
Proceedings

Cosmological Perturbation Theory

Chi Tou Iu 1

1 Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon,
Portugal;fc55199@alunos.fc.ul.pt

Received: date; Accepted: date; Published: date

Abstract: In the paper, we have demonstrated the idea of primordial density fluctuation and the relation to the
struture formation and observation. We start with the three fluid equation(Continuity Equation , Eular Equation
, Poisson Equation ) which govern the dynamic of particle in fluid and extend the idea on analyzing the density
perturbation in the universe, we have derive the master equation of perturbation in 1) static universe without gravity
, 2) static universe with gravity , 3) Expanding universe with gravity. For case 3, we had calculate the dark matter
density contrast solutions in three different era, 1)Matter dominate era , 2)Radiation dominate era, 3) Dark energy
dominate era, and have illustrate the different solutions in different conditions and its physical meaning.
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1. Introduction

The generally accepted theoretical framework for the formation of structure is the gravitational instability ,
it assumes the early universe to have been almost perfectly smooth, with the exception of tiny density deviations
with respect to the global cosmic background density and the tiny velocity perturbations from the general Hubble
expansion.The minor density deviations vary from location to location. At one place the density will be slightly higher
than the average global density, while a few Megaparsecs further the density may have a slightly smaller value than on
average. The observed fluctuations in the temperature of the cosmic microwave background radiation are a reflection
of these density perturbations 1 , this imply the primordial density perturbations have been in the order of 10−5 . It is
believed that the density perturbations are the product of the processes in the very early Universe and correspond to
quantum fluctuations which during the inflationary phase expanded to macroscopic proportions.Under the influence
of the involved gravity perturbations in the beginning of the universe , the tiny local deviations from the average
density of the Universe and also the corresponding deviations(peculiar velocity) from the global cosmic expansion
velocity (the Hubble expansion) will start to grow.In a homogeneous Universe the gravitational force is the same
everywhere, but in a universe with tiny density perturbations, then the perturbations will induce local differences
in gravity. In a higher density region, the extra of matter will exert an attractive gravitational force larger than the
average value.In a low density regions, the deficit in matter will lead to a weaker force. Because of this differences
in gravitational force , it will not accelerate at the same extent in different location druing dark energy dominant
the universe. So, during its early evolution an overdensity will experience a gradually stronger deceleration of its
expansion velocity due to global Hubble expansion. And when the region has become sufficiently overdense, the mass
of the fluctuation will have grown so much that its expansion may decouples from the Hubble expansion and start to
contract. If the pressure forces are not sufficient to counteract the infall, more and more matter aggregate, ultimately
this will turn into a full collapse to form a gravitationally bound object, the type of objects form are determined by its
scale, mass and surroundings of the initial fluctuation, like galaxy or cluster...On the opposite tendency, in case of
density depressions, the deceleration given by the gravity is not enough to overcome the global Hubble expansion,
then matter will displace further and further and ultimately leading a void in the matter distribution.
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2. Newtonian Perturbation Theory

2.1. Structure Formation: The linear regime

The linear Newtonian Perturbation Theory successfully describle the gravitationally evolving cosmological
density and perturbation fields and also an adequate description of general relativity on scales well inside the Hubble
radius and for non-relativistic matter after the decoupling of radiation and matter at recombination. Furthermore, the
linear theoretical predictions fail soon after gravity increase beyond a level, meaning the density perturbations on a
small scale appear have a much higher amplitude than those on larger scales, small-scale perturbations being the first
one to become nonlinear and develop into cosmic objects. Furthermore, the linear analysis of structure evolution is
still valid for scale at least in Megaparsec scales at the present cosmic epoch.

Please noted that in the last part of the project ,the section of radiation dominate era, we have assumed certain
condition that have already proven in relativistic perturbation theory, so we can still use the linear pertubation theory
in this period.And we will talk about it later.

Figure 1. .......

Observations of the CMB on the left fig.1 show that the perturbations at recombination(matter dominate epoch)
are still very much in the linear regime |δ| < 10−5, reflecting underlying primordial density and velocity perturbations.
These are the seeds of the structure observed in the present Universe on the left of fig. 1. However, at the present-day
the Universe has clearly entered the non-linear regime, and unless if the scale is larger than a few Mpc, the Universe is
still in linear regime. Let us focus on the evolution of the density field in the ρ(t) linear regime, which means that
|δ| << 1 .

3. Perturbed Fluid Equations

Consider a non-relativistic fluid with mass density ρ ,P� ρ and velocity u. Denote the position vector of a fluid
element byr.and time by t. The equations of motion are given by basic fluid dynamics.Mass conservation implies the
continuity equation.Let us first explain the continuity equation in the following graph.

3.1. Continuity Equation

In fluid mechanics, the equation for balancing mass flows and the associated change in density (conservation
of mass) is called the continuity equation. Consider a very small control volume ∆x∆y∆z,we will first consider only
a one-dimensional compressible fluid flows through this volume in the x-direction. If the flow enters the volume
element with a velocity vx,in, it travels the infinitesimal distance dxx,in = vx,indt within the time dt. So we have a
volume dVx,in flows into the control volume.
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Figure 2 Figure 3

dVx,in = ∆A · dxx,in = ∆A · vx,in · dt (1)

If the density of the fluid is ρx,in , in at the point of entry into the volume element, the inflow mass dmx is :

dmx,in = dVx,in · ρx,in = ∆A · ρx,in · vx,in · dt (2)

Also the mass flux which is the mass flowing in the flow direction per unit time and unit area:

ṁ∗x,in =
dmx,in

∆A · dt
= ρx,in · vx,in and similarily ṁ∗x,out = ρx,out · vx,out (3)

If more mass flows into the control volume than flows out, the mass inside increases. The rate of change of mass ṁ in
the control volume results from the difference of the mass flowing in and out .

ṁ︸︷︷︸
change of mass inside the CV

= ṁx,in︸ ︷︷ ︸
inflowing mass into the CV

− ṁx,out︸ ︷︷ ︸
outflowing mass from the CV

(4)

where the change in mass in dt is equal to mass flux time the infinitesimal area ṁ = ṁ∗ · ∆A

ṁ = ṁ∗x,in · ∆A− ṁ∗x,out · ∆A where∆A = ∆y · ∆z (5)

The above equation can be shown in fig 3,[steady flow] a faster inflow in the left side and a slower outflow in the right
side leading the accumulation of particle inside the volume therefore volume mass and density increase by time.

Since mass flux is ρv , we can define a gradient of mass flux: ∂ρvx
∂x . Therefore the change in mass flux dṁ∗x in x

direction is:
dṁ∗x =

∂ρvx

∂x
· dx (6)

Then the outflow of the mass flux of the control volume is [fig 2 ]

ṁ∗x,out = ṁ∗x,in + dṁ∗x = ṁ∗x,in +
∂(ρvx)

∂x
· dx (7)

Then we substitate this relation to equation 4,we obtain the temporal change of mass ṁ inside the control volume:

ṁ = ṁ∗x,in · ∆y · ∆z− (ṁ∗x,in +
∂(ρvx)

∂x
) · dx · ∆y · ∆z (8)

ṁ = −∂(ρvx)

∂x
· dV (9)

The negative sign indicates that if a positive gradient of mass flux in the back surface will lead to a decrease of mass
inside the volume as the outflow larger than the inflow, the volume mass will decrease.The equation 9 can be illustrate
by fig.4 . In a incompressible fluid the velocity,the crossection area are different in the blue regions,but the density
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remain the same and also the volumn is the same when the flow is within a time duration of dt, the flow in the
narrower region will be slower.But in the case of compressible gas, the densities of different regions are different.

Figure 4

So if the mass in the volume element generally changes over time, then its density ρ also changes over time:

ṁ =
∂(ρ)

∂t
· dV (10)

Then we can combine eq 9 and 10,we have the continuity equation for one-dimensional flow and similarly we
can extend to three-dimensional. The divergence of vector field of mass flux ρv:

∂(ρ)

∂t
= −∂(ρvx)

∂x
(1D)→ ∂(ρ)

∂t
= −∇ · (ρv) (3D) (11)

3.2. Euler Equation

The Euler equation describle the change in velocity of a fluid particle to the presence of a force and is regarded as
a consequence of the conservation of momentum. Let consider an infinitesimal fluid volume dV with mass dm.We
describe the motion of the fluid element from a fixed coordinate system (so-called Eulerian approach),and consider
fluid element moves along an arbitrarily oriented streamline.

Figure 5 Figure 6

3.3. Pressure forces on a fluid element

First consider the motion of the fluid element only in x-direction only. At a position x a pressure p is present. At
this location the force Fx acts on the surface dAyz of the fluid element:

Fx = p · dAyz (12)

The pressure is not constant in a flow, but changes locally. This is because pressure differences are ultimately the reason
why a flow comes from.Therefore, the pressure in the x-direction will change. Associate with a pressure gradient ∂p

∂x ,

and the pressure change is dpx = ∂p
∂x · dx.Then the force in position x+dx is Fx+dx = (p + ∂p

∂x · dx) · dAyz Since the force
Fx and Fx+dx acting on surface dAyx is in opposite directions,this give the resultant pressure force Fpx in x direction is

Fpx = Fx − Fx+dx = p · dAyz − (p +
∂p
∂x
· dx) · dAyz = −

∂p
∂x
· dx · dAyz = −

∂p
∂x
· dV (13)
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If a positive pressure gradient ∂p
∂x > 0,the force Fx+dx is larger than Fx , then the fluid element would would be slowed

down in the positive x direction.Similarily in y and z direction.And we express the pressure force as vector notation:

Fp =

Fpx

Fpy

Fpz

 = −


∂p
∂x
∂p
∂y
∂p
∂z

 · dV == −∇p · dV (14)

As pressure is a scalar field,applying the∇ operator to a scalar field,results in a vector field which point to the greatest
increase of the scalar quantity (greatest pressure increase) .

3.3.1. Shear forces and field forces on a fluid element

There are internal frictional forces occur, which are the greater the more viscous the fluid is, but in our case,we
simpla friction-free flow, and the shear forces vanish.Also, other forces that act on the fluid element but cannot be
neglected in general are field forces such as those caused by gravity. For example, there are (electrically charged
particles/ferromagnetic fluid particles) in a fluid are possible, so that the flow is then influenced by an (external electric
field/external magnetic field). Therefore the (resultant force/accelerating force) are contribute by Fp pressure force
and Fg field forces .Fa = Fp + Fg = Fg −∇p · dV.Then we can obtain the material/substantial acceleration asub by
dividing the Fa by the mass dm.

asub =
Fg −∇p · dV

dm
=

Fg

dm
− ∇p · dV

ρ · dV
→ asub = g − ∇p

ρ
where dm = ρ · dV (15)

where the first term is gravitational acceleration, the second is pressure acceleration.

3.3.2. Temporal and convective acceleration

The substantial acceleration can also interpret as two causes.A temporal accelerationatemp and convective
acceleration acon. A fluid element viewed at a fix location changes its speed and direction by time in a unsteady flow,
this refer to temporal acceleration.

Figure 7. Temporal acceleration: Velocity 1 at fix
position

Figure 8. Temporal acceleration: Velocity 2 at fix
position

The convective acceleration is due to the flow velocity changing from place to place.Also refer to fig. 4 . Even
with steady flow, the velocity will be higher in narrower region than wider region.

Figure 9. Convective acceleration:Change in
velocity 1 due to change in position

Figure 10. Temporal acceleration: Change in
velocity 2 due to change in position
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Let consider a fluid particle that move along a streamline s in 1 d, and the velocity is v .The substanial/total
change in velocity is obtain from both the temporal change in velocity ∂vt within a time dt and the spatial change of
velocity ∂vs gradient within the distance ds.We have

dv︸︷︷︸
substantial change

=
∂v
∂t

dt︸ ︷︷ ︸
temporal change

+
∂v
∂s

ds︸ ︷︷ ︸
convective change

→ a =
∂v
∂t

dt
dt

+
∂v
∂s

ds
dt

(16)

asub =
∂v
∂t

+
∂v
∂s

v (17)

Therefore during 3 dimensional case,the equation become

asub =


∂vx
∂t

∂vy
∂t

∂vx
∂t

+
(

vx∂
∂x

vy∂
∂y

vz∂
∂z

)vx

vy

vz

 =
∂v
∂t

+ (v ·∇)v (18)

Now we equal both 15 and 18, yield

∂v
∂t

+ (v ·∇)v = −∇p
ρ

+ g → (∂t + v ·∇r)v = −∇rP
ρ
−∇rΦ (Possion equation) (19)

where Dt = ∂t + v ·∇r is the Lagrangian/convective derivative, which means the derivative wrt a moving fluid
element (as opposed to the Eulerian derivatives wrt some fixed grid point...).

3.4. Poisson equation

Figure 11. A three-dimensional representation of
the gravitational field created by mass M

Figure 12. Plot of a two-dimensional slice of the
gravitational potential in and around a uniform
spherical body.

Let us start with gravitational field, a gravitational field g[11] is a vector field that around a single particle of mass
M , and every point of a vector pointing directly towards the particle.The force fields g at each point in space can also
be express in term of Φ which is the scalar gravitational potential energy [12] per unit mass. That is the work per unit
mass that are needed to move an object to a position.The gravitational field is defined using Newton’s law of universal
gravitation.

g = −∇Φ =
F
m

= −GM
R
|R|2 (20)

where Fis the gravitational force pointing to the mass M , m is the (test particle) that being attracted, R is the position
of the test particle which a negitive sign is added as the force is oppose to the test particle position vector.

Then from gauss law of gravity state that the gravitational flux through any closed surface is proportional to the
enclosed mass density, this give the diffential form:

∇ · g = −4πGρ (21)

Combine both 20 and 21:
∇2

r Φ = 4πGρ (22)
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Now, we have the three main equation to govern the dynamic ,we introduce a small perturbations into the
homogeneous background, we seperate the density,pressure, velocity and gravitational potential into background
values + perturbations.For instance ρ(t, r) = ρ(t) + δρ(t, r) . Let us take our progress step by step from case 1 :Static
space without gravity, case 2 :Static space with gravity and case 3: Expanding space.Also we assume the fluctuations
are small, so we can simplifer the problem by linearization . Keep remind linearization mean that when δρ and δv...are
small , we can neglect all higher order terms (those with (δρ)2 , (δv)2 , or δρδv .....). [From now on,we change the
notation of velocity from v to u]

4. Case 1: Static space without gravity

Condition: Consider absence of gravity (potential Φ= 0 ) and the space without expansion,background velocity
u = 0, the latter implies the density compose of background ρas constant and small perturbation depend on the
position and time δρ(r, t).ρ(r, t) = ρ + δρ(r, t) . The continuity equation become:

∂t(ρ + δρ(r, t)) +∇r · (ρ + δρ(r, t))(u + δu) = 0 (23)

The first term on the left is zero as it is constant
After linearizartion which drop the term∇r · δρ(r, t)δu,we have

∂tδρ(r, t) = −ρ∇r · δu (24)

Similarily from Euler equation,∇rΦ = 0, substitute the pertubations

[∂t + (0 + δu) ·∇r ](0 + δu) =
−∇r(P + δP(r, t))

ρ + δρ(r, t)
(25)

rearrange density to left side,then linearize [(δu) ·∇r ](δu)(ρ + δρ(r, t)) is then vanish,on the right side∇rP = 0

∂t(ρ + δρ(r, t))(δu) = −∇rδP (26)

linearize again the second order term vanish:
ρ∂tδu = −∇rδP (27)

And now we can combine the two equation by taking ∂t 24 and∇r · 27 and we derive the (P.D.E) wave equation

∂2
t δρ−∇2

r δP = 0 (28)

In our case, the fluctuations are called Adiabatic fluctuationsin which the pressure fluctuations proportional to
the density fluctuations, δP = c2

s δρ ,where cs is the speed of sound.

[∂2
t − c2

s∇2
r ]δρ = 0 (29)

In order to simplify the problem, it is more easy to treat a O.D.E problem than a P.D.E problem, we can
decompose into different modes by fourier transform.As perturbed density field can be written as sum of plane waves
δρ = Cei(ωt−k·r) of different wave numbers/mode k .As δρ is a scaler,this indicate C is also a scaler magnitude of the
fluctuations and ei(ωt−k·r), this formula can interpret as in each position in space k · r,they have their own oscillation
eiωt , and that oscillations are according to ω = csk, and propagrate in k direction.
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Figure 13. K th mode wave vector

The fourier transform:

FT: F[δρr(t)] = ̂δ(k, t) =
∫

d3reik·rδρr(t) → δ(r, t) =
∫ d3k

(2π)3 e−ik·r ̂δρk(t) (30)

Therefore we obtain each of the mode δ(k, t) from FT[δ(r, t)] ,then we have the solution in 32 and
substitute/written as a form of superposition of all modes (on the right side of 30). Also in fourier space , ∇ → ik
,therefore ∇2 → −k2 , which is the eigenvalue,this scalar simplifer the problem to homogeneous Linear ODE of the
form y”+ay’+by =0 .

[∂2
t + c2

s k2]δρk = 0 (31)

Solving ODE: As y = eλt is the solution of it. Substitate become (λ2 + aλ + b)eλt = 0, and we check the
characteristic eqaution. In our case a =0 , b = c2

s k2 We find that in our case is complex conjugate roots (a2 − 4b < 0).
The general solution is y = Aeλ1t + Beλ2t , λ1 = −a

2 + iω , λ2 = −a
2 − iω , λ1,2 = ±icsk in our case. the exponential

(increase or decay) term become 1 as a = 0. Therefore our k mode’s solution is

δρk = Akeiωkt + Bke−iωkt = Akeicskt + Bke−icskt (32)

A(k) and B(k) is the kth amplitude of the wave. For ρk1... ρkn,each have the solution of a linear combination of
sinusoidal function with constant Amplitude.This indicate all the fluctuations mode in static spacetime oscillate with
constant amplitude.

Figure 14. different mode with constant amplitude

5. Case 2: Static space with gravity

In this case, the only different is the existance of gravity,therefore we can use the same result in case 1 in continuity
eq.24 and also the euler eq.27 with the gravity term adds. Keep remind we only concern the 1st order perturbation.

∂tδu = −∇rδP
ρ
−∇rδΦ Euler eq. (33)

∂tδρ(r, t) = −ρ∇r · δu Continuity eq. (34)

Using same method to the previous case, ∂t the continuity equ. and∇r· the Euler equ.

∂t(∂tδρ(r, t)) = ∂t(−ρ∇r · δu) = − [∇r · (ρ∂tδu) = ∇r · (−∇rδP− ρ∇rδΦ)] (35)

substitute both equation and δP = c2
s δρ of and combine with he perturbed poisson equation (∇2

r δΦ = 4πGδρ) and we
have

∂t(∂tδρ(r, t)) = ∇r · (∇rδP + ρ∇rδΦ) → (∂2
t − c2

s∇2
r )δρ = ρ∇2

r δΦ (36)

[∂2
t + (c2

s k2 − 4πGρ)]δρ = 0 (37)
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our root is i
√

c2
s k2 − 4πGρ Therefore our solution is

δρk = Akei(
√

c2
s k2−4πGρ)t + Bke−i(

√
c2

s k2−4πGρ)t (38)

This shows there exist a critical wavenumber/mode which there are no oscillation with constant amplitude . Critical k

=
√

4πGρ

cs
. When the mode with small wavelength->large wavenumber k > kcritial , meaning the pressure c2

s k2 dominates
, it oscillations with constant amplitude. And when, large wavelength->small wavenumber, k < kJ, gravity term
dominates, the frequency ω becomes imaginary, then the solution is in a form of Aeat + Be−at where a is real number
and when time increase, the exponential decay term vanish and the first term dominate, meaning the fluctuations
grow exponentially. We can express the condition in Jean length which is inverse proportional to wavenumber. λ = 2π

k J

6. Case 3: Expanding Universe

6.1. Tool for Expanding space: From physical to comoving coordinates

[Important: the changes on our analyse below are not convert the equations from proper to comoving coordinate
but in term of comoving coordinate , it is different]

The purpose of our analysis is to study the evolution of perturbations with respect to the background FRW
Universe, therefore we translate the three fluid equation from physical coordinates and in terms of full physical
quantities , to comoving coordinates and in terms of perturbation quantities.In the case of expansion space, it is best to
use comoving coordinate x which is unchange,and the relation with proper distance is r(t) = a(t)x . Derivative r(t)
give:

proper velocity︷︸︸︷
u(t) = r′ = ȧx + aẋ = ȧ · r

a
+ a · ẋ =

background︷ ︸︸ ︷
H(t)r +

perturbation︷︸︸︷
v (39)

the velocity that obtain hubble flow which describe the motion of astronomical objects due solely to this expansion +
peculiar velocity (v) which refer to velocity of an object relative to a rest frame(in terms of comoving) . Meaning that it
is also interpret in a form of u = u + δ(u) (background + perturbation) ,one of the example of peculiar velocity is in the
physical observation of galaxy’s velocity, it deviate from the Hubble flow and may recede from us. Peculiar velocity is
a realization of perturbation.

We also need to convert ∇r and ( ∂
∂t )t as they are no longer t and r independent in an expanding case. The

proper spatial derivative at fix convert to comoving derivative

∂

∂r(t)
=

∂

∂a(t)x
= ∇r = a−1∇x (40)

By vector transformation law from old to new coordinate system ∂ f
∂xi =

∂x
′ j

∂xi
∂ f

∂x′ j
we transform the proper time

derivative in term of comoving time derivative

∂

∂tr
=

∂tx

∂tr

∂

∂tx
+

∂x
∂tr

∂

∂x
(41)

Since ∂tx
∂tr

= 1 and ∂x
∂tr

= ∂a−1r
∂tr

= −a−2 ȧr = −a−2 ȧax = −Hx , keep remind that the time derivatives is at fixed
r and at fixed x, since we only consider the conversion of coordinate , meaning the object in space don’t have any
movement and only follow hubble flow, so we can treat r as constant in ∂a−1r

∂tr
,unlike 39 .

∂

∂tr
=

∂

∂tx
− Hx · ∂

∂x
=

∂

∂tx
− 3H (42)

And this transformation is same as the operator in Euler equation we derived before, the total time derivative
Dt = [ ∂

∂t + (v · ∇)] which the first term describle the rate of change of a fix position and the second term is the rate in
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change in time due to a change in position, and the only difference is these derivatives is reside in comoving space
regardless of hubble expansion. (comoving Eulerian to a comoving Lagrangian formulation) .

6.2. Linearized Fluid Equations for Expanding Universe

As our main goals is to describe the growth of small inhomogeneities in the linear regime,in order to understand
the formation of largescale structures in the universe. We define a term called overdensity field which is the deviation
from smoothness at a given point at a given time. It is the perturbation field over the background density. Also
the dependance of density pertubation δ change from (r)to(x). The density pertubation at comoving location x is

δ(x, t) = ρ(x,t)−ρ(t)
ρ(t)

= δ(x,t)ρ(t)
ρ(t)

= δρ
ρ . The density at comoving location x is ρ(x, t) = ρ(t)(1 + δ(x, t)) where ρ(t) is

the global uniform background density and also cs(t) depend on time which unlike the case of a static spacetime.
Now we have the tool to treat the case of expanding universe,and in the following step we will perform linearization
of the Continuity equation , Euler equation , Poisson equation which only reserve zero order ρ and first order term
perturbations of ρ and ν. And use the method in the previous case again, and derive the master equation.This is the
quantum fluctuations in inflaton which is believe to the random process in the early Universe.

6.3. Continuity equation in Expanding Universe

Substitute the tools∇r , ∂t ,ν in term of comoving space to the Continuity equation with first order pertubation.We
have

[
∂

∂tx
− Hx ·∇x][ρ(1 + δ)] + a−1∇x · [ρ(1 + δ)(Hax + ν)] = 0 (43)

When we obtain the zero order term (which is remain background term and drop perturbations δ and ν) of the
Continuity equation:

[
∂

∂tx
− Hx ·∇x][ρ] + a−1∇x · [ρ(Hax)] = 0 (44)

Since the background density is time-varying, but constant in space ∇xρ = 0 The second term vanish.We obtain
a result same as the energy conservation equation without the pressure term where we introduce in lecture 2.
Since∇x · x = ∂x

∂x + ∂y
∂y + ∂z

∂z = 3.

∂ρ

∂tx
+ ρ(a−1∇x) · (Hax) → ∂ρ

∂tx
+ 3Hρ = 0 (Zero Order) (45)

Solving the eq. we obtain:

ρ̇

ρ
= −3

ȧ
a
→
∫

ρ̇

ρ
dt =

∫
−3

ȧ
a

dt→ ln(ρ(t)) = −3 ln(a(t))→ ρ(t) = a(t)−3 (46)

which give the background homogeneous mass density ∝ a−3. Now we consider first order in fluctuations which
drop (the zero order equation,products of δ and ν) and only remain(the perturbations δ and ν term) and substitute
∇x · x = 3 give:

[
∂

∂tx
− Hx ·∇x][ρδ] +

background︷ ︸︸ ︷
a−1∇x · ρHax+

1−order︷ ︸︸ ︷
a−1∇x · ρv+

1−order︷ ︸︸ ︷
a−1∇x · ρδHax+

2−order︷ ︸︸ ︷
a−1∇x · ρδν = 0 (47)

[
∂

∂tx
− Hx ·∇x][ρδ] + a−1∇x · [ρ(Haxδ + ν)] = 0 (First Order) (48)

The second term vanish since∇xρ = 0 and apply chainrule to (ρδ) give:

δ
∂ρ

∂tx
+ ρ

∂δ

∂tx
+ 3Hρδ + a−1ρ∇x · ν = 0 (49)
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Substitute equation 45 into 49 gives:

0︷ ︸︸ ︷
[

∂ρ

∂tx
+ 3Hρ] δ + ρ

∂δ

∂tx
+ a−1ρ∇x · ν = 0→ ρ

∂

∂tx
(δ) + a−1ρ∇x · ν = 0 (50)

δ̇ = −a−1∇x · ν (51)

6.4. Euler equation in Expanding Universe

Similarily we also substitute the transformation tool and perturbation give

∂v
∂tx

+
ȧ
a

v + (v · ∇x

a
)v = −∇x(P + δP)

aρ(1 + δ)
− ∇x(Φ + δΦ)

a
(52)

then ∇xP = 0 and ∇xΦ = 0,and we perferm linearization and drop terms ρ2,ν2,ρν,the third term vanish , the
denominator drop δ when being divide by∇xδP (2 order)

∂v
∂tx

+
ȧ
a

v = −∇xδP
aρ

− ∇xδΦ
a

(First order) (53)

6.5. Poisson equation in Expanding Universe

Same as case 2 , the perturbate Poisson equation is ∇2
r δΦ = a2∇2

xδΦ = 4πGa2ρδ

6.6. Master equation in Expanding Universe

Now, we combine it to ∂tr =
∂

∂tx
− Hx · ∂

∂x the Continuity equation 51 and∇r = a−1∇xthe Euler equation 53,
yield our master equation.

6.6.1. ∂tr (Continuity equation)

∂tr(δ̇) = −∂tr(a−1∇x · ν) → (∂tx − 3H)δ̇ = (∂tx − 3H)(−a−1∇x · ν)) → (54)

chainrule as a(t)→ δ̈− 3Hδ̇ = (−a−1∇x · v̇ + Ha−1∇x · v̇) + 3Ha−1∇x · v̇ → (55)

δ̈− 3Hδ̇ = (

δ̇︷ ︸︸ ︷
−a−1∇x · v̇+H

−δ̇︷ ︸︸ ︷
a−1∇x · v̇) +3H

−δ̇︷ ︸︸ ︷
a−1∇x · v̇ → substituate eq.51 (56)

δ̈ + Hδ̇ = −a−1∇x · v̇ (57)

6.6.2. ∇r·(Eular equation)

− [a−1∇x · (v̇ +
ȧ
a

v) = a−1∇x · (−
∇xδP

aρ
− ∇xδΦ

a
)] substituate eq.57→ (58)

δ̈ + Hδ̇ + a−1∇x · Hv → δ̈ + 2Hδ̇ =
∇2

xδP
a2ρ

+
∇2

xδΦ
a2 (59)

Substitate poisson equ.6.5 yield

δ̈ + 2Hδ̇ =
∇2

xδP
a2ρ

+ 4πGρδ Master equation (60)
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Since the above equation is linear, we obtain, for each independent k mode by fourier transform,since ∇2
x → −k2,

δP = c2
s ρδ

δ̈ + 2Hδ̇ =
∇2

xδP
a2ρ

+ 4πGρδ → δ̈ + 2Hδ̇ + [
k2c2

s
a2 − 4πGρ]δ = 0 (61)

Now, we obtain the master equation which describes the time evolution of density fluctuations. Comparing
with the master equations obtained in the absence of an expanding background, we see that the only difference
is the presence of second term "Hubble damping term" which expresses how expansion suppresses perturbation
growth. This term will moderate the exponential instability of the background to long wavelength density fluctuations.
In addition, it will lead to a damping of the oscillating solutions on short wavelengths.The third term is refer to
pressure term which expresses how pressure gradients suppress the perturbation growth.The fourth term is refer to
gravitational term which expresses how gravity promotes perturbation growth. In addition,there are also an extra
term refer to entropy, but it is out of our scope and not shown in here. For this master equation, there are two case.
Case 1: Below the Jeans length,the fluctuations oscillate with decreasing amplitude.Case 2: Above the Jeans’ length,
the fluctuations experience power-law growth, rather than the exponential growth we found for static space. These
properties are shown in below in different epoch. And it is important to notice that the hubble term and the density in
gravity term depend on time ,unlike the static cases that the coefficients are constant, this will effect the solution we
obtain.

7. Dark Matter inside Hubble

Keep remind that On scales much smaller than the Hubble radius we can employ the Newtonian theory to study
perturbations in the nonrelativistic matter,also suitable to describle the evolution dark matter on sub-Hubble scales.

7.1. Matter-dominated era: dark matter fluctuations

We now focus on the time in the matter-dominated era,the time evolution which past recombination, when the
baryonic matter can be treated as a pressureless fluid (cs = 0, linearised CDM fluctuations) and ignore radiation
pressure term. The condition for this solution is λJ � λ � λH , in fact for Non-linear effect that produce a finite,
small, sound speed which give tiny pressure, but it do not effect the large wavelength perturbation.

As we know that this period a ∝ t2/3 → da
dt ∝ dt

2
3

dt →
ȧ
a ∝

2t
−1
3

3

t
2
3
→ H ∝ 2

3t and we

δ̈m + 2Hδ̇m − 4πGρδm = 0 where m refer matter (62)

From Friedman equation H2 =

matter−density︷ ︸︸ ︷
8πGρ

3
−

curvature︷︸︸︷
kc2

a2 +

dark−energy︷︸︸︷
Λc2

3
and in Matter-dominated era, the first term

dominate, H2 =
8πGρm

3 . Therefore,a homogenous and isotropic perfect fluid imply 4πGρm = 3
2 H2,the equation

become
δ̈m +

4
3t

δ̇m −
2

3t2 δm = 0 (63)

Let δ = tr and substiute to equ. yield

(tr)′′ +
4
3t
(tr)′ − 2

3t2 (t
r) = 0→ (3r2 + r− 2)(tr−2)

3
= 0→ r =

2
3

or r = −1 (64)

δ(t) = C1(k)t
2
3 + C2(k)t−1 or δ(t) = C1(k)a + C2(k)a

−3
2 (bayonic/dark matter) (65)

The solution give a superposition of two mode. One is damping mode which dissapears with time, and one mode
with power law growth unlike the case of static space which is exponential growth.This growing mode mode will
evolve with time and play a leading role in the formation of large-scale structure.The plot of the sum of two mode is
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refer to fig. 16 which show the hubble expansion reduce the growth significantly. In fig. 15 show the growth when
there are no hubble expansion, the constant terms C1, C2 is set as 1 as illustration.

Figure 15. Without the suppression of Hubble
expansion

Figure 16. With the suppression of Hubble
expansion

Note that baryonic perturbations cannot grow until matter has decoupled from radiation at recombination ,
therefore baryonic perturbations grow as scale factor a ∝ δm ∝ t

2
3 after recombination (t > t rec). On the other hand,

Dark matter are already collisionless and fluctuations in their density can grow immediately after equipartition.a ∝
δdm ∝ t

2
3 , (teq < t < trec) . The growth of pertubation indicate the infall of matter and increase in the density of a

location until the pressure of the inner core of the object is sufficient to counterbalance ,then object like galaxy cluster
is form.

In subhorizon scales, the radiation perturbation δr behave as acoustic oscillations on both matter and radiation
dominate era, the propagation of sound waves in the photon fluid give non zero pressure. Since recombination of
protons and neutrons occurs in the matter era, we expect that at the time the CMB is emitted different Fourier modes
which is different phases of their oscillation. However, before the radiation fully decouple , the baryon fluid is still
tightly coupled with photon , the small finite sound speed which give tiny pressure do effect and prevent the growth
of baryonic structures in small scale pertubation . So the pressure term should be keep in the eq. 66 , and we see in the
pressure term for large scale (k is small), the term is approximate zero, but in small scale bayonic perturbation(k > k J)
or λJ >> λ, the pressure do effect.

δ̈m +
4
3t

δ̇m + (
k2c2

s
a2 −

2
3t2 )δm = 0 (66)

The solution is a combination of two bessel functions multiply with t−1/6 which is a function that are decay and
oscillate with frequency ω = csk

a , later on the decay become smaller and settle to a "constant" amplitude. This
solution and plots are done by mathematica and the value is set to an arbitrary value for illustration, which is
C1 = C2 = 1, ω = 2.

δm = C1t−
1
6 J 5

6
(

csk
a

t) + C2t−
1
6 J−5

6
(

csk
a

t) (bayonic matter) (67)

Figure 17. First term Figure 18. Second term

7.2. Radiation-dominated era: dark matter fluctuations

Consider the radiation dominated regime, the fluid is a mixture of radiation and collisionless particles.
Therefore,the total density fluctuation is conbine of both δtotal = δr + δdm provide the source of gravitational potential
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fluctuation δΦ. On subhorizon scales,radiation density fluctuation δr will exhibit an oscillatory behaviour (sound
wave), this give the time average <δr> = 0 for scale smaller than hubble radias.

δ̈dm + 2Hδ̇dm − 4πG(ρradδrad + ρdmδdm) = 0→ δ̈dm + 2Hδ̇dm − 4πGρdmδdm = 0 (68)

In this period, H2 =
8πG(ρrad+ρdm)

3 , divide the equation by H2

δ̈dm
H2 +

2
H

δ̇dm −
3ρdmδdm

2[ρdm + ρrad]
= 0 (69)

If we now use that deep in the radiation dominated era (refer to early time of radiation dominated era), ρdm � ρrad,

then the term on the RHS can be ignored. Also, since a ∝ t1/2 → da
dt ∝ dt

1
2

dt →
ȧ
a ∝

t
−1
2
2

t
1
2
→ H ∝ 1

2t , The differential

equation then simplifies to
δ̈dm
H

+ 2δ̇dm = 0→ δ̈dm +
δ̇dm

t
= 0 (70)

The solution is
δdm = C1(k) + C2(k) ln t or C1(k) + C2(k) ln a (dark matter) (71)

Figure 19. ln t

This solution also indicate the perturbations have a much slower growth on subhorizon scales in the radiation era,
as we compare fig. 16 to 19. The stagnation of growth in pressureless matter perturbations during radiation dominated
era is known as the Meszaros effect.The Meszaros effect is simply a manifestation of the fact that the Hubble drag term
during the radiation dominated era is larger than during the matter dominated era.The dark matter perturbations can
only grow significantly when the background gravitational potential is sufficiently strong to trigger their collapse.
This happan to δdm in superhorizon scales.

7.3. plotting of dark matter fluctuations during Radiation and Matter domination Era

Figure 20. log δm vs log a plot

The fig. 20 show the time evolution of a perturbation δ(k) with size L = 2π
k enter the horizon during the radiation

dominated era at scale factor aenter.The time evolution goes through three different phases:
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(i) δ ∝ a2 before horizon entry which follows from general relativistic perturbation theory which is out of our
scope.

(ii) When redshifts z > zeq or a < aeq , where zeq ∼ 24000 is moment Matter-radiation equality happens . The
Universal energy density is dominated by radiation.Althrough,in radiation domination H ∝ 1

2t ,which expand slower
than matter dominance epoch(H ∝ 2

3t ), meaning the suppression due to expansion of universe is relatively lower,
but also combine with the fact that the dark matter density is so small, leading to the gravity term which play the
rule to enhance perturabation is now neglected. These factor lead to the freeze out of growth δ = constant after the
pertubation enter the horizon.This Meszaros effect suppress the growth by a factor of aenter

aeq
.

(iii)When a > aeq, the matter density starts to dominate the Universal energy density, the dark matter perturbation
grows as δ ∝ a.

7.4. Dark Energy Λ dominated era: Bayonic/dark matter fluctuations

In the dark energy dominated era , the universe begins expanding in an accelerated way ,and mainly compose of
dark energy and also minority of bayonic matter , therefore the total density fluctuation is suppose to contribute by
both dark energy + matter , however due to the reason that since dark energy does not have any local gravitational
effects, but rather a global effect on the universe as a whole,the term δΛ is drop.

δ̈dm + 2Hδ̇dm − 4πGρ(δdm +

0︷︸︸︷
δΛ ) = 0 (72)

Also, the ρm ∝ a−3 become very small in this period, beacause a increase exponentially by time a ∝ e
√

Λt where Λ

is constant,in freidmann equation H2 ≈
√

Λc2

3 = constant� 4πGρdm . So the last term can be ignore.
This give a solution of

δ̈dm + 2Hδ̇dm ≈ 0→ δdm = C1(k) + C2(k)e−2Ht = C1(k) + C2(k)a−2 (73)

with a constant mode and a rapidly decaying mode. Hence, the growth of perturbations stops when the cosmological
constant takes over, this indicate there was sufficient time for large scale structures to form in the universe before dark
energy domination.

8. Summary

We have demonstrated the idea of pertubation theory relate to the structure formation , and shown the pertubation
through the observation in CMB. We have studied the concept of three fluid equation which successfully describle
the perturbation fields on scales well inside the Hubble radius. Fourier transform is introduced to decompose the
perterbation in to the sum of all scale inside Hubble radius, which simply the problem from P.D.E to O.D.E, and
obtain the master equation. We have seperated 3 cases to study the behavior of the perturbation in 1) static universe
without gravity , 2) static universe with gravity , 3) Expanding universe with gravity, and have shown the solution
which describle the dynamic of the perturbation. In case one , the flucturation behave as oscillation with constant
amplitude. In case two, for small scale perturbation oscillate with constant amplitude and for large scale, fluctuations
grow exponentially. In case three, we desired to understand the dynamic of perturbation respect to the background, so
we have introduced the comoving tools and expression the three fluid equation in term of comoving coordinate. And
then we analyzed the solution of dark matter pertubation in three different era. 1)Matter dominate era 2)Radiation
dominate era 3) Dark energy dominate era. For case 1, the fluctuations of dark matter grow proportional to scale
factor a immediately after equipartition , and after recombination for bayonic matter, and the hubble expansion play
the rule on this suppression. Also , for small scale bayonic matter perturbation , the pressure term also effect , as a
result in a ocillation with decay behavior . In case 2, the dark matter perturbations have a much slower growth lna
due to Meszaros effect. For case 3, the growth of perturbations stop and start at a constant value, and universe start
expanding in acceralation and the cosmological object evolve.
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