Sumários
Classification - II
27 Novembro 2024, 08:30 • André Maria da Silva Dias Moitinho de Almeida
- Overview of supervised classification
- Relation with regression
- Validation
- Decision boundaries
- Supervised methods:
- K-Nearest Neighbours
Classification - I
26 Novembro 2024, 14:00 • André Maria da Silva Dias Moitinho de Almeida
- Goal: to assign data to discrete classes or categories.
- Overview of classification types: unsupervised and supervised
- Performance metrics: Completeness, Contamination, Precision, Recall
- Unsupervised classification
- With clustering methods
- With dimensionality reduction methods
Optimisation
20 Novembro 2024, 09:30 • André Maria da Silva Dias Moitinho de Almeida
Optimisation - III
20 Novembro 2024, 08:30 • André Maria da Silva Dias Moitinho de Almeida
- Approaches (cont)
- Markov Chain Monte-Carlo algorithms
- Metropolis-Hastings
- Gibbs
- Parallel tempering
- Integrated nested Laplace approximations (INLA)
Optimisation - II
19 Novembro 2024, 14:00 • André Maria da Silva Dias Moitinho de Almeida
- Approaches (cont)
- Gradient descent generalizations (brief mention): Stochastic Gradient Descent (SGD) with mini-batches; Adding momentum (GDM); AdaGrad (Adaptive Gradient Algorithm); RMSprop; ADAM (Adaptive Gradient Algorithm)
- Markov Chain Monte-Carlo - theoretic foundations