luus LﬁTﬁ\‘)]

H 100KV - lkpc (7.1)

o8 vl vk +"vm\ co loy
so all cosmological scales-areshll well outside horizon then. In this essay we derived the field equations and we could

solwred theoretlcalbsolve but the has complex interactions between the dlfferewp‘&les which would complicate-things. This

interactions are summarised in Fgure 3). %a Ve 3P $p0 ¢ ow?@? st

of .,bﬂe(e\n\- «Q covplea
z‘}uq Owve .

Thomson
Scattering

Figure 3. Interactions between the different forms of matter in the universe which can be found on [1]

v
For adiabatic perturbations, we have ¢? ~ w and as\&é’g\gmsegn in last chapter from equation (6.11) we get
Y +3(1 4+ w)HY +wk?*¥ =0 (7.2)
which, in the Super-horizon Limgi?,'k < H, becomes
-

Y +3(1+w)HY =0 = ¥ = const (7.3)
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UL
which is independent of §the equation of stafdA0. In the ‘t[%‘gging o{the essay we mentioned that ¥ represented the
gravitational potential so'we can say that in particular, the gravitational potential is frozen outside the horizon during
both the radiation and matter eras. It is easy to see that the Perturbed Poisson equation would be

V235Y = 4nGa?po (7.4)

and so one can conclude that on superhorizon scales, the density perturbations are simply proportional to the curvature
perturbation set up by ﬁ’f&'tlﬂﬁ’fhe curvature perturbation R the gravitational do;sm’t stay constant when the equation
of state changes therefore in the superhorizon limit, 9 dess vot

5+ 3w .

= — T 7.
R 3+ 3w (7.5)

which is fantastic since this fact provides an important connection between the source term for the evolution of
fluctuations (¥) and the primordial initial conditions set up by inflation (R)! So in the transition from a radiation
dominated (RD) universe to matter dominated (MD) universe we have that the curvature perturbation must be
constant, yet w = % and w = 0 must have the same (R) so

3 5 9
R = —§‘PRD = _g‘YMD = Yvp = E‘YRD (7.6)

which means the gravitational potential decreases by a factor of 9/10 in the phase transition!

8. Summary

In this essay we learned a bit more about the formulation of cosmological perturbation theory and we derived
the evolution equations for scalar perturbations in Newtonian gauge with the metric

ds* = a(n)? [~ (14 2®)dn* + (1 — 2¥)d;;dz" da’] (8.1)

we derived the Einstein Field Equations

3H (¥ + H®) — V2Y = —4nGa®sp (8.2)
(' +HP), = ArGa*(p+ p)vY (8.3)
Y+ H (D +2) + (2H +H) D+ %v2(q> ~V¥) = 4rGa?sp" (8.4)
(a,-aj — ;5§v2> (¥ — @) = 87Ga’p (aiaj — ;5§v2> I1 (8.5)
Defined the Curvature Perturbation 9 "
R:—‘I’—m(?—t Y+ ) (8.6)

And finished with a bit-of physical explanation for the evolution of structure.

During writing of this essay the two main references were [9] and [1] even though the majority of the equations
presented were obtained by me irf the beginning of this work. With the lack of time necessary to do all the calculations
started following more the guidelines shown in both these references to have more consistency and better explanations”
throughout the essay.
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Abbreviations

The following abbreviations are used in this manuscript:

GR General Relativity

RPT Relativistic Perturbation Theory

FLRW  Friedmann-Lemaitre-Robertson-Walker
SVT Scalar-Vector-Tensor

CMB  cosmic microwave background

BBN Big Bang nucleosynthesis
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