PALrase « 'y ! '
&) seowch and \'?@facp i T by ')3H(—Fhroudhsﬂ- T tex+

Proceedings

Cosmological Perturbation Theory

Chi Tou Iu?

1 Departamento de Fisica da Faculdade de Ciéncias da Universidade de Lisboa, Edificio C8, Campo Grande, P-1749-016 Lisbon,
Portugal;fc55199@alunos.fc.ul.pt

Received: date; Accepted: date; Published: date

$

Abstract: In the paper, we have demonstrated the idea of primordial dengity fluctuation and the relation to the

struture formation and observation. We start with the three fluid equatiof{§ontinuity Equation@Eular Equation

@ ()Poisson Equation ) which govern the dynamicbof particlgjin fluidsand extend the idea on analyzing the density

perturbation in the universe,\b have derive the master equation of perturbationgin 1) static universe without gravity

) static universe with gravity’)3) Expanding universe with gravity. For case 3, we@calculate the dark matter

density contrast solutions in three different eraj)Matter dominate erag2)Radiation dominate era, 3) Dark energy
dominate era, and @ﬂlustrate the different solutions in different conditions and its physical meaning.

Keywords: Newtonian Perturbation Theory, Expanding space@'ontinuity Equatior(,)Eular EquatiorOPoisson
Equatior(,}:ourier transfrom;

1. Introduction

The generally accepted theoretical framework for the formation of structure is the gravitational instability,_,
it assumes the early universe to have been almost perfectly smooth, with the exception of tiny density deviations
with respect to the global cosmic background density and the tiny velocity perturbations from the general Hubble
expansion.The minor density deviations vary from location to k)s’%t‘i’ig' At one place the density will be slightly higher
than the average global density, while a few Megaparsecs fur ensity may have a slightly smaller value than on
average. The observed fluctuations in the temperature of the cosmic microwave background radiation are a reflection
of these density perturbations{ﬂ;ﬁlis imply the primordial density perturbations have been in the order of 10~° . It is
believed that the density perturbations are the product of the processes in the very early Universe and correspond to
quantum fluctuations which during the inflationary phase expanded to macroscopic proportions,Qnder the influence
of the involved gravity perturbations in the beginning of the univers@ the tiny local deviations from the average
density of the Universe and also the corresponding deviation%peculiar velocity) from the global cosmic expansion
velocity (the Hubble expansion) will start to grow.Jn a homogeneous Universe the gravitational force is the same
everywhere, but in a universe with tiny density perturbations, then the perturbations will induce local differences
in gravity. In a higher density region, the extra of matter will exert an attractive gravitational force larger than the
average Value,{n a low density regions, the deficit in matter will lead to a weaker force. Because of this di fg‘?&ce;s“q
in gravitational force , it will not accelerate at the same extent in different location druing dark energy dominant *

o the universe. So, during its early evolution an overdensity will experience a gradually stronger deceleration of its
expansion velocity due to global Hubble expansion. And when the region has become sufficiently overdense, the mass
of the fluctuation will have grown so much that its expansion may decouples from the Hubble expansion and start to
contract. If the pressure forces are not sufficient to counteract the infall, more and more \atter aggregate, ultimately
this will turn into a full collapse to form a gravitationally bound objectgthe type of objects form are determined by its
scale, mass and surroundings of the initial fluctuation, like galax%r clusterf .9n the opposite tendency, in case of
density depressions, the deceleration given by the gravity is not enough to overcome the global Hubble expansion,
then matter will displace further and further and ultimately leading a void in the matter distribution.
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2. Newtonian Perturbation Theory

2.1. Structure Formation: The linear regime

The linear Newtonian Perturbatlon Theory successfully describlg the gravitationally evolving cosmological
density and perturbation fields and also an adequate description of general relativity on scales well inside the Hubble
radius and for non-relativistic matter after the decoupling of radiation and matter at recombination. Furthermore, the
linear theoretical predictions fail soon after gravity increas§ beyond a level, meaning the density perturbations on a
small scale appear have a much higher amplitude than those on larger scales, small-scale perturbations being the first
ond to become nonljnear aphmdevelop into cosmic objects. Furthermore, the linear analysis of structure evolution is
still valid for scal§ Megaparsec scales at the present cosmic epoch.

Please noted that in the last part of the pI’O]EC@F‘E section of radiation dommat'gmera, we }y{ve assume}{ certain

conditior§ that have already proven in relativistic perturbation theory, so we can still use the linear pertubation theory
in this period, And we will talk about it later.
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Observations of the CMB on the left Eg.l SI@A/ that the perturbations at recombination(matter dominat¢ epoch)
are still very much in the linear regime |5| < 10~2;geflecting underlying primardial density and velocity perturbations.

These are the seeds of the structure observed in the present Universe on the left df fig. 1. However, at the present-day
the Universe has clearly entered the non-linear regime, and unless if the scale 1§ larger than a few Mpc, the Universe is
still in linear regime. Let us focus on the evolution of the density field in thq p(t) linear regime, which means that

6] << 1. Yf'g H’

3. Perturbed Fluid Equations

Consider a non-relativistic fluid with mass density g7¥,< p and velocity u. Denote the position vector of a fluid
element byr.and time by t. The equations of motion are glven by basic fluid dynamics,Mass conservation implies the
continuity equation,Let us first explain the continuity equation in the following grapﬁ\

N

3.1. Continuity Equation

In fluid mechanics, the equation for balancing mass flows and the associated change in density (conservation
of mass) is called the continuity equation. Consider a very small control volume AxAyAz,we will first consider only
a one-dimensional compressible fluid flows through this volume in the x-direction. If the flow enters the volume
element with a velocity v, ;,, it travels the infinitesimal distance dx, ;, = v, ;,dt within the time dt. So we have a
volume dV,,in flows into the control volume.
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If the density of the fluid is p, ;, , in at the point of entry into the volume element, the inflow mass dm, is :
dmx,in = de,in *Px,in = AA - Px,in * Ox,in * dt (2)

Also the mass flux which is the mass flowing in the flow direction per unit time and unit area:

. dmy,; o .
Q/J 1y iy = A A%’Zlqt = Pxin - Uxin and similarily 71 ;.0 = Pxout - Uxout 3)

If more mass flows into the control volume than flows out, the mass inside increases. The rate of change of mass i1 in
the control volume results from the difference of the mass flowing in and out .

1M = mx,in - mx,out (4)
~ ~ N———
change'of mass inside the CV inflowing mass into the CV  outflowing mass from the CV
gk&it
where the change in mass in'dt is equal to mass flux time the infinitesimal area 71 = ™ - AA
\ ol g vad

ti =1ty - AA =ity 5 - AA - WhereAA = Ay - Az “\’!‘\\ (5)

The above equation can be shown in fig 3 |steady flow] a faster inflow in the left side and a slower outflow in the right

side leading the accumulation of particle inside the volume therefore volume mass and density increase 4 time. w’

Since mass flux is pv , we can define a gradient of mass flux: ap % Therefore the change in mass flux drit} inx
direction is: 5
v
driry = 7% gy 6
1= ©®)

Then the outflow of the mass flux of the control volume is [f1 (S'Q'P Fl? )

Noos) gy @)

" Jx

* *
xout — xm + dm xm +

v
Then we substitz{te this relation to equation 4,,x\Ne obtain the temporal change of mass 77 inside the control volume:

=iy, - Ay - Az — (1 xm—l—a(gzx))~dx~Ay~Az (8)
. (va) .
= 9% av 9)

The negative sign indicates that 1f a positive gradient of mass flux in the back surface will lead to a decrease of mass
inside the volume as the outflow’ larger than the inflow, the volume mass will decrease,The equation 9 can be 111ustrate![
by fig.4 . In a incompressible fluid the velocity,the crossection area are different in the blue regions,but the density

ex plaiv WM /?wv " Ceoss seckow
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remain the same and also the Volumlﬁ is the same when the flow is within a time duration of dt, the flow in the
narrower region will be slowe?eut in the case of compressible gas, the densities of different regions are different.

Figure4 < @ Pl’\d\!\

So if the mass in the volume element generally changes over time, then its density p also changes over time:

o it = % LAV (10)

Ee.
Then we can combk e}| 9 and 10,we have the continuity equation for one-dimensional flow and similarly we
can extend to three—dimensionﬁ. The divergence of vector field of mass flux pv:

a(.(;t)) _ _a(gzx) (1D) N %‘t)) - _V. (pz)) (3D) (11

3.2. Euler Equation

The Euler equation describlgthe change in velocity of a fluid particle to the presence of a force and is regarded as
a consequence of the conservation of momentum. Let consider an infinitesimal fluid volume dV with mass dm.We
describe the motion of the fluid element from a fixed coordinate system (so-called Eulerian approach),and consider
fluid element moves along an arbitrarily oriented streamline. j\

d
e

9 :
i EW(P*?%"X)' " E --%ﬂ-dv
X X

E=p dV| —emet—

yL‘ dx
X

,//’/;), dx
X

Figure 5 Cﬂ‘?h oW Figure6 C g P{‘l oW
3.3. Pressure forces on a fluid element

First consider the motion of the fluid elemen{ only An X—directio@ At a position x a pressure p is present. At
this location the force Fx acts on the surface d A, ot Tie fluid element

Fr=p-dAy 12)

The pressure is not constant in a flow, but changes locally. This is because pressure differences are ultimately the reason
why a flow comes from/"\Fherefore, the pressure in the x-direction will change. Associate with a pressure gradient g—z,
and the pressure change is dpy = % - dx.Then the force in positior}ghdx isFeigr = (p+ g—z -dx) - dA,; Since the force

Fy and F, 4, acting on surface d Ay is irﬁ)pposite directions,tr\his give the resultant pressure force Fy in x direction is

) d d
pr:Px—Fx+dx:p'dAyz—(p+£-dx)'dAyz = f£~dx'dAyz = —%-dv (13)
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If a positive pressure gradient %E > O,ﬁhe force F, 4, is larger than Fy/ then the fluid element would wojpild be slowed
down in the positive x direction.lS\imi arily in y and z direction.And we express the pressure force as vector notation:

AL
9
Fp g—i
Bp=|Fy|=—|3| dV==-Vp-av (14)
sz a_p
0z

As pressure is a scalar field, applying theV operator to a scalar field,results in a vector field which point to the greatest
increase of the scalar quantity (greatest pressure increase) .

3.3.1. Shear forces and field forces on a fluid element

There are internal frictional forces osehr, which are the greater the more viscous the fluid is, but in our case,we

Q@ simBla friction-free flow, and the shear forces vanish.Also, other forces that act on the fluid element but canno&e

neglected in general are field forces such as those caused by gravity. For example, thefe aye electrically charged

particles/ ferromagnetic fluid particle)in a fluid are possible, so that the flow is then influenced by an [fexternal electric

field /external magnetic ﬁeld)f Therefore the {resultant force/ accelerating forcej are contribut€by F, pressure force

and F, field forceqa =F+FK=F—-Vp-d \O"hen we can obtain the material / subs‘tfnft}al acceleration ag,; by
4

dividing the F, by the mass dm.
F,—Vp-dv F, Vp-dv Vp
== —g = —g _—— = _—— = .
Asyp = Im Im 0-dv — Agyp = § o where dm =p-dV (15)

where the first term is gravitational acceleration, the second is pressure acceleration.

fSocks T

The substantial acceleration can also interp;gt_ag two causes.A temporal accelerationatemp and convective
acceleration a.o,. A fluid element viewed at a fix location changes its speed and direction by time in a unsteady flow,

this refer to temporal acceleration.

3.3.2. Temport?l and convective acceleratiog( m ‘b K"D od an A wus.e’uﬂw OF 2

Figure 7. Temporal acceleration: Velocity 1 at fix Figure 8. Temporal acceleration: Velocity 2 at fix
position position

The convective acceleration is due to the flow velocity changing from place to place.Also refer toﬁg. 4. Even
with steady flow, the velocity will be higher in narrower region that¥erider region.

Figure 9. Convective acceleration:Change in Figure 10. Temporal acceleration: Change in
velocity 1 due to change in position velocity 2 due to change in position
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Let{consider a fluid particle that move along a streamline s in 1 d, and the velocity is v .The subsggéial /total
change in velocity is obtaif from both the temporal change in velocity dvt within a time dt and the spatial change of

velocity duvs gradient within the distance di.We have W
W
Jv 0v Jdvdt dvds
~—— ~—

substantial change
temporal change  convective change

80@

. Asup = ﬁ + g@ (17)
N A
Therefore dyrfng 3 dimensional Casekhe equation become

vy

ot 5 Ux o
gy = zaity + (% % %) o | =5 +(v-V)v (18)
9Ux Uy . c‘
S. o AL b inkodue
Now we equal boMmd 18, yield]mir 'jad A)AV\ J- 32 T ’]%.‘550;74
on
% 'Dt(\r - 3—7; +(v-V)v= _Vpp +g— (0 +v-Vy)v=— VP,P —V,® (Possion equation) Safj “'M’\ﬂ% S

Ce— v Sechon 34
where Dy = 9d; + v - V, is the Lagrangian/convective derivative, which means the derivative wrt a moving fluid
element (as opposed to the Eulerian derivatives wrt some fixed grid point...).

3.4. Poisson equation

| Q13

Figure 12. Plot of a two-dimensional slice of the

gravitational potential in and around a uniform
Figure 11. A three-dimensional representation of spherical body.
the gravitational field created by mass M

Let us start with gravitational field, ﬁ gravitational field g[11] is a vector field that around a single particle of mass

7 and every point of a vector pointing directly towards the particle.The force fields g at each point in space can also
be express in term of ® which is the scalar gravitational potential energy [12] per unit mass. That is the work per unit
mass that are needed to move an object to a position.The gravitational field is defined using Newton’s law of universal

gravitation.

F R

(20)
where Eis the gravitational force pointing to the mass m is the (test particle) that being attracted, R is the position
of the test particle which a neglitive sign is added as the force is oppose to the test particle position vector.

Then from gauss law of gravity statg®hat the gravitational flux through any closed surface is proportional to the
enclosed mass density, this give the diffential form:

E V .g=—-4nGp (21)
g 9s.

Combin# both?0 and 21:
V20 = 47Gp (22)
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Thal'

Now, we have the three main equati01§ tf) govern the dynami§ ,we introduce a small perturbations into the
howogeneous backgroundg W seperate the density,pressure, velocity and gravitational potential into background
values(d) perturbationsﬁor instance p(t,7) = p(t) + Sp(t, r) . Let us take our progress step by step from case ﬁtatic
space without gravity, case @tatic space with gravity and case 3: Expanding space.Also we assume the fluctuations
are small, so we can simplifgf the problem by linearization . Keeﬁv;}émind linearization mearfjthat when dp and dv.. Rre
small/ywe can neglect all higher order terms (those with (p)? , (6v)?, or 6pdv .....). lFrom now on,we change the
notation of velocity from v to uf.

4. Case 1: Static space without gravity

Condition: Consider absence of gravit ential ®=0) and the space without expansionkackground velocity
u = 0, the latter implies the{density backgroundjpas constant and small perturbationtdepend on the
position and time dp(r, t).0(r,t) = p + dp(r, t) . The continuity equation become :
N

91+ op(r,t)) + V- (p+dp(r,t)) (i + du) =0 (23)

s ide the pavethesis ase

The first terng entheleftis zero as i i constant .
T ————— +ray
After linearizartion which drop}trle term V, - 6p(r,t)du,we have

ek otnv

9:0p(r,t) = —pV, - du (24)

’[h‘h .kh ‘
£hs A oD have . ) ) is ok
Similarily fresmn"Euler equatiorﬁ{; = 0, subSTitute-thepertubations ( C\ﬂ ck \F ve ‘-‘"’"d““ﬂ
—V(P+6P(r,t))

(25

[0t + (0 + du) - V(0 + du) = ——
+dp(r, 1)
% g ‘f\'L( ;-\p'(/‘“\? fevm oo Javu'S\US anﬂ(
&_—
or(p+op(r,t))(6u) = = V0P 4 (26)

oy
Ainearize aga'm‘ the second order term vanish@h :
p0;0u = —V 0P . (27)

™ B o Eg.
And now we can combine the two equation by taking 0¥7% and V627 and we derive the (P.D.E) wave equation
026p — V2P =0 (28)

In our case, the fluctuations are called Adiabf%‘%ﬂuctuationsin which the pressurg fluctuations proportional to
[ ]

02 — 2V23|5p = 0 say by worls fhe Fiest 29
t —CsVrlop = /f:t'w you = qcrah)us _“ [( )

In order to simplify the problem, it is more easy to treat a O.D.E problem than a P.D.E problem;*we can
decompose into different modes by fourier transform.As perturbed density field can be written as sum of plane waves
6p = Cel(wt=k7) of different wave numbers/mode k ,és bpisa scaler,&his indicate C is also a scaler magnitude of the
fluctuations and ¢/(“!=k), this formulalcan interpret ag in each position in space k - r,they have theirawa oscillation
et , and that oscillations are according to w = csk, and propagrate in k direction. There s o Limd

. . . C
the density fluctuations, 6P = cgép ,where ¢ is th speed offsoun

Shows ﬂlﬂ;'

earran é“‘densit to left side, then linearize [ (du) - V,](du) (o + 6p(r, t)) isthenxanish on the right side V,P =0, So:
8 y X pTop g
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Figure 13. K th mode wave vector

The fourier transform:

. — . 3 ) —
FT: Flope(6)) = 00k,t) = [ @re*sp(6) = ort) = | (gn’;3elk-f5pk(t) (30)

Therefore we obtain each ?( p(e mode J(k,t) from FT[6(r,t)] ,then gve have the solution in"32 and
substitute/written as a form of superposition of all modes (on the right side of 30). Also in fourier space , V — ik
,kherefore V2 — —k*, which is the eigenvaluej{his scalar sir?lplifer the problem to homogeneous Linear ODE of the

for4 y”+ay +by =0§ . o

[0F +cS1opk =0 5: g (31)

Solving ODE: As y = eA; is the sqlution of it. Substiﬁté became (A% + aA + b)eM = 0, and we check the
characteristic ion. In ourtas =O§ b = c2k* We find that in our casg?e'c'(;rﬁplex conjugate roots (a> — 4b < 0).
The general solution is y = AeMt £ Betot | A = ’7’1 +iw, Ay = ’7‘1 —iw , Ao = Ficsk in our case.’Ele exponential
(increase or decay) term becomél as a = 0. Therefore our k mode’s solution is

y_’%/—ﬁ—-‘ 5pk _ Akeiwkt + Bkefiwkt — AkeiCSkt + Bke*icskt (32)

K
d—sotéx(k)ind%(k;is the kit amplitude of the wave. For pq... ok, g?ach have the solution of a linear combination of
sinusoidal function with constant Amplitude This inelicate all the fluctuations moddin static spacetime oscillate with

constant amplitude) 0 F‘% ')[" AN Shooi th

Figure 14. different mode with constant amplitude

5. Case 2: Static space with gravity

A
In this case, the only differen is the existance of gravity therefore we can use the same result in case 1 in continuity
gq.24 and also the euler #q.27 with the gravity term addg. Keep emind we only concern the 1st order perturbation{
u

010u = — V15P — V.00 Eulereq. (33)
dp(r,t) = —pV, - 6u Continuity eq. (34)
apdiiie 77 papen
Using same method to the previous case;d7 the continuity ga[{ and V,- the Euler equo\l"\o W,

3 (30p(r, 1)) = 0 (—pVy-0u) = — [V, (00:0u) = Vy- (=V,6P — pV,5®)] (35)

(o m)a{h:("‘ﬁ: MENE
substitute both equatior§ and 0P = c26p of and cembine withﬁe perturbed poisson equation (V26® = 471Gp) and we
have
0:(310p(r,t)) = V, - (V6P +pV,0D)  — (07 — c2V%)sp = pV2od (36)

[0 4 (c2k* — 471Gp)]ép = O (37)



.

our root (s i 9/ c2k? — 47tGp Therefore our solution is

Spx = Akei(«/c§k274nG§)t +Bke’i( c2k2—4nGp)t a‘ (38)
dher 5 W oot o s
ef\C/riticalk

This shows there exdst a CI‘iBC&l Xv»a/@umber /mode which there-ares0 oscillatior) with constant atgplitud
NG G*l‘;%xfhl&fﬁa—mﬂu——-’ﬂ" S < : .
= YVP¥ When the mode with small wavelengt@large{ wavenumbeﬁk > kcritia , meaning the pressijre c2k2 dominates

Cs
M oscillations with constant amplitude. And when, large wavelengt all wavenumber, k < k], gravity term
dominates, the frequency w becomes imaginary, then the solution is in a form of Ae™ + Be~® whereﬁs real number
and when time increase, the exponential decay term vanish and the first term dominat§ meaning the fluctuations

grow exponentially. We can express the condition in Jean length which is inverse proportional to wavenumber. A = %T
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6. Case 3: Expanding Universe

6.1. Tool for Expanding space: From physical to comovti{tg coordinates
Q¥

[Important: the changes on our analyse below gfe not convert the equations from proper to comoving coordinate
but in term of comoving coordinate , it is different] 30‘5 by Woy JS
The purpose of our analysis is to study the evolution of perturbations with respect to the background FRW‘-——J
Universe, therefore we translate the three fluid equatior%from physical coordinates and in terms of full physical
quantitief \to comoving coordinatsz and in terms of perturbation quantitieflen the case of expansion s%ie, it is best to
use comoving coordinatéx which i§ unchangé)ﬁnd the relation with proper distance is r(t) = a(t)x erivative r(t)
give:

proper velocity background o1y 1bation

4o, u(t) = —ixtar=a-_+a %= HtHr + "o (39)
Nﬂ. = H r M a
the velocity t in hubble ﬂow&vhich describe{the motion of astronomical objects due solely to this expansior}+

peculiar velocity,(v) which refer to velocity of an object relative to a rest frarzzir; terms of comoving) .\Meaning that it
is also 1nterpret‘1n a form of u =% + 6(u) (background + perturbation).ﬁne example of peculiar velocity is in the
physical observation of galaxy’s velocity, it deviate from the Hubble flow and may recede from us. Peculiar velocity is
A realEAdon o perturbation®

We also need to convert V, and (%)t as they are no longer t and r independent in an expanding case. The
proper spatial derivative at E)i convert ;o comoving derivative
fix Wbt d

_ _ _ -1
(D)~ aax VT4 Va (40)

.
By vector transformation law from old to new coordinate system O — ax] 9 \ve transform the proper time

o o - oxt o o)
derivative in ternj of comoving time derivative

0 Oy 0 dx 0
T T TN T v
m
aax = —Hx , keep r¢mind that the time derivatives is at fixed
S&nd at fixed§x} since we only consider the conversion of coordinate( ymeaning the object in space don’t have any

_ 9alr

. oty _ 9x _ .2 2
Smcea—t’r‘—land 5, = o = —a

ar = —a~

movement and only follow hubble flow, so we can treat r as constant in a“a;:’@nlike 59 .

d d d d

And this transformation is same as the operator in Euler equation we derived before, the total time derivative
Dy = [% + (v - V)] which the first term describlg the rate of change of a fix position and the second term is the rate in
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change in time due to a change in position, and the only difference is these derivatives is reside in comoving space
regardless of hubble expansiorK (comoving Eulerian to a comoving Lagrangian formulation) .

6.2. Linearized Fluid Equations for Expanding Universe

As our main goals jé to describe the growth of small inhomogeneities in the linear regime,in order to understand
the formation of largescale structures in the universe. We define a term called overdensity field which is the deviation
from smoothness at a given point at a given time. It is the perturbation field over the background density. Also
the dependance of density pertubation 6 change from (r)to(x) The density pertubation at comoving location x is
Slx t pet)—p(8) _ d(xbp(t) _

() = "7 0

the global uniform background den51ty and also cs(t) depend on time which unlike the case of a static spacetime.
Now we have the tool to treat the case of expanding universe,and in the following step we will perform linearization
of the Continuity equation4 Euler equahorﬂPoisson equation which onl)Treserve zero order p and first order term
perturbations of p and v. Ahd use the method in the previous case again, and derive the master equation.This is the

quantum fluctuations in inflaton which is behevato the random process in the early Universe.
A Aan a slocantie

= ‘59 . The density at comoving location! >é1s p(x,t) = p(t)(1+ &(x,t)) where p(t) is

6.3. Continuity equation in Expanding Universe

e e e S
\ Lo wioF A Substitute the tools V., 9; e in termjof comoving space to the Continuity equation with first order pertubatlon]y\le
e
have

[ d

Oty
When we obtain the zero order term (which is remain background term and drop perturbations § and v) of the
Continuity equation:

— Hx -V ][p(14+6)] +a 'V, [p(1+6)(Hax+v)] =0 (43)

[ )

Oty
Since the background density is time-varying, but constant in space V,p = 0 The second term Vanish.XVe obtain
a result same as the energy conservation equation without the pressure term where we introduce in.

. J
SmceXx-x— + +a§:3. ?/<

’

— Hx-V,][p] +a 'V, - [p(Hax)] =0 (44)

& +p(a'Vy) - (Hax) — % +3Hp =0 (Zero Order) (45)
oty Oty

Solving theéq. we obtain:

% _ —32 N /gdt _ /—3§dt s In(p(t)) = —31In(a(t)) = p(t) = a(t) > (46)

which givéjthe background homogeneous mass density « a 3. Now we consider first order in fluctuations which
drop (the zero order equation,ﬁroducts of § and v) and only remain(the perturbations J and v term) and substitute

Vi x=3give:
background 1—order 1—order 2—order
[% — Hx - V][00 +a 'V, -pHax+a 'V, -pv+a 'V, - pdHax+a" 1V, -pév =0 (47)
X
i — Hx-V,][pd] +a 'V, [p(Haxd +v)] =0 (First Order) (48)
p P

Oty
; bt
The second term Vanishvs>1nce Vi =0and applyl ucfginjule to (pé) gives :

0% 159 | 3Hps +a 9V, v =0 (49)
FTRRILETS
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Substitute equation 45 into 49 gives:

0
op Y d
(28 4 3HP 6+ P 404 5V v =0 — per (8) + 2 19V - v = 0 (50)
atx atx atx

b=—a 1V, v (51)

6.4. Euler equation in Expanding Universe o o~ d .

Similarily we also substitute the transformation tool and perturbation give

dv a Vi Vi(P+36P) V(P +5D)

T Gt Lt priy (52)

then V,P = 0 and V,® = 0,and we perffrm linearization and drop terms p?,v? fv ,the third term Vamshppthe
denominator drop § when being d1v1dei by V6P (2 order)

dv a4 V6P V50 .
3t + o= % 4 (First order) (53)

g 6.5. Poisson equation in Expanding Universe
\.

Same as. the perturbate Poisson equation is V25® = a?V26® = 471Ga’ps
r

Ry
N

Ia;, P

v 6.6. Master equation in Expanding Universe

na?’?‘
C

Now, we combine it to 9;, = E — Hx - aa—x the Continuity equation 51 and V, = a’lvxthe Euler equation 53,
yield our master equation. 4 A

6.6.1. 9 (Continuity equation)

04(8) = =04 (a"'Vy-v) —  (0x—3H)6 = (B1x —3H)(—a 'V,-v)) — (54)
chainruleasa(t) = 6 —3Hé=(—a 'Vy-0+Ha 'V, -0)+3Ha 'V,-0 — (55)
§ -5 =5
.. . +\
§-3H = (~a"'Vy 0+ Ha 'V, 0) +3Ha 'V, -0 — substituhte eq.51 (56)
S+Hb=—a"'V,-0 (57)

6.6.2. V,-(Eular equation)

—[a 'V (0 + gv) =a 'V, (- V;péP - V’;&b)] substitu’te eq.57 — (58)

. — . . V26P V25®
0+Hé+a 'Vy-Hv — O6+2Hé= 32—+ 2 (59)

ap 22
Substi%te poisson 5&.61‘5 yield
2
- . P

wi d+2Hé = Vx d +47Gpé Master equation (60)

\¢
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Since the above equation is linear, we obtain, for each independen kiwode by fourier transform,'s\ince Vi — —k?,
SP = c2ps

2 2.2
VoP e  4nGpls = 0 (61)

§+2HS = po +4nGpS  —  S+2HO+|

22
Now, we obtain the master equation which describes the time evolution of density fluctuations. Comparing

with the master equations obtained in the absence of an expanding background, we see that the only difference

is the presence of second term "Hubble damping term" which expresses how expansion suppresses perturbation

growth. This term will moderate the exponential instability of the background to long wavelength density fluctuations.

In addition, it will lead to a damping of the oscillating solutions on short wavelengths.The third term is refer to

pressure term which expresses how pressure gradients suppress the perturbation growth.The fourth term is refenth o e

gravitational term which expresses how gravity promotes pert'urbatlon gI‘OV\{th. In addltlon,ltbere are also an extra

termsefer.to entropy, but it is out of our scope and not shown in here. For this master equation, there are two case$.

Case 1: Below the Jeans length,'t\he fluctuations oscillate with decreasing amplitude.Case 2: Above the Jeans’ length,

the fluctuations experience power-law growth, rather than the exponential growth we found for static space. These

properties are shown in below in different epocl:S,And it is important to notice that the hubble term and the density in

gravity term depend on tim@nhke the static cases that the coefficients are constant, this will effect the solution we

obtain. h‘" W ok lave

7. Dark Matter inside Hubble
in ™

L]
Keep yemind that ®n scales much smaller than the Hubble ram can employ the Newtonian theory tq study
perturbations in the nonrelativistic matter,a'\lso suitable to describle the evolution dark matter on sub-Hubbl¢/scales.

S0y w hak ;\‘l is

e evolution which past recombination, when the
baryonic matter can be treated as a pressureless fluid (c; = 0, Jinearised CDM fluctuations) and ignore radiation
pressure term. The condition for this solution is A\; < A < Ay), in fact for Non-linear effect that produce a finite,
small, sound speed which give tiny pressure, but it do not effe

7.1. Matter-dominated era: dark matter fluctuations

We now focus on the time in the matter-dominated era,the ti

the large wavelength perturbation.

-1
2 .3
As we know that this periodkja £2/3 % x dgtl—f — 7 t3% — H % and we
Om +2Hby — 4ntGpdy, =0 where m refeffmatter (62)
matter—density  curvature  dark—energy
—— N
, , ) 81Gp ke? Ac? , , .

From Friedman equation H* = 3 - 7 + - and in Matter-dominated era, the first term
dominate, H? = %. Therefore,a homogenous and isotropic perfect fluid imply 47Gp,, = %Hz,the equation
become

. 4 . 2
Let = t" and substiute to equ. yield
4 2 (3r2 +r—2)(t2) 2
" / _ — — —
() +§(tr) —3?@7)—0% 3 =0=r=3 or r=-1 (64)

$
(1) = Cl(k)t% + Gt or  8(t) = Ci(k)a+ Cz(k)bfT3 ?%ayonic/dark matter) (65)

The solution give a superposition of two mode One is dampinaamode which dissapears with time, and one mode
with power law growth unlike the case of static space which js exponential growth.This growing mode mode will
evolve with time and play a leading role in the formation of large-scale structure.The plot of the sum of two mode is
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AQ
seferto Eg. 16 which showbthe hubble expansion reduce the growth significantl 1g. 15 showdthe growth*when
there are no hubble expansion, the constant terms Cy, C; is set as 1 as illustration. +h
(5
1 _dr/:/‘//’///// lllll //////
Figure 15. Without the suppression of Hubble Figure 16. With the suppression of Hubble
expansion expansion

Note that baryonic perturbations cannot grow until matter has decoupled from radiation at recombination ,
therefore baryonic perturbations grow as scale factor a o §;; « t3 after recombination (t > t rec). On the other hand,
Dark matter are already collisionless and fluctuations in their density can grow immediately after equipartition.a o
Sgm t%, (teq < t < tye) . The growth of pertubation indicate the infall of matter and increase in the density of a

' location until the pressure of the inner core of the object is sufficient to CounterbalanC@hen object like galaxy cluster
U%\ “{_o i form.

In subhorizon scales, the radiation perturbation é, behave as acoustic oscillations on both matter and radiation
dominate era, the propagation of sound waves in the photon fluid give non zerq pregsure. Since recombination of
protons and neutrons occurs in the matter era, we expect that at the time the CMB4§-°emi1ted different Fourier modes

" different phases of their oscillation. However, before the radiation fully decouplej, the baryon fluid is still
tightly coupled with photon , the small finite sound speed which give tiny pressure dogffect and prevent the growth

of baryonic structures in small scale pertubation{. So the pressure term should be keep in the Eq. 66 , and we see in the
pressure term for large scale ﬁ jélsmall], the term is approximat %ero, but in small scale bayonic perturbation(k > ky)

or Aj >> A, the pressure do effect. g v\omma?a‘ﬁam.;
&_

e 4 k22 2
O + —6 -5 _ =
mt 5y m+ 2 32

The solution é%\& E-?}?}?.iﬁ?ﬁon of two bessel functions multiplqugzi-t-h t~1/6 which is a function-that-ate decay'rz‘a%/d
sk

oscillat¢hffsda frequency w = =F, fiater on the decay becom¢ smaller and settle to a "constant" amplitude. This

solution and plots are done by mathematica and the valué i€ set to afi arbitrary valueffor illustration, whieh-is
Ci=C=1Lw=2. —F MU

Om = Clt*%]% (C;—kt) + CZF%]% (%t) (bayonic matter) (67)

)om =0 (66)

Figure 17. First term Figure 18. Second term

7.2. Radiation-dominated era: dark matter fluctuations

Consider the radiation dominated regilg’e_z‘,o Jhe fluid is a mixture of radiation and collisionless particles.
. L . o . L .
Therefore,the total density fluctuation is,conbin@® of both d;y,; = 6, + 5d;a(%1‘ov1de the source of gravitational potential

AN
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fluctuation}s®. On subhorizon scales,radiation density fluctuation J, will exhibit an oscillatory behaviour (sound
wave), this give the time average <4,> = 0 for scal§smaller than hubble radjas.

bam + 2Hb gy — 470G (0,440rad + PayOam) = O = S + 2Hd gy — 471G 4, 041 = 0 (68)
871G (D00 ) ' og 3!
In this period, H? = " rgdfdn’ .-Bivid&%h equationby H?
) . 304,90
Oam | 2 _lamOm___ (69)

gy — == il
H? H 2[pdm+pmd]

If we now use that deep in the radiation dominated era (refer to early time of radiation dominated era), 05, < 0,,4,
=1
1 . [
thén the term on thd RHY can be ignored. Also, since a o t1/2 — % x dé—f — 2o 24— = H« % « The differential
t2

equation then simplifies to

what ol aCYovyms ‘%’” + 284 = 0 = g + ‘SdTm =0 (70)
The solution is
Sgm = C1(k) + Co(k)Int  or Cy(k) + Co(k)Ina (dark matter) (71)
e
L/
/

Figure 19. In t ( W W\'P Ch&? J\l‘l’\)

This solution also indicate the perturbations have a much slower growth on subhorizon scales in the radiation era,
as we compare\figg 16 to 19. The stagnation of growth in pressureless matter perturbations during radiation dominated
era is known as the Meszaros effect,The Meszaros effect is simply a manifestation of the fact that the Hubble drag term
during the radiation dominated era’\s larger than during the matter dominated era,The dark matter perturbations can
only grow significantly when the background gravitational potential is sufficiently strong to trigger their collapse.
This happan to J4,, in superhorizon scales.

7.3. plotting of dark matter fluctuations during Radiation and Matter domination Era

t
log ¢

Qenter Qeq

loga

& St

The Eg. 20 show the time evolution of a perturbation §(k) with size L = 27” enter the horizon during the radiation
dominated era at scale factor a.,t,.The time evolution goes through three different phases:

Figure 20. log J;, vs log a plot \Cl{f Soe( @



150f 16

(i) 6  a? before horizon entry which follows from general relativistic perturbation theory which is oyt of our,
scope. aNe e ot Sou

ii) When redshifts z > z,; or a < a.; , where z,; ~ 24000 is moment Matter-radiation equality happens . The
Universal energy density is dominated by radiation.Althrough,in radiation domination H o - ,which expand slower
than matter dominance epoch(H « %), meaning the suppression due to expansion of universe is relatively lower,
but also combine with the fact that the dark matter density is so small, leading to the gravity term which play the
rule to enhance perturabation is now neglected. These factor lead to the freeze out of growth § = constant after the
pertubation enter the horizon,This Meszaros effect suppress the growth by a factor of ”Z"—e’"

(iii)When a > 4.4, the matter density starts to dominate the Universal energy density, the dark matter perturbation
grows as J « .

7.4. Dark Energy A dominated era: Bayonic/dark matter fluctuations

In the dark energy dominated erg; fhe universe begins expanding in an accelerated wawndlinainly composé of
dark energy and also minority of bayonic matteOtherefore the total density fluctuation is supposg tc;%ontributéby
both dark energy + mattey jhowever due to the Yeason that since dark energy does not have any local gravitational
effects, but rather a global effect on the universe as a whole}c{w term dp is drop?j 1

0
. . 7 ~ =~
Sam + 2Hgm — 471GP (S + 0n ) =0 (72)

Also, the p, o« a3 become very small in this period, beacause a increase exponentielbl by time a « eV where A
thi%. in 602

/ (L)
is constant,in‘freidmann equation H? ~ %52 = constant > 47tGp,,, . So the last termCan be ignore&
This give a solution of

Sgm 4 2H8 4, = 0 = 84y = C1(k) 4+ Ca(k)e 2t = Cy (k) + Cy(k)a ™2 (73)

with a constant mode and a rapidly decaying mode. Hence, the growth of perturbations stops when the cosmological
constant takes over, this indicatéjthere was sufficient time for large scale structures to form in the universe before dark
energy domination. tha

8. Summary

We have demonstrated the idea of pertubation theory relatd to the structure formatiogf;)and shown the pertubation
through the observation in CMB. We have studied the concept of three fluid equatiorywhich successfully describle
the perturbation fields on scales well inside the Hubble radius. Fourier transform is introduced to decompose the
perterbation in to the sum of all scaleésinside Hubble radius, which simply the problem from P.D.E to O.D.E, and
obtain the master equation§, We have seperated 3 cases to study the behavior of the perturbation in 1) static universe
without gravity , 2) static universe with gravity , 3) Expanding universe with gravity, and have shown the solution
which describlZjthe dynamicfof thé perturbatiorf, In case one , the flucturation behavefas oscillation with constant
amplitude. In case two, for small scale perturbationjoscillate with constant amplitude and for large scale, fluctuations
grow exponentially. In case three, we desired to understand the dynamic of perturbation respect to the background, so
we have introduced the comoving tools and expressi()A the three fluid equation in term of comoving coordinatef And
then we analyzed the solution of dark matter pertubation in three different era. 1)Matter dominate era 2)Radiation
dominatdera 3) Dark energy dominaté'era. For case 1, the fluctuations of dark matter grow proportional to scale
facto i , and after recombination for bayonic matter, and the hubble expansio lagm

. . . . )

o @ru e on this suppression. Also, for small scale bayonic matter perturbatlonD the pressure term ga.
resulf T a ocillation with decaﬁehavioro In case 2, the dark matter perturbations have a much slower growth Ina
due to Meszaros effect. For case 3, the growth of perturbations stop and starf.ata constant xalue, and universe start
expanding in acceralation‘and the cosmological object evolve. bem
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