Single-Dish Radio Observations

- We wish to measure the flux density F_v of a source. This is related to its specific intensity: $F_v \sim I_v \Omega$.
- The intensity can be expressed in terms of *brightness temperature*. In the R-J regime:

$$I_{v}(\theta,\phi) = \frac{2k}{\lambda^{2}} T_{B}(\theta,\phi)$$

- The power of the radiation collected from a source with flux density F_v is: $P = F_v A_{eff} \Delta v$ (Δv = bandwidth or range of frequencies detected) Power from the astronomical source: $P = k \Delta v T_A$
- So, in principle, if we measure T_A we get F_v . So it seems simple. But it is complicated!

Single-Dish Radio Observations

- First, let's consider the noise.
- Power from the astronomical source: T_A
- Power from the receiver: T_N (or T_{Rec})
- All un-wanted extra power: $T_{sys} = T_N + T_{atm} + ...$
- The *system temperature* T_{sys} includes power from the:
 - receiver
 - background sky
 - atmosphere
 - reflector
 - spillover

Single-Dish Radio Observations

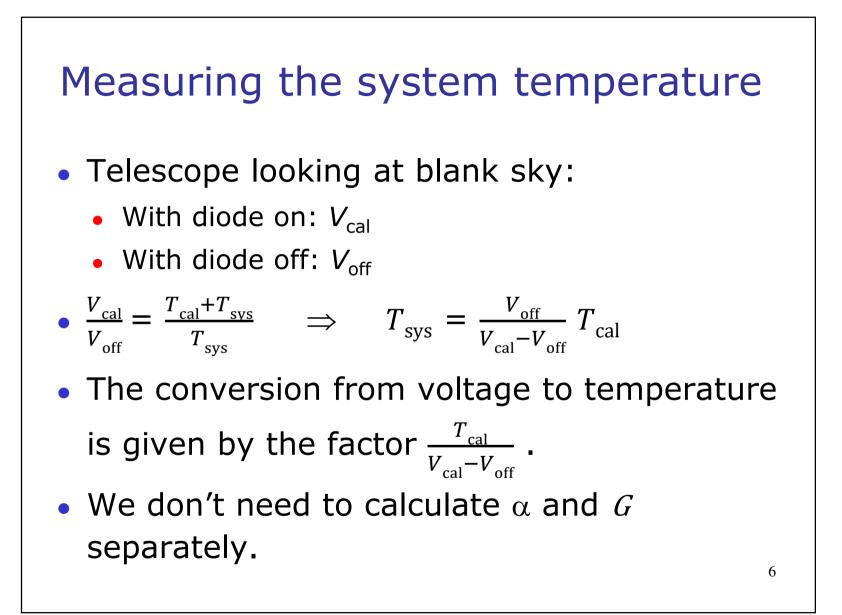
- Power from the astronomical source: T_A
- All un-wanted extra power: T_{sys}
- Amplifiers: gain G
- Total power: $P = G k \Delta v (T_A + T_{sys})$
- The power measured by the receiver is converted into a voltage: $V_{on} = \alpha G k \Delta v (T_A + T_{sys})$
- But $T_A << T_{sys} \Rightarrow$ need switching: measure another signal, with same overall power, that differs from the first, solely by the fact that it does not contain the astronomical signal, and subtract.

Switching

- On-source and off-source:
 - $V_{\rm on} = \alpha \ G \ k \, \Delta \nu \, (T_A + T_{\rm sys})$
 - $V_{\text{off}} = \alpha \ G \ k \ \Delta \nu \ T_{\text{sys}}$
- $V_{on} V_{off} = \alpha G k \Delta v T_A$
- Switching allows to determine *T_A* but has to be done as fast as any power variations due to the receiver or the atmosphere.
- Position switching and beam switching:
 - Position switching: the OFF position is specified
 - Beam switching: specify the "throw" (in azimuth or elevation)

Calibration

- $V_{on} V_{off} = \alpha G k \Delta v T_A$
- $V_{\text{off}} = \alpha \ G \ k \ \Delta \nu \ T_{\text{sys}}$
- It seems that we need to measure α and *G* separately and for every observation. That is not practical.
- Calibration of the system: A noise diode injects a known amount of radio-frequency power per unit bandwidth corresponding to a known equivalent temperature T_{cal} .



Measuring the antenna temperature

 Instead of the diode, we inject the astronomical signal:

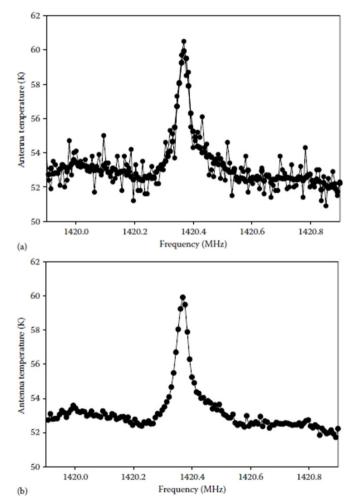
•
$$\frac{V_{\text{on}}}{V_{\text{off}}} = \frac{T_A + T_{\text{sys}}}{T_{\text{sys}}} \implies$$

•
$$T_A = \frac{V_{\rm on} - V_{\rm off}}{V_{\rm off}} T_{\rm sys}$$

• Uncertainty in T_A :

•
$$T_A << T_{sys} \Rightarrow$$

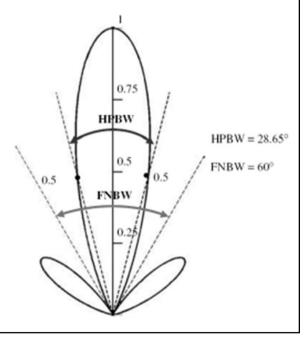
•
$$\sigma(T_A) = \frac{T_{sys}}{\sqrt{\Delta t \Delta v}}$$



Uncertainty in T_A : radiometer equation • $\sigma(T_A) = \frac{T_{sys}}{\sqrt{\Delta t \Delta y}}$ Switching: two measurements, ON-OFF. The total uncertainty grows by $\sqrt{2}$ $\Rightarrow \sigma(T_A) = \sqrt{2} \frac{T_{sys}}{\sqrt{\Lambda t \Lambda v}}$ • Switching: $\Delta t_{obs} = 2 \Delta t$ • Example: • $\Rightarrow \sigma(T_A) = 2 \frac{T_{sys}}{\sqrt{\Delta t_{obs} \Delta V}}$ • Example: $\Delta t_{obs} = 1 \text{ s}, \Delta v = 1 \text{ MHz}$ $\Rightarrow \sigma(T_A) = 0.001 T_{svs}$ \Rightarrow It is possible to observe signal a thousand smaller than the noise (non-astronomical signal).

Observing our astronomical sources

- All done, right?
- We measure voltages, that give T_A ,
- ...that gives P
- ...that gives F_{v} .
- For a point source, yes.
- But for extended sources
- Beam pattern, resolution, etc.



Antenna beam, beam pattern

- Non-uniform beam pattern ⇒ antenna captures power from different points of the sky with different ability.
- The antenna temperature depends on the:
 - intensity of the source (function of <u>position on</u> <u>the sky</u>) and also on the
 - antenna beam or beam pattern (sensitivity of the telescope as a function of <u>position on the sky</u>)
- Beam (or power) pattern: $P_{\rm bm}(\theta, \phi)$
- Normalized: $P_{bm}(0, 0)=1$

• Antenna solid angle, Ω_A , is the integration of the beam power pattern over all angles:

 $\Omega_{\rm A} = \int P_{\rm hm}(\theta, \phi) \, \mathrm{d}\Omega$ with $\mathrm{d}\Omega = \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$.

• Gives the angular area the telescope responds to.

• Antenna theorem:
$$\Omega_{\rm A} = \frac{\lambda^2}{A_{\rm eff}}$$
 (always valid)

- Antenna with circular reflector \Rightarrow beam is axially symmetric $\Rightarrow P_{\rm hm}(\theta, \phi) = P_{\rm hm}(\theta)$
- For uniformly illuminated circular aperture, $P_{\rm hm}(\theta)$ is a Bessel function. 11

Antenna main beam

• $P_{\text{main beam}}(\theta)$ is a Bessel function, often approximated by a gaussian: $P_{\text{main}}(\theta) = \exp\left[-4 \ln 2 \left(\frac{\theta}{\theta}\right)^2\right]$ where, by definition, θ_{FWHM} is the angular resolution. • For a uniformly illuminated aperture, $\theta_{FWHM} = 1.02 \lambda/D$ • For an optimum illuminated aperture, $\theta_{FWHM} = 1.15 \lambda/D$ The *antenna main beam*, or solid angle of the main beam, is : $\Omega_{\text{main}} = \int P_{\text{main beam}}(\theta) \, d\Omega = \frac{1}{\ln 2} \frac{\pi}{4} \theta^2_{\text{FWHM}}$ $\Omega_{\text{main}} = \frac{\pi}{4 \ln 2} \theta^2_{\text{FWHM}}$ 12

Main beam efficiency

- Example: For a optimum illuminated aperture, $\theta_{\text{FWHM}} = 1.15 \,\lambda/D \implies \Omega_{\text{main}} = \frac{1}{\ln 2} \frac{\pi}{4} \theta^2_{\text{FWHM}} = 1.50 \,\frac{\lambda^2}{D^2}$ • Using $A_{\text{geom}} = \frac{\pi}{4} D^2 \implies \Omega_{\text{main}} = 1.18 \frac{\lambda^2}{A_{\text{geom}}}$
- But $\max(A_{\text{eff}})=0.82 A_{\text{geom}} \Rightarrow A_{\text{eff}} \le 0.82 A_{\text{geom}}$

•
$$\Rightarrow \Omega_{\text{main}} \le 0.97 \frac{\lambda^2}{A_{\text{eff}}} \Rightarrow \Omega_{\text{main}} \le 0.97 \Omega_{\text{A}}$$

• The main beam solid angle can be up to 97% of the antenna solid angle, under optimum illumination.

• Define: *main beam efficiency*:

$$\eta_{mb} = \frac{\Omega_{main}}{\Omega_A}$$

13

Aperture efficiency

• Define: *aperture efficiency*: $\eta_A = \frac{A_{eff}}{A_{geom}}$

• For the optimum illumination case, $\frac{\eta_{mb}}{\eta_{A}}$ =1.18.

(Note: optical misalignments or out of focus enlarge the main beam $\Rightarrow \theta_{FWHM} > 1.15 \lambda/D$)

Power from extended sources

• $P = F_v A_{eff} \Delta v$ but the flux density coming from different directions of the source is not detected with the same efficiency.

• Let the telescope point at $(\theta_0, \phi_0) \Rightarrow P_{bm}(\theta - \theta_0, \phi - \phi_0)$

• Elementary power from
$$(\theta, \phi)$$
 is:

$$dP(\theta_0, \phi_0) = I_v(\theta, \phi) P_{bm}(\theta - \theta_0, \phi - \phi_0) d\Omega \quad A_{eff} \Delta v$$

$$\Rightarrow P(\theta_0, \phi_0) = \frac{1}{2} \int_{\text{all sky}} I_{\nu}(\theta, \phi) P_{\text{bm}}(\theta - \theta_0, \phi - \phi_0) \, \mathrm{d}\Omega \quad A_{\text{eff}} \, \Delta\nu$$

$$\Rightarrow T_{A}(\theta_{0},\phi_{0}) = \frac{A_{\text{eff}}}{2k} \int_{\text{all sky}} I_{v}(\theta,\phi) P_{\text{bm}}(\theta-\theta_{0},\phi-\phi_{0}) d\Omega$$

• \Rightarrow $T_{\rm A}$ is the convolution of the source intensity with the antenna beam: $T_{\rm A} = I_{\rm v} \otimes P_{\rm bm}$ ¹⁵

Power from extended sources

• Recall: Brightness temperature, $T_{\rm B}$, is a measure of intensity. In the R-J approximation:

$$I_{v}(\theta,\phi) = \frac{2k}{\lambda^{2}} T_{B}(\theta,\phi)$$

$$\Rightarrow T_{\rm A}(\theta_0,\phi_0) = \frac{A_{\rm eff}}{\lambda^2} \int_{\rm all \, sky} T_{\rm B}(\theta,\phi) P_{\rm bm}(\theta-\theta_0,\phi-\phi_0) \, \mathrm{d}\Omega$$

- \Rightarrow T_A is the convolution of the source brightness temperature with the antenna beam: $T_A = T_B \otimes P_{bm}$
- Or equivalently $T_{\rm A} = I_{\rm v} \otimes P_{\rm bm}$
- We want I_v or T_B of the source but we only measure T_A . And T_A is a smeared version of T_B .

16

Resolved versus unresolved sources

- Extended sources versus point sources.
- More correctly: resolved versus unresolved sources.
- What is a "resolved" source?
 - Angular size > (main) beam size
- What is a "unresolved" source?
 - Angular size < (main) beam size
- What is a "point" source?
 - Angular size << (main) beam size
- A "unresolved" source whose angular size is << beam size is a "point" source.

Point source

• Point source located at $(\theta_0, \phi_0) \Rightarrow$ Only contribution for $\theta = \theta_0, \phi = \phi_0 \Rightarrow P_{bm}(\theta - \theta_0, \phi - \phi_0) \approx P_{bm}(0, 0) = 1$ $\Rightarrow T_A(\theta_0, \phi_0) = \frac{A_{eff}}{2k} \int_{source} I_v(\theta, \phi) d\Omega$

$$\Rightarrow T_{\rm A} = \frac{A_{\rm eff}}{2k} F_{\rm v} \implies F_{\rm v} = \frac{2k}{A_{\rm eff}} T_{\rm A}$$

 \Rightarrow For a point source, we get a direct measure of the flux density.

- ^F_v = ^{2k}/<sub>A_{eff} is the factor converting antenna temperature to flux density, for a point source.

 The inverse, ^T/_F=DPFU=<sup>A_{eff}/_{2k}, (degrees per flux unit), expressed in K by 1 is obtained during calibration of the tolescene

 </sub></sup>
 - K Jy⁻¹, is obtained during calibration of the telescope.

Point source

- Unresolved source, but with a known solid angle $\Omega_{\rm source}$

•
$$F_{\nu} = \frac{2k}{A_{\text{eff}}} T_{\text{A}}$$
, $F_{\nu} = I_{\nu} \Omega_{\text{source}}$, $I_{\nu} = \frac{2k}{\lambda^2} T_{\text{B}}$
 $\Rightarrow \frac{2k}{\lambda^2} T_{\text{B}} \Omega_{\text{source}} = \frac{2k}{A_{\text{eff}}} T_{\text{A}} \Rightarrow T_{\text{A}} = \frac{A_{\text{eff}}}{\lambda^2} T_{\text{B}} \Omega_{\text{source}}$
 $\Rightarrow T_{\text{A}} = \frac{\Omega_{\text{source}}}{\Omega_{\text{A}}} T_{\text{B}} \Rightarrow T_{\text{A}} < T_{\text{B}}$

• We say that there is *beam dilution* and $\frac{\Omega_{\text{source}}}{\Omega_{\text{A}}}$ is the *beam filling factor*.

•
$$T_{\rm A} = \frac{\Omega_{\rm source}}{\Omega_{\rm A}} T_{\rm B}$$

• If the source just fills the main beam: $\Omega_{\rm source} = \Omega_{\rm main}$
 $\Rightarrow T_{\rm A} = \frac{\Omega_{\rm main}}{\Omega_{\rm A}} T_{\rm B} \Rightarrow T_{\rm A} = \eta_{\rm mb} T_{\rm B}$

Resolved source

- Source is larger than the beam.
- Example 1: source is uniform and fills the main beam but does not extend into the side lobes (*I*(θ, φ) is zero outside the main beam).

$$\Rightarrow T_{A}(\theta_{0},\phi_{0}) = \frac{A_{eff}}{2k} \int_{all \, sky} I_{v}(\theta,\phi) P_{bm}(\theta-\theta_{0},\phi-\phi_{0}) \, d\Omega$$

$$\Rightarrow T_{A} = \frac{A_{eff}}{2k} \Omega_{main} I_{v} \Rightarrow \text{ The antenna temperature is}$$

proportional to I_{v} not to F_{v} .

• If the source is not uniform $I_v \rightarrow \langle I_v \rangle = average$ intensity over the main beam.

•
$$< I_{\nu} > = \frac{2k}{A_{\text{eff}}\Omega_{\text{main}}} T_{\text{A}} = \frac{2k}{\lambda^2 \eta_{\text{mb}}} T_{\text{A}}$$
²¹

Resolved source

•
$$< I_{\nu} > = \frac{2k}{\lambda^2 \eta_{\rm mb}} T_{\rm A}$$

• Recall that $< I_{v} > \sim F_{v} / \Omega_{\text{main}}$

- < I_v >, the average intensity over the main beam, is commonly referred to as the "*flux density per beam*", in "Jy beam⁻¹", instead of Jy sr⁻¹.
- If a table gives results of observations in Jy/beam, the flux density of each source is:
 - the value quoted, if the source is unresolved
 - the integral (or sum) over the solid angle of the source, if the source is resolved.

Resolved source

- Source is larger than the beam.
- Example 2: source is uniform and fills the entire sky (also, no spillover).

$$\Rightarrow T_{A}(\theta_{0}, \phi_{0}) = \frac{A_{eff}}{\lambda^{2}} \int_{all \ sky} T_{B}(\theta, \phi) P_{bm}(\theta - \theta_{0}, \phi - \phi_{0}) d\Omega$$
$$\Rightarrow T_{A} = \frac{A_{eff}}{\lambda^{2}} \left[\int_{all \ sky} P_{bm}(\theta - \theta_{0}, \phi - \phi_{0}) d\Omega \right] T_{B}$$
$$\Rightarrow T_{A} = \frac{A_{eff}}{\lambda^{2}} \Omega_{A} T_{B} \Rightarrow T_{A} = T_{B}$$

• When all sky is filled with uniform radiation of brightness temperature $T_{\rm B}$, the measured antenna temperature $T_{\rm A}$ is equal to this brightness temperature.

Calibration by filling the beam

- Surrounding the telescope (or feed horn) with a source of known $T_{\rm B}$ (a blackbody), allows the measurement of the system temperature.
- This method is used at higher frequencies and also allows the correction of the attenuation of the atmosphere.

•
$$V = C(T_A + T_{sys})$$

With a "hot load": $V_{HL} = C(T_{HL} + T_{sys})$ With a "cold load": $V_{CL} = C(T_{CL} + T_{sys})$

$$T_{\text{sys}} = \frac{T_{\text{HL}} - T_{\text{CL}}y}{y-1} \quad \text{with} \quad y = V_{\text{HL}}/V_{\text{CL}}$$

e.g. $T_{\text{CL}} = 78$ K (liquid N₂); $T_{\text{HL}} = 293$ K (ambient)

24

Spectral line observations

- Requires a spectrometer at the back-end
- Spectral parameters (fixed for the filter bank):
 - Spectral resolution: width of each channel, δv
 - Total bandwidth: $\Delta v = N_{channels} \delta v$
 - Central IF (frequency of the central channel)
- LO is used to select the RF we want to observe: ν_{RF} = $\nu_{\text{LO}} \pm \nu_{\text{IF}}$
- To detect and measure the line: minimum number of 5 channels across the line.
- Line must leave free a sufficient number of channels (not occupy more than ³/₄ of the bandwidth). 25

Spectral line observations

• Uncertainty in T_A depends on δv . Substitute: $\Delta v \rightarrow \delta v$ in the equation of uncertainty:

$$\sigma(T_{\rm A}) = 2 \frac{T_{\rm sys}}{\sqrt{\Delta t_{\rm obs}} \,\delta v}$$

- Spectra as a function of velocity (instead of frequency).
- Conversion based on Doppler formula:

$$\frac{v - v_0}{v_0} = \frac{v}{c}$$
 (non-relativistic)

Spectral line observations

- Frequency switching: alternative mode of switching possible because the signal is contained in a narrow range of frequencies.
- Switch in frequency (tuning the LO to a slightly different frequency) instead of moving the telescope or secondary.
- Frequency offset not too large: the OFF spectrum should contain the same noise as the ON spectrum.

• Can double the time on-source, thus requiring less
observing time:
$$\sigma(T_A) = \sqrt{2} \frac{T_{sys}}{\sqrt{\Delta t_{obs} \delta v}}$$
, not: $2 \frac{T_{sys}}{\sqrt{\Delta t_{obs} \delta v}}$ ²⁷

Baseline

- The reference (or comparison, or OFF) signal may not be well-balanced in power. The result is a baseline that is not flat nor located at $T_A=0$.
- Requires "subtracting a baseline".
- Usually in the form of linear function of the frequency.
- Sometimes a sinusoidal baseline appears, due to a standing wave between the feed horn and the primary reflector.

Radio images

- When the angular size of the source is larger than the beam, we may wish to make an image of the source.
- But small number of receivers at the telescope.
- Building image point by point covering the sky area desired.
- Sampling: full-beam versus Nyquist.

Convolution

 Remember: The antenna temperature is the convolution of the brightness of the source with the beam pattern.

•
$$T_{\rm A}(\theta_0, \phi_0) = \frac{A_{\rm eff}}{2k} \int_{\rm all \ sky} I_{\nu}(\theta, \phi) P_{\rm bm}(\theta - \theta_0, \phi - \phi_0) \,\mathrm{d}\Omega$$
 Or $T_{\rm A} = I_{\nu} \otimes P_{\rm bm}$

- The resolution of the image is given by the beam size.
- If the beam pattern is well known, and there is sufficient SNR, some resolution can be recovered by making a deconvolution.

•
$$\theta_{eff} \sim \frac{\theta_{fundamental}}{\sqrt{SNR}}$$

Convolution with a point source

- Point source located at $(\theta_0, \phi_0) \Rightarrow$ Only contribution for $\theta = \theta_0, \phi = \phi_0 \Rightarrow P_{bm}(\theta - \theta_0, \phi - \phi_0) = P_{bm}(0, 0) = 1$ $T_A(\theta_0, \phi_0) = \frac{A_{eff}}{2k} \int_{\text{all sky}} I_v(\theta, \phi) P_{bm}(\theta - \theta_0, \phi - \phi_0) d\Omega \Rightarrow T_A = \frac{A_{eff}}{2k} F_v$
- Point source located at $(\theta_1, \phi_1) \Rightarrow$ Only contribution for $\theta = \theta_1, \phi = \phi_1 \Rightarrow P_{bm}(\theta_1 - \theta_0, \phi_1 - \phi_0) \neq 1$

•
$$T_{\rm A}(\theta_1, \phi_1) = \frac{A_{\rm eff}}{2k} \int_{\rm all \ sky} I_{\nu}(\theta, \phi) P_{\rm bm}(\theta - \theta_0, \phi - \phi_0) \, \mathrm{d}\Omega$$

$$\Rightarrow T_{\rm A}(\theta_1,\phi_1) = \frac{A_{\rm eff}}{2k} F_{\rm v} P_{\rm bm}(\theta_1 - \theta_0,\phi_1 - \phi_0)$$

• Let position 1 be arbitrary:

$$T_{\rm A}(\theta,\phi) = \frac{A_{\rm eff}}{2k} F_{\rm v} P_{\rm bm}(\theta - \theta_0,\phi - \phi_0)$$

Convolution with a point source

• Let position 1 be arbitrary:

$$T_{\rm A}(\theta,\phi) = \frac{A_{\rm eff}}{2k} F_{\rm v} P_{\rm bm}(\theta - \theta_0,\phi - \phi_0)$$

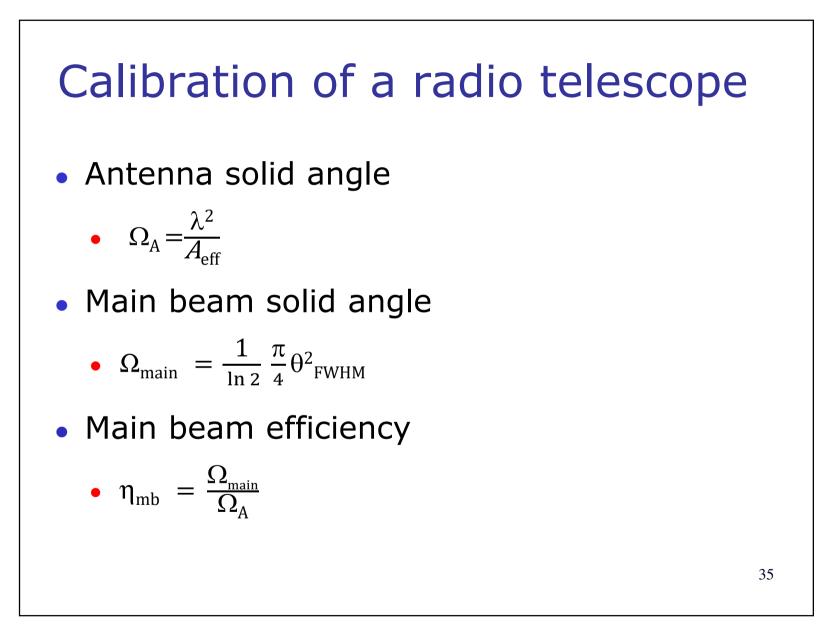
- The map looks like the beam pattern. That is, the angular dependence of the map is the same as the antenna beam pattern.
- The peak value in the map gives the flux density of the source.
- This is useful to measure the beam pattern of an antenna.

Calibration of a radio telescope

- Pointing
 - Temperature variations, deformation of the dish, etc.
 - Pointing corrections needed
 - Using a five-point scan map in Az-El.
- Gain, Effective Area and Gain curve (function of El).
 - Different telescope gains (<u>not</u> receiver gain). Needs to be <u>measured</u>.
 - DPFU: Gain $=\frac{A_{eff}}{2k} = \frac{T_A}{F_v}$ (measure this one) • Another Gain $=\frac{4\pi}{\Omega_A} = \frac{4\pi A_{eff}}{\lambda^2}$ • Aperture efficiency: $\eta_A = \frac{A_{eff}}{A_{geom}}$ 33

Calibration of a radio telescope

- Beam pattern
 - By mapping a strong point source
 - Inclusively, side lobes
- Main Beam efficiency
 - Extended source to fill the main beam (but not the error pattern). Use $T_A = \eta_{mb} T_B$ to measure η_{mb} .
 - For short wavelengths (< 1 cm), use large planets.



IRAM

https://www.iram-institute.org