Chapter 1

DEFINITIONS, NOMENCLATURE, TERMS AND LITERATURE

W. Hemminger and S.M. Sarge

Physikalisch-Technische Bundesanstalt Bundesallee 100 D-38116 Braunschweig, Germany

1. INTRODUCTION

This introductory chapter of the Handbook of Thermal Analysis and Calorimetry will present the tools for the exchange of unequivocal, clear information in these fields.

Communication free from misunderstandings is possible only if the meaning and contents of the terms used have been defined and generally accepted. Prerequisite for this is the *definition* of methods of thermal analysis and calorimetry, which leads to a *nomenclature* describing the methods and the instruments. In addition, measuring systems must be clearly characterized on the basis of suitable performance criteria, and it must finally be possible to describe characteristic measurement results by means of suitable *terms*. It is therefore the primary objective of this chapter to present a vocabulary applicable to both thermal analysis and calorimetry. In addition, reference will briefly be made to important *literature* in these fields.

1.1. Basic considerations

The terms *thermal analysis (TA)* and *calorimetry* denote a variety of measuring methods, which involve a change in the temperature of the sample to be investigated.

These methods include the measurement of the time dependence of the sample temperature, when the sample follows a temperature-time variation imposed on it.

Many thermoanalytical instruments and calorimeters can also be used for isothermal measuring methods. Methods allowing the experiment to be conducted under isothermal conditions therefore also belong to the field of thermal analysis and calorimetry.

Which are the physical quantities measured by methods of thermal analysis and calorimetry?

The quantities concerned are either changes in variables of state of the sample (temperature, mass, volume, etc.) which are used to determine process or material properties (e.g. heat of transition, heat capacity, thermal expansivity, etc.) or changes in the sample's material properties (chemical composition, interatomic forces, crystalline structure, etc.). These changes take place at varying or constant sample temperature. If these processes are connected with the generation/consumption of heat, one also speaks of *thermal events* as the events underlying the measurement (even if the generated/consumed heat itself is not measured).

In modern measuring instruments, many of these changes in the variables of state and material properties are picked up by specific sensors and transformed into electric signals (indirect measuring methods). To obtain quantitative information about these changes, the true value of the quantity sought must be assigned to this signal through calibration.

Direct measuring methods, by which the quantity to be measured is directly related to the SI base units (International System of Units (SI): The coherent system of units adopted and recommended by the General Conference on Weights and Measures (CPGM)) are not commonly used. It would be a direct measurement if, for example, the thermal expansion of a sample was measured with a line scale or if the change in the sample mass was determined by means of a beam scale and weights.

1.2. Definition ranges and limits of thermal analysis

In connection with the definition of thermal analysis and the description of thermoanalytical methods, the problem arises of how to delimit thermoanalytical techniques from the large number of other well-established measuring techniques. The definition of thermal analysis used to date (cf. section 2.2.) has been made in such general terms and it is so comprehensive that almost all measurements of physical and chemical quantities can be included (measurements of viscosity, density, concentration, hardness, electrical resistance, emittance, thermal conductivity, for example) in which the quantity to be measured is influenced by the temperature.

This conflict between the high degree of comprehensiveness claimed by thermal analysis and the fact that almost all of the long-established measuring techniques are independent can be solved only by pragmatic agreement. It is expedient and useful to define those methods as thermoanalytical methods for which perfected instruments are commercially available (the so-called classical thermoanalytical methods, e.g. thermogravimetry (TG), differential thermal analysis (DTA)) and those methods in which the forced change of the sample temperature is of primary importance, even if conventional physical quantities are measured. Such a pragmatic delimitation is, of course, neither conclusive nor sharp.

1.3. General aspects related to classification principles

It is the aim of a system of definitions, and of the nomenclature resulting from it for the field of thermal analysis and calorimetry, to clearly describe and denote

- metrological principles and
- characteristic measured quantities.

The use of the recommended terms reflects a *classification system*, and it will be ensured in this way that a certain term always furnishes the same information. The system of definitions should have a hierarchical structure, from the general to the particular. In many cases, basic definitions (e.g. that of thermal analysis, cf. section 2.2.) are by no means necessarily given on the basis of scientific or metrological arguments; they are defined taking historical facts and/or their suitability into consideration.

Measuring techniques (and, therefore, measuring instruments as well) must be sorted on the basis of suitable criteria, i.e. classification characteristics must be found which allow measuring techniques and measuring instruments to be assigned to groups which can be described in uniform terms. These groups in turn must be hierarchically structured as far as this is necessary. This means that primary, secondary etc. classification characteristics must be found. Here, too, nothing has been defined in advance on the part of science; differing primary criteria are possible and are in fact used.

Calorimeters are an example of this. Many measuring instruments applying different measuring principles come under this generic term. Several classification systems have been proposed, none of them has so far become generally accepted (cf. section 2.5.1.).

1.4. Features common to all methods of thermal analysis

Thermoanalytical methods are usually not equilibrium methods. In general, the change in the sample temperature does not take place so slowly that there is thermal equilibrium both between the sample and its surroundings and inside the sample.

The fact that, in dynamic operation, there is no thermal equilibrium between the sample and the surroundings can be taken into account by the determination of the *thermal lag*. In addition, it should be borne in mind that the sample temperature is usually not homogeneous and that the conditions become very complex as soon as the sample generates or consumes heat and/or changes its mass, its volume, its composition or its structure. Thermoanalytical methods usually furnish integral measurement results, i.e. data which are non-specific as regards the sample volume; the values concerned are mean values. In general, it cannot be found out where a reaction/transition begins or how quickly a certain crystallite grows in a structure.

Thermoanalytical methods may be specific for certain reactions/transitions, for example thermogravimetry for reactions involving a gaseous component, or magneto-gravimetric methods for magnetic transitions of solids.

The results obtained by thermoanalytical and calorimetric methods can depend both on operational parameters (heating rate, atmosphere, pressure, etc.) and on sample parameters (mass, geometrical shape, structure, etc.). Interpretations should not be based on a single method. It is convenient to use simultaneous techniques (cf. section 2.3.1.) or several thermoanalytical methods and in addition, if possible, investigational methods of another kind (electrochemical, wetchemical, spectroscopic, etc.).

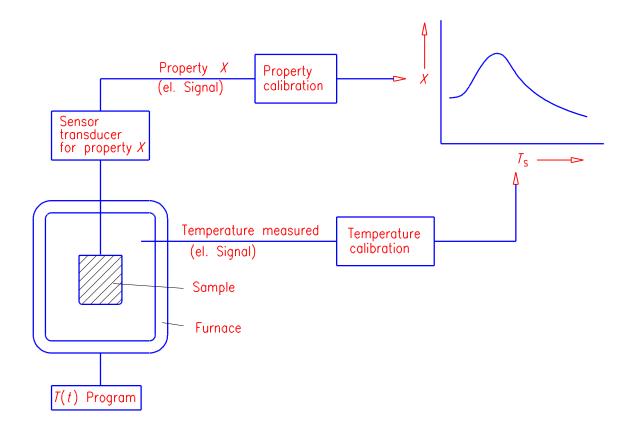


Figure 1. Basic principle of a thermoanalytical instrument.

The design of thermoanalytical instruments is usually such that the sample to be investigated is in an environment whose temperature can be varied in a defined way (cf. Figure 1). It depends on the conditions of heat transfer between sample and environment, in which way the sample temperature follows the temperature of the environment. In general, the precise determination of the sample temperature is not a trivial matter and must be made through temperature calibration.

Calorimeters exist in a large variety of designs and the principles of measurement applied differ. A feature common to all calorimeters is that they are instruments to measure heat and/or heat flow rates.

1.5. The temperature scale

The temperature scale valid on the international level from 01.01.1990 is the *International Temperature Scale of 1990 (ITS-90)* [1]. It superseded the *International Practical Temperature Scale of 1968 (IPTS-68)* [2] valid until that date.

The ITS-90 is realized by a number of fixed points, by means of standard instruments and on the basis of prescriptions for the interpolation between the temperature fixed points. The fixed points are realized by transition temperatures (freezing or melting temperatures) and by triple points of suitable pure substances. Platinum resistance thermometers are used as interpolating standard instruments in the temperature range from 13.8033 K to 961.78 °C. Above 961.78 °C (the freezing point of silver), radiation thermometers (spectral pyrometers) are used.

There are differences between the ITS-90 and the temperature scales valid before, which may be of significance in certain cases (comparison with data in the literature). The temperature $t_{90} = 20.000$ °C (ITS-90), for example, corresponds to the temperature $t_{68} = 20.005$ °C (IPTS-68), that is to say, there is a difference of 5 mK between the two scales. The different temperature scales and the conversion of one scale to the other are described in [1 - 4].

(In thermal analysis, thermocouples are normally used for temperature measurement. In rare cases, resistance thermometers or semiconductor sensors are used. These temperature sensors are usually calibrated *in situ* with the aid of reference materials (cf. section 1.6.)).

1.6. Definitions related to calibration

Calibration means [5]: "The set of operations that establish, under specified conditions, the relationship between values of a quantity indicated by a measuring instrument or measuring system, or values represented by a material measure or a reference material, and the corresponding values realised by standards.

Notes:

- (1) The result of a calibration permits either the assignment of values of measurands^{*} to the indications or the determination of corrections with respect to indications.
- (2) A calibration may also determine other metrological properties such as the effect of influence quantities."

A *standard* can be represented by a (certified) reference material (cf. below), but also by a material measure (e.g. weight), a measuring instrument (e.g. micrometer) or a measuring system (e.g. current-carrying electrical resistor).

A reference material (RM) is a "Material or substance one or more of whose property values are sufficiently homogeneous and well established to be used for

^{*} particular quantity subject to measurement

2.4. Classification, names and definitions of thermoanalytical methods

This section gives definitions of the most important thermoanalytical methods. Reference is made to basically different patterns or measuring principles of the instruments concerned. If necessary, directions are given as regards the presentation of the measured curve.

2.4.1. Heating or cooling curve analysis

A technique in which the change of the temperature of the sample is analysed while the sample is subjected to a temperature alteration (heated or cooled). (Cf. Figure 2).

2.4.2. Differential thermal analysis (DTA)

A technique in which the change of the difference in temperature between the sample and a reference sample is analysed while they are subjected to a temperature alteration.

Two different designs exist:

- measuring systems with free standing crucibles (cf. Figure 3);
- *block measuring systems* (cf. Figure 4).

Table 2

Secondary classification scheme of methods of thermal analysis

Property under study	Secondary classification criteria/distinguishing features	Method, Abbreviation (Remarks)
Dimension/mechanical properties	With or without any kind of force acting on sample	Generic term: Thermomechanical Analysis, TMA
	Static force	Static Force Thermomechanical Analysis, sf-TMA
	Special case: Negligible force	Thermodilatometry
	Dynamic force	Dynamic Force Thermomechanical Analysis, df-TMA
	Special case: Modulated force	Modulated Force Thermomechanical Analysis, mf-TMA
Electrical properties	With or without any kind of electric field	Generic term: Thermoelectrical Analysis, TEA
	Without superimposed electric field	Thermally Stimulated Current Analysis, TSCA
	Alternating electric field (dynamic mode)	Generic term: Alternating Current Thermo- electrical Analysis, ac-TEA
		Special case: Dielectric Thermal Analysis, DETA
Magnetic properties	With or without any kind of magnetic field	Generic term: Thermomagnetic Analysis (Various techniques to measure susceptibility, permeability etc.)
Optical properties		Generic term: Thermooptical Analysis, TOA
	Intensity of radiation emitted	Thermoluminescence Analysis
	Intensity of total radiation reflected or transmitted	Thermophotometric Analysis

Property under study	Secondary classification criteria/distinguishing features	Method, Abbreviation (Remarks)
	Intensity of radiation of specific wavelength(s)	Thermospectrometric Analysis
	The refractive index is measured	Thermorefractometric Analysis
	The sample is observed by means of a microscope	Thermomicroscopic Analysis
Acoustic properties	Acoustic waves are monitored after having passed through the sample	Generic term: Thermoacoustic Analysis, TAA
	Acoustic waves emitted by the sample are monitored	Thermally Stimulated Sound Analysis
Chemical composition/ crystalline structure/ microstructure	Analysing the change in chemical composition and/or in the crystalline structure and/or in the microstructure of the sample	Various techniques (optical, nuclear, X-ray, electrica etc.)
	Special case: Use of diffraction technique	Thermodiffractometric Analysis, TDA
	Special cases: Investigation of the gas exchanged with the sample	Generic term: Thermally Stimulated Exchanged Gas Analysis, EGA
	Determination of the com- position and/or amount of gas	Various techniques
	Monitoring of the amount only	Thermally Stimulated Exchange Gas Detection
	Determination of the composition (and the amount)	Thermally Stimulated Exchange Gas Determination (e.g. by g chromatography, mass spectr metry etc.)
	Special case: Release of trapped radio- active gas from the sample is monitored	Emanation Thermal Analysis, ETA

Continuation Table 2

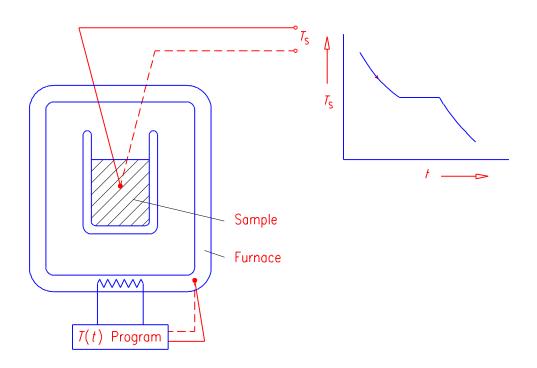


Figure 2. Device to determine the heating or cooling curve.

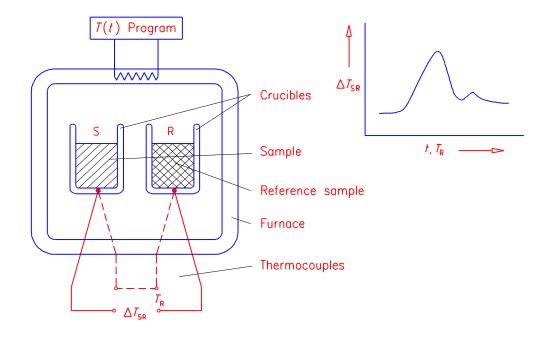


Figure 3. DTA measuring system with free standing crucibles. The crucibles are contacted by thermocouples to measure ΔT_{SR} and the reference temperature T_{R} .

Figure 4. DTA block measuring system. The temperature sensors are located inside the specimens.

2.4.3. Differential scanning calorimetry (DSC)

A technique in which the change of the difference in the heat flow rate to the sample and to a reference sample is analysed while they are subjected to a temperature alteration.

Note : The difference between DTA and DSC is the assignment of a heat flow rate difference (by calibration) to an originally measured temperature difference. To allow this assignment to be carried out, the instruments' design must be such that they are capable of being calibrated.

Two designs of DSC are available, whose measuring systems differ:

- *heat flux DSC* with two modifications (disk-type and cylinder-type measuring system);
- power compensating DSC.

2.5. Classification, names and definitions of calorimetric techniques

Calorimeters are used to measure heat and heat flow rates. Depending on which kind of heat-generating or heat-consuming process is concerned (combustion, solid-state transition or the like), which kind of sample is concerned (solid, liquid, gaseous, living being, of great volume, etc.) and under which conditions the calorimeter is to be used (temperature, pressure, atmosphere, etc.), a great variety of different calorimeters has been developed.

2.5.1. Classification system

The arrangement of the calorimeters in a classification system should be based on a simple and sensible order structure suitable for practical application. Several classification criteria have been suggested, see e.g. [10,11]. The attempt to classify every calorimeter in every detail leads to unclarity and insignificance in practice.

A particular difficulty in the classification of calorimeters arises from the fact that many calorimeters can be operated in various modes (cf. below) so that a certain instrument must often be classified in different ways, depending on the mode of operation. The same is often true of the measuring principle (cf. below) which can be changed in certain calorimeters. The problem of calorimeter classification thus is that, firstly, a simple primary classification criterion orientated to the instruments available must be found and that, secondly, a clear and flexible classification must be guaranteed without too many additional criteria being applied.

To achieve this aim, three primary groups of criteria are taken as a basis of classification, which in turn comprise secondary criteria (the classification system used here follows the suggestions in reference [10]).

The groups of primary criteria are related to:

- (1) the principle of measurement;
- (2) *the mode of operation;*
- (3) the construction principle.

The individual groups of primary criteria comprise the following secondary criteria:

(1) The principle of measurement

- *heat-compensating principle*: determination of the energy (power) required for compensating the heat (heat flow rate) to be measured;
- *heat-accumulating principle*: measurement of the temperature change caused by the heat to be measured;

• *heat-exchanging principle*: measurement of the temperature difference between sample and surroundings caused by the heat (heat flow rate) to be measured.

(2) *The mode of operation* (temperature conditions)

- *static*: isothermal; isoperibol¹); adiabatic²);
- *dynamic*: scanning of surroundings; isoperibol scanning³); adiabatic scanning.

(3) *The construction principle*

- single measuring system;
- twin or differential measuring system.

Most of the calorimeters can be classified by means of these criteria. Not all secondary criteria from the three groups can be combined. As the heat to be measured (first) appears as a heat flow to be exchanged, there are always temperature gradients in calorimetric measuring systems so that, for example, an ideally isothermal state cannot be established. In addition, temperature differences always occur between sample and environment so that there are undesired heat leaks which must be taken into consideration as a correction, i.e. there are no ideal adiabatic operating conditions. In the following a few examples show the suitability of the classification system.

2.5.2. Examples

Heat compensating calorimeters

The effect of the heat to be measured is compensated, either passively by the phase transition of a suitable calorimeter substance (e.g. ice), or with the aid of an active control system which compensates a temperature change in the sample or the sample container through electrical heating/cooling or other suitable heat sources/sinks. The compensation energy is to be determined, for example, from the mass of the transformed calorimeter substance or from the electrical heating/cooling energy. Advantages of the compensation method are that the

¹⁾ *isoperibol* refers to constant temperature surroundings with the temperature of the measuring system possibly differing from this.

²⁾ *adiabatic* refers to a prevention of the heat exchange between measuring system (sample) and surroundings.

³⁾ *isoperibol scanning* refers to the scanning of the measuring system (sample) in surroundings at constant temperature.

measurement is carried out under quasi-isothermal conditions and heat leaks thus remain unchanged to a first approximation. Possible instruments:

• Ice calorimeter

Principle of measurement: heat compensation (passive, by latent heat); mode of operation: isothermal;

construction principle: single measuring system.

At 0 $^{\circ}$ C, a heat exchange between sample and calorimeter substance (ice) takes place; the mass of the transformed ice is determined. From this and from the known heat of transition, the heat emitted by the sample is determined.

• Adiabatic scanning calorimeter

Principle of measurement: heat compensation (active, by electronic control); mode of operation: adiabatic scanning;

construction principle: single measuring system.

A known electric heating power is fed into the sample. Heat losses into the surroundings are minimized by matching the environmental temperature. The sample's heat capacity may be obtained from the heating power and the heating rate. Heats of transition are determined from the time integral of the heating power. During a first-order transition, the calorimeter's behaviour is quasi-isothermal.

• Power compensating DSC

Principle of measurement: heat compensation (active, by electronic control); mode of operation: isoperibol scanning;

construction principle: twin measuring system.

The temperature of the surroundings remains constant (isoperibol). The twin measuring system is heated; each specimen has its own heater and temperature sensor. The temperature difference between is maintained at a minimum by increasing or decreasing the sample heating. The difference in heating power is related to the sample heat flow rate to be measured.

Heat accumulating calorimeters

The effect (e.g. an increase in temperature) of the heat to be measured is not minimized by any compensation, but leads to a temperature change in the sample and the calorimeter substance with which the sample is thermally connected. This temperature change is the quantity to be measured. It is proportional to the amount of heat exchanged between the sample and the calorimeter substance. Possible instruments:

• Drop calorimeter

Principle of measurement: heat accumulation (measurement of the resulting temperature change);

mode of operation: isoperibol;

construction principle: single measuring system.

The sample is dropped into the calorimeter that consists of a calorimeter substance (e.g. water, metal) which is thermally insulated from the isoperibol surroundings (thermostat, furnace). The temperature change in the calorimeter substance is measured. Calibration is performed by means of electrical heating. Heat leaks between the calorimeter substance and the surroundings must be taken into consideration as a correction.

• Adiabatic bomb calorimeter

Principle of measurement: heat accumulation;

mode of operation: adiabatic;

construction principle: single measuring system.

The combustion bomb (a metallic, pressure-tight vessel) shows an increase in temperature after ignition of the sample. The temperature of the surroundings (thermostat) is continously matched to the bomb temperature by means of an electrical control system. The increase in temperature is the measured signal; a correction (as with the drop calorimeter) is not necessary.

• Flow calorimeter

Principle of measurement: heat accumulation;

mode of operation: isoperibol;

construction principle: single measuring system (twin design also feasible).

In a *gas calorimeter* which serves to measure the heat of combustion of fuel gases, the heat to be measured is transferred to a flowing liquid (e.g. water) or gas (e.g. air). The temperature increase in the flowing medium is the measured signal. Other types of flow calorimeters are used to measure heats of reaction, for example by mixing two liquids in a reaction tube. The temperature difference between the liquids flowing in and the reaction product flowing out is the measured signal.

Heat-exchanging calorimeters

In heat-exchanging calorimeters, a defined exchange of heat takes place between the sample (sample container/crucible/support) and the surroundings. The amount of the flowing heat, the heat flow rate, is determined on the basis of the temperature difference along a "thermal resistance" between sample and surroundings. Registration of the dependence of the heat flow rate on time allows kinetic investigations to be carried out. Possible instrument:

• Heat flux differential scanning calorimeter (heat flux DSC)

Principle of measurement: heat exchange;

mode of operation: scanning of surroundings;

construction principle: twin measuring system (disk-type or cylinder-type).

Two containers/supports with sample and reference sample are provided with temperature sensors which measure the temperature difference between the specimens. This temperature difference is proportional to the difference in the heat flow rates flowing from the surroundings (furnace) to both specimens. Due to the twin construction, a direct measurement of the temperature difference between sample and surroundings is not necessary; the main heat flow must not be registered, only the differential one.

3. CHARACTERIZATION OF MEASURING INSTRUMENTS

The requirements to be met by the measuring instrument follow from the kind of problem to be investigated. To be able to judge whether a thermoanalytical instrument or a calorimeter is suitable for the task in question, the instrument must be clearly characterized.

The following can be used for characterization:

- the general specifications of the measuring instrument;
- the performance characteristics of the measuring system.

All specifications and characteristic data given in the following account thus serve to select the best instrument from among those offered by various manufacturers. Prior to purchasing an instrument, all necessary information should be obtained from the manufacturer.

3.1. General specifications of the measuring instrument

A comprehensive general description of the measuring instrument should specify:

- Type of measuring instrument (thermobalance, dilatometer, etc.). In addition, closer details of the design (DTA: block system or free-standing crucibles; TG: weighing system above or below the load receptor; DSC: of the heat flux or power compensating type, etc.).
- Temperature range.
- Atmosphere (which gases, vacuum, pressure).
- Range of heating and cooling rates, temperature-time programs.

5.4. Terms, symbols and units

The *International System of Units (SI)*, which is founded on the *Metric System*, is binding for the presentation and description of physical quantities. (The SI has been adopted worldwide (e.g. by ISO 1000)).

A distinction must be made between the quantity, the name of the quantity and the symbol of the quantity, and between the name of the unit and the symbol of the unit. As an example, the seven *base units of the SI* are listed in the following (Table 4).

Table 4

Quantity (name and symbol)		Name of unit	Symbol of unit
length	l	metre	m
mass	т	kilogram	kg
time	t	second	S
electric current	i, I	ampere	А
temperature	Т	kelvin	K
amount of substance	n	mole	mol
luminous intensity	$I_{\rm v}$	candela	cd

Base units of the SI

From the base units, SI derived units are formed (Table 5). Certain derived units have been given special names and symbols (e.g. newton: N, volt: V).

Table 5

Quantity (name and symbol)		Name of unit	Symbol of unit	Relation and Remarks
area	A	square metre	m ²	
volume	V	cubic metre litre	m ³ l or L	do not use "cbm" $1 l = 1 dm^3 = 10^3 cm^3$ do not use "ccm"
mass	т	gram	g	$1 g = 10^{-3} kg$ do not use "gr."
		unified atomic mass unit	u	$1 u = 1.6605402 \cdot 10^{-27} \text{ kg}$

Quantity (name and symbol)		Name of unit	Symbol of unit	Relation and Remarks
time	t	minute hour day	min h d	1 min = 60 s 1 h = 3600 s 1 d = 86400 s
frequency	n , f	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
force	F	newton	Ν	$1 \text{ N} = 1 \text{ kg m s}^{-2}$
pressure	<i>р</i> , <i>Р</i>	pascal bar	Pa bar	$1 Pa = 1 N m^{-2}$ 1 bar = $10^5 Pa$
dynamic viscosity	h	pascal second	Pa s	1 Pa s = 1 N s m^{-2}
kinematic viscosity	g		$m^2 s^{-1}$	
energy work heat	$\begin{bmatrix} E \\ W \\ Q \end{bmatrix}$	joule electronvolt	J eV	1 J = 1 N m $1 eV = 1.60218 \cdot 10^{-19} J$
heat capacity	C		J K ⁻¹	1 J K ⁻¹ = 1 m ² kg s ⁻² K ⁻¹
power heat flow rate	$\left. \begin{smallmatrix} P \\ F \end{smallmatrix} \right\}$	watt	W	$1 \text{ W} = 1 \text{ J s}^{-1}$
heat flux	J_q		$W m^{-2}$	
thermal conductivity	1		$W m^{-1} K^{-1}$	
heat transfer coefficient	h		$W m^{-2} K^{-1}$	
voltage (difference)	U	volt	V	$1 V = 1 W A^{-1}$
electric resistance	R	ohm	Ω	$1 \ \Omega = 1 \ V \ A^{-1}$
resistivity	r		Ω m	
electric conductance	G	siemens	S	$1 \text{ S} = 1 \Omega^{-1} = 1 \text{ A V}^{-1}$
conductivity	<i>K</i> , <i>s</i>		S m ⁻¹	
celsius temperature	q , t	degree Celsius	°C	

Continuation Table 5 Examples of SI derived units

There is a number of units which should not be used any more in scientific and technical literature (Table 6).

Name	Symbol	Relation
inch	in	$1 \text{ in} = 2.54 \cdot 10^{-2} \text{ m}$
dyne	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$
pond	р	1 p = 9.80665 N
millimetre of mercury	mm Hg	1 mm Hg = 133.322 Pa
standard atmosphere	atm	1 atm = 1.01325 bar
technical atmosphere	at	1 at = 0.980665 bar
Torr	Torr	1 Torr = 1.333224 mbar
pounds per square inch	psi	1 psi = 6895 Pa
poise	Р	1 P = 0.1 Pa s
stokes	St	$1 \text{ St} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$
erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$
calorie, international table	cal _{IT}	$1 \text{ cal}_{\text{IT}} = 4.1868 \text{ J}$
calorie, thermochemical	cal _{th}	$1 \text{ cal}_{\text{th}} = 4.184 \text{ J}$

Table 6

Examples of units not to be used any more in scientific and technical reports

The International Union of Pure and Applied Chemistry (IUPAC) recommends a number of Quantities, Units and Symbols in Physical Chemistry [8], which are listed below for the quantities most frequently used in thermal analysis and calorimetry (Table 7).

Table 7

Recommended quantities, units and symbols (reference [8])

Name	Symbol	Definition	SI unit
molar mass (applied to entities B)	М	$M_{ m B}=rac{m}{n_{ m B}}$	kg mol ⁻¹
relative atomic mass (atomic weight)	$A_{ m r}$	$A_{ m r}=rac{m_{ m a}}{m_{ m u}}$	
molar volume (applied to entities B)	$V_{ m m}$	$V_{\rm m,B} = \frac{V}{n_{\rm B}}$	$m^3 mol^{-1}$
mass fraction (applied to component j)	W	$w_{\rm j} = \frac{m_{\rm j}}{\sum m_{\rm i}}$	
mole fraction (applied to entities B)	х, у	$x_{\rm B} = \frac{n_{\rm B}}{\sum n_{\rm A}}$	

Continuation Table 7	1
----------------------	---

solubility	S		mol m^{-3}
molality (applied to entities B, solvent A)	<i>m</i> , <i>b</i>	$m_{\rm B} = \frac{n_{\rm B}}{m_{\rm A}}$	mol kg ⁻¹
heat	q, Q		J
heat flow rate	F	$F = \frac{\mathrm{d} Q}{\mathrm{d} t}$	W
heat flux	J_q	$J_q = \frac{F}{A}$ (A: Area)	$W m^{-2}$
internal energy	U		J
enthalpy	Н		J
thermodynamic temperature	Т		Κ
Celsius temperature	\boldsymbol{q}, t		°C
entropy	S		J K ⁻¹
Helmholtz energy	A		J
Gibbs energy	G		J
heat capacity at constant pressure	C_p	$C_p = \left(rac{\partial H}{\partial T} ight)_p$	J K ⁻¹
heat capacity at constant volume	C_V	$C_V = \left(\frac{\partial U}{\partial T}\right)_V$	J K ⁻¹
chemical potential	μ	$\mu_{\rm B} = \left(\frac{\partial G}{\partial n_{\rm B}}\right)_{T,p,n_{j\neq \rm B}}$	J mol ⁻¹
equilibrium constant	Κ	- ,,-	
rate of conversion	• X	$\mathbf{\dot{x}} = \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}$	mol s ⁻¹
fraction reacted	а		
order of reaction	n		
activation energy (Arrhenius)	$E_{\rm a}, E_{\rm A}$		J mol ⁻¹
pre-exponential factor	Α		$(m^3 mol^{-1})^{n-1} s^{-1}$
partial molar quantity X	$X_{ m B}$	$X_{\rm B} = \left(\frac{\partial X}{\partial n_{\rm B}}\right)_{T,p,n_{j\neq \rm B}}$	
rate of change of quantity <i>X</i> (flow)	• X	$\mathbf{\dot{X}} = \frac{\mathrm{d}X}{\mathrm{d}t}$	
flux of a quantity X	J_{X}	$J_{\rm X} = \frac{1}{A} \cdot \left(\frac{\mathrm{d}X}{\mathrm{d}t}\right)$	

Remarks: specific molar	means related to mass (e. g. specific heat capacity c) means related to amount of substance (e. g. molar energy E_m)
Note:	In thermal analysis and calorimetry, the rate of change of temperature

(heating rate, cooling rate, scanning rate) is denoted by symbol **b**.

Symbols for states of aggregation (should be appended to the formula symbol in parentheses):

g	gas, vapour
1	liquid
S	solid
cd	condensed
fl	fluid
cr	crystalline
lc	liquid crystal
sln	solution
aq	aqueous solution
am	amorphous solid

Examples: H ₂ O(g)	water in the gaseous/vapour state
$C_p(s)$	heat capacity at constant pressure of a solid
<i>H</i> (cr)	enthalpy of a crystalline solid

Subscripts to denote a chemical transformation or reaction:

vap	vaporization
sub	sublimation
fus	fusion, melting
trs	transition
mix	mixing of fluids
sol	solution (of solute in solvent)
dil	dilution (of a solution)
ads	adsorption
r	reaction
с	combustion

:

Superscripts:

θ,0	standard
*	pure substance
∞	infinite dilution
id	ideal
E	excess quantity

Symbol for change in an extensive thermodynamic quantity Δ Examples:

$\Delta_{\rm vap}H=I$	$H(g \rightarrow H(l))$
$\Delta_{ m fus} H_{ m m}$	molar enthalpy of fusion
$\Delta_{\mathbf{r}} S^{\mathbf{\Theta}}$	standard reaction entropy

Subscripts used in thermal analysis and calorimetry

If related to an object: capital letters (e.g m_S , mass of the sample ; T_R , S temperature of the reference sample R).

If related to a phenomenon: lower case (e.g. T_g , glass transition temperature).

If related to a specific point in time or temperature: lower case (e.g T_{e} , extrapolated peak onset temperature).