Programa
Análise Complexa
Curso Livre em MINOR - Alunos Externos
Licenciatura Bolonha em Matemática Aplicada
Licenciatura Bolonha em Matemática
Licenciatura Bolonha em Biologia
Licenciatura Bolonha em Química
Licenciatura Bolonha em Estatística Aplicada
Licenciatura Bolonha em Biologia
Programa
Aritmética e topologia no plano complexo. Funções elementares (exponencial, trigonométricas e hiperbólicas e suas inversas;) Funções multiformes (raiz, logaritmo). Referência a superfícies de Riemann. Séries de potências. Limites e continuidade. Diferenciabilidade; equações de Cauchy-Riemann. Funções analíticas e holomorfas; Teorema de Taylor. Fórmulas integrais de Cauchy; teorema de Liouville; teorema fundamental da Álgebra. Teorema dos resíduos. Cálculo de resíduos e aplicações. Teorema de Morera. Zeros de funções analíticas; teorema de Rouché. Séries de Laurent; singularidades isoladas, polos e singularidades essenciais. Teorema de Casorati-Weierstrass. Princípio do argumento. Teoremas da aplicação aberta e da função inversa. Princípio do módulo máximo. Lema de Schwarz. Funções harmónicas. Equação de Laplace no disco. Transformações conformes. Enunciado do teorema da aplicação de Riemann.