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Problems of the hot Big Bang theory revisited
Friedmann-Lemaitre-Robertson-Walker (FLRW) models can describe the Universe 
expansion, but they imply a decelerated expansion for any fluid  component with an 
equation state parameter ! = #/%&! > −)/*. 

!(1 + 3&)
The condition 1 + 3. > 0 is known as the strong energy condition (SEC). Since 
common matter and radiation all obey to SEC (have equations of state parameters 
with . > −1/3) the conclusion is that the Universe’s expansion is decelerateting!

This leads to several difficulties known as the hot Big Bang problems (see next slides). 
A way to solve these problems is to develop a dynamical framework where the FLRW 

Universes may be allowed to expand in an accelerated way, at least during some 
periods of the Universe’s history.  These periods are called inflationary and allows one 

to define inflation as any phase of the universe’s expansion when:

. > −
1

3
⇒ 2̈ < 0

Inflation ⇔ 2̈ > 0

1 + 3$ > 0
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Inflation ⇔ 5̈ > 0

Standard Cosmology

(note that ' ≡ ) in this slide)
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Problems of the hot Big Bang theory revisited
FLRW models with decelerated expansions are inconsistent with some important 
observational evidences facts and pose a number of puzzling questions:
The horizon problem: The FRLW models allow one to compute the particle horizon 
of observer at any given time/redshift. The sky angular size of the particle horizon of 
an observer, 6" , at high redshift can be approximated by:

so an observer at 7 = 1100 (living at epoch of CMB decoupling) has a particle horizon 
with an angular size on our observed sky of about , 6" ≃ 0.95 deg.
This means that there are about 

54000 casual disconnect regions 

in the sky at CMB decoupling.

So, why is CMB 
intensity spectrum so 
uniform temperature 
(2.725 ºK) in all sky 
directions?
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Problems of the hot Big Bang theory revisited
The flatness problem: At early times the Friedmann equation can be written as 
(Ω = Ω# + Ω$):

So the left hand side term should approach rapidly to zero as > → 0 (because, actually, 
2̇ > → 0 → ∞ ). For > ≃ 1×10%&'s (∼Planck time) Ω should deviate no more than ∼
1×10%() from the unity.
So, why is the Universe “starting” with a energy density parameter 
so extremely close to 1? 

Since )̇ * decreases with 
time (because )̈ < 0) this 
denominator increases 
as * → 0
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Problems of the hot Big Bang theory revisited

The monopole and other exotic particles problem: 
Quantum field theories (e.g. GUT, superstring) predict that a variety of “exotic” stable 
particles, such as magnetic monopoles, should be produced in the early Universe and 
remain in measurable amounts until the present.

No such particles have yet been observed. Why?

This either implies that the predictions from particle physics are wrong, or their 
densities are very small and therefore there's something missing from this  
evolutionary picture of the Big Bang. 



Problems of the hot Big Bang theory revisited
The origin of density fluctuations problem: 
On large scales our present universe is fairly isotropic and homogeneous.

Why is that so?

At early times, that homogeneity and isotropy was even more “perfect” (due to the 
flattening effect effect at early times).  Moreover, the FLRW universes form a very 
special subset of  solutions of the GR equations. 

So,  why nature “prefers” homogeneity and isotropy from the beginning as opposed 

to having evolved into that stage?

Inflation
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CMB T=2.725 
K

Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem: 
Locally the universe is not homogeneous. It displays a complex hierarchical pattern of 
galaxies, clusters and super clusters. 

What’s the origin of cosmological structure?

Does it grow from gravitational instability?

What is the origin of the initial perturbations?

Without a mechanism to explain the
existence of fluctuations one has to 
assume that they ``were born'' with the 
universe  already showing the correct 
amplitudes on all scales, so that gravity can 
correctly reproduce the present-day 
structures?
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Conditions for Inflation
If the Universe experience periods of accelerated expansion

This requires  that during these periods the Universe has to be dominated by a fluid 
component with an equation of state parameter ! < −)/* :

Let’s us first look at the acceleration condition. For 2̇ ≠ 0 one has:

The quantity E* = &F%+ is the Hubble length (G" = H = IJ"). 

So, inflation can also be defined as any period of the universe history  when the 

commoving Hubble length E* is decreasing (shrinking).
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Inflation ⇔ 2̈ > 0

<latexit sha1_base64="41363VLv1WAbVMVpIvQt9z33ano="></latexit>

. = K/LH, < −
1

3
⇒ 2̈ > 0

1 + 3$ < 0
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Cosmological scales and horizons
During inflation 

• any comoving scales, +!, +",…  are fixed in time because: +#$% = +&'((.)/1 .

• but the comoving Hubble length and the particle horizon: 2&' ∼ 4) =
#)!"
* = 5 16 +!

decrease with time - when setting 5 = 1 one has 4) = 16 +!

So, during inflation, physical scales inside the horizon at a given time grow faster and may 
become larger than (go beyond) the horizon.

+!

Comoving Hubble radius 
at the beginning of inflation

+!

+"Comoving  
scales at the
beginning of
inflation

+"

/! = )"1" #$
Comoving Hubble 
Length at present 
(Hubble radius) 
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Cosmological scales and horizons
Any cosmological function can be expanded in a series involving different scales. The simplest case is 
the 3D Fourier expressions (that can be extended for curved spaces). Examples:

+!+!

+" +"

Density contrast:

Density Correlation 
function:

Fourier coefficients of scales 
larger than the horizon 

! > #!" ⟺ %# < %!"
remain constant in time 
(frozen) because they result 
from physical processes that 
would need to act on non-
casually connected scales!

#

7 = 29/+

Conditions for Inflation
The inflation conditions can be expressed in terms of other conditions. Let us first note 
that:  

From

So, we conclude that inflation happens whenever

M is known as the slowly-varying Hubble parameter. As long as it is smaller than 1 
inflation happens. The case M = N is known as perfect inflation:  

• The commoving Hubble radius is constant: İ = 0 ⇔ I = HOPQ>2P>

• It implies exponential (de Sitter ) expansion:
.̇
.
= I ⇔ 2 > = 2/ exp(I(> − >/) )
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2̈ > 0 ⇔
J

J>
(2I)%0 < 0 ⇔ −

1

2
1 − M < 0 ⟺

M − 1

2
< 0
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Conditions for Inflation
The inflation condition can also be written as:  

Where JW = J ln(2) is known as the e-fold number:

W = Z
.$

.
J ln(2) = ln

2

2/

The e-fold number is used to quantify how long the inflationary period must be to 
solve the Hot Big-Bang problems (usually W ∼ 40 − 70). 

During the inflationary period, M, needs to remain small (below 1). It is then useful 
introduce a new parameter, ], that measures how fast ^ changes during inflation:

Since _ needs to remain small this means that ` needs to remain small, as well.
In general, one should have: ` < 1 and  M < 1

! = − ;̇
;! = − ;̇/;

<̇/< = − = >? ;
@ >? < = − @ >? ;

@A < 1

B ≡
4 ln E
4F =

4 ln E
4 ln 1 =

̇E
6E

Inflation

16

Conditions for Inflation
The Friedmann and the continuity equations 

I, = L/3a12
,

L̇ = −3I(L + b)

Can be combined to relate, M, with the equation of state parameter. 
One has:

Combining this equation with the continuity equation it is also possible to conclude 
that (exercise):

Which shows that for small M the energy density of the universe remains 

approximately constant during inflation. Conventional matter sources would dilute 
with the (exponential expansion). The energy density of whatever causes inflation 

needs to be  an unconventional/unusual form of matter/energy.   
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Conditions for Inflation (summary table):
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Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the Hot Big-Bang problems  
Flatness problem: 
If the expansion is accelerating, c̈ > N , the derivative of the scale factor ċ is an 

increasing function of time. So, it decreases as we go back in time 

the flatness problem is therefore solved because…

The Universe can in principle “start” with a energy density 
parameter far from 1.

inelation ⇔ 2̈ > 0 ⇔
3
34
(HI%0/2) < 0 

Is an increasing 
function of time, 
so: )̇ * → 0 → 0
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Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the Hot Big-Bang problems  
Flatness problem: 
How much inflation do we need? 
Note that during inflation M = −İ/I, < 1 is small, so if İ ∼ 0 and I ∼ constant 
during the period of inflation > ∈ [>/ , >5]. This means that:

Since, by the end of inflation one needs to have Ω − 1 5~10
%() and one wants not to 

have Ω arbitrarily different from 1, let’s say Ω − 1 / ~ 1, one concludes that:

inelation ⇔ 2̈ > 0 ⇔
3
34
(HI%0/2) < 0 

1 ∼ 3456*)5*

Inflation

20

Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the SMC problems  
The horizon problem: If the accelerated expansion happens in a early phase of the 
Universe, during a long enough period, in principle, all causally disconnected sky 
patches of the CMB can be put in causal contact.

inelation ⇔ 2̈ > 0 ⇔
3
34
(HI%0/2)<0 



Distances and Horizons
Let us consider the travel of light along radial (J6 = Jn = 0) geodesics in a FLRW 
metric

written in a conformal way with the introduction of the conformal time Eo = Ep/c

(with Jq = Jr for flat geometries), So light rays (JQ, = 0) travel along geodesics with

From integrating this we can define the notions of: 

• Particle horizon:                                                            with >/ = 0

• Event horizon:                                                               with >6 = ∞

Inflation
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Distances and Horizons

7&' =

7(' =
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Distances and Horizons
The particle horizon, q78, the maximal commoving distance travelled by light until a 
time t, can be computed as follows:

with >/ = 0; 2/ = 0. 

Let us evaluate this integral for a perfect (single component), with EoS w, where the 
scale factor evolves as 2 = 2/>

,/'(0;<) . The commoving Hubble radius inside the last 
integral is (Exercise):

For any fluid component with an equation state parameter .. All familiar matter 
sources have 1 + 3. > 0 (this is an implication of the so-called strong energy 

condition (SEC)). So, in the Hot Big-Bang theory model the commoving Hubble radius 
is always increasing.
Using the above expressions in the integral one finds (with >/ = 0), see next page:
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Distances and Horizons
The particle horizon, q78, will then give:

Note that for standard Friedmann evolution, where SEC grants 1 + 3. > 0 , the 
second term goes to zero: o>(c> → N) → N. 
So, in that case

And one concludes that:

• the comoving particle horizon is proportional (and of the same order) to the 
comoving Hubble radius

• The comoving particle horizon / Hubble length is always increasing.

But since during inflation, SEC is violated, ) + *! < N , the second term in the first 
equation of this slide goes to minus infinity: o> c> → N → −∞ . The first term, t, also 
is negative, but less negative than t/ and therefore and q78 > 0 ,  q 2/ → 0 = ∞.
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Distances and Horizons

Hot Big-Bang evolution

Hot Big-Bang + inflation evolution

8) → 0

8) → −∞
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inelation ⇔ 2̈ > 0 ⇔
3
34
(HI%0/2)<0 

Basic Picture
Let us now look intuitively how the inflation condition 

may be used to solve the SMC problems  
The monopole problem: If the universe expands sufficiently after monopoles are 
produced their abundance can be too low to be observed.
The homogeneity problem: our visible universe comes from a causally connected 
region that expanded a lot so it looks fairly isotropic and homogeneous 
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The Theory of Inflation
Inflation also provides a mechanism
for the origin of fluctuations…

The inflation (inflaton) field n has energy density 
fluctuations allowed by the Heisenberg 
uncertainty principle:

ΔEG > ℎ/(4-Δ.)
The simplest models of inflation predict random 
fluctuations with a “power spectrum” that has  
the same amplitude on all scales (scale 
Invariant power spectrum). Just like…

… fluctuations (density and grav. 
waves) are due to quantum 

fluctuations about the inflaton field’s 
vacuum state |1H|

From:

28

The Theory of Inflation:
The origin of fluctuations

… static white noise!

;(<)

<
<=2=/>

; < = ? <"
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The Theory of Inflation:
The origin of fluctuations

static white noise!
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The Theory of Inflation
Inflation also provides a mechanism
for the origin of fluctuations…

The inflation (inflaton) field has energy density 
fluctuations allowed by the Heisenberg 
uncertainty principle:

ΔEG > ℎ/(4-Δ.)
During inflation fluctuations are “inflated” to 
macroscopic scales > physically connected 
scales become larger than the horizon scale 
and “freeze”. Latter they will re-enter the horizon.  

… fluctuations (density and grav. 
waves) are due to quantum 

fluctuations about the inflaton field’s 
vacuum state

From:



Standard Model of Cosmology (SMC)

SMC = Hot Big Bang + Inflation

FLRW models 
provide a 
description for 
the evolution of 
the “background” 
Universe 

provides a 
mechanism for 
the origin of 
perturbations 
in this 
“background 
Universe”

From:

+
8AB
3

D$

!* is the energy density of the inflationary 
field. It dominates during the inflation period!

Standard Model of Cosmology (SMC)

After the end of inflation the 
universe resumes the usual 
Friedmann evolutionary periods 

• Background evolution is 
progressively dominated by: 

•Radiation 
•Matter
•Dark Energy

SMC = Hot Big Bang + Inflation

From:

+
8AB
3

D$

0
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Scalar field Dynamics
Inflation is usually modelled by a scalar field n = n u/ , > , called the inflaton field, 
that can generally be a function of position and time. 

Associated with each field value 
there’s a potential energy, v(n), 
and If the field depends on time, 
the field also  carries kinetic energy.

Using the Noether’s theorem one can 
Prove that the energy-stress tensor of 
any scalar Field can be computed as:

For a homogeneous and isotropic FLRW universe, without perturbations (ie
inhomogeneities) the field is only a function of time, n = n > . Computing, w)) = LE , 
and wF

/ = −bE xF
/ one obtains:
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Scalar field Dynamics: Klein-Gordan equation
Using LE in the Friedmann equation gives:

Taking the time derivative one finds:

where vG ≡ Jv/Jn. 
Using LE and bE in the acceleration equation and combining it with the Friedmann 
equation, one obtains:

This shows that the acceleration of the universe is sourced by the kinetic energy of 

the inflaton field. Combining these two last expressions one obtains the Klein-Gordan

equation that describes the evolution of the inflationary field:

(Friedmann equation)

(Acceleration equation)

(Klein-Gordan equation)
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Slow roll inflation
Combining the expressions:                            and                               gives:

This means that inflation _ < 1 only  
occurs if the contribution of the kinetic 
energy of the field to the total energy 
is small. When it is very small, the field 
is said to be slow rolling…

The time derivative of _ gives:

Which allows us to compute the ` parameter as:

where x ≡ −n̈/Iṅ.
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Slow roll inflation
The conditions  _ < 1 and  |`| < 1 are a guaranty that inflation happens and persists. 
Since this implies that the kinetic energy 
of the field is small one can assume the
slow roll inflation conditions: 

_, ` ≪ 1

and approximate the Friedmann and 
Klien Gordon equations as:

• Friedmann (ṅ,~0): 

• Klein Gordan ( n̈~0): 

Combining these equations (plus taking the time derivative of the Klein Gordon 
equation) allows one to write the _, ` parameters as function of the potential and 
its derivatives (exercise):
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Slow roll inflation
The total amount of e-folds (which gives by how 
much the universe expands during the inflationary 
period) can be derived from our knowledge of 
the inflationary potential.

Here, >H and  >I are the times when inflation begins 
and ends, which happens when: 

The integrand function above, can be approximated by (note that                    ):

Which leads to:
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Slow roll inflation
Using the the slow-roll expression _J ,

in the number of e-folding  integral one gets

Since the number of e-foldings is counted from the moment inflation begins, it is usual 

to refer to pK as the instant “N e-foldings before inflation ends”, and |K is often 

expressed as |L, the inflaton field value N-efoldings before the end of inflation (In 
fact, this instant scale is the latest to re-enter the “sound” horizon).
So one can also write: 
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Working example: 2(3) = 4I3I/2
This case belongs to an important class of 
potentials (v(n) ∝ n1 ) known as Large field 

inflation models (the potential evolves over 
super-Planckian values).

This potential allows slow-rolling. The number of
e-foldings under these conditions gives:

So the value of the field at a moment N e-foldings before n5 should be: 

Now, we know that when inflation ends, _J = 1, so using this in _J one has:

Solving for nI (see next slide)…
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Working example: 2(3) = 4I3I/2
This case belongs to an important class of 
potentials (v(n) ∝ n1 ) known as Large field 
inflation models (the potential evolves over 
super-Planckian values).

Solving for nI (continuation from previous slide),
one obtains:

For W ≃ 70 these give: 
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Re-heating
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Re-heating
During the inflationary period most of 
the energy density of the Universe is 
given by the inflationary potential. 

As inflation ends, the kinetic energy 
associated with the inflaton field is no 
longer negligible and the energy in the 
field is transferred to the matter/energy 
species of the fluid.

Where Γ is the so-called energy width 

of the inflaton decay (LM is the energy 
density of relativistic fields).

This process is known as reheating and 
It is followed by  the hot big bang 
evolutionary phase of the universe.
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Re-heating
The basic idea behind reheating is that 
this period starts when n begins to 
oscillate with a friction term about the 
minimum of the inflationary potential.

For example, taking a quadratic potential
v = �,n,/2 , the Klein-Gordon 

and the continuity equations give:

Oscillations decrease in 
amplitude due to the friction term. 
By the end of the process all energy 
of the field is transferred, leading to 
the beginning of the hot Big-Bang 
evolution.


