Disciplina Curricular
Tectonofísica Tect
Mestrado Bolonha em Ciências Geofísicas - 3_MCG 2017/18
Contextos
Grupo: 3_MCG 2017/18 > 2º Ciclo > Parte Escolar > Ramos > Geofísica Interna
Período:
Peso
6.0 (para cálculo da média)
Objectivos
Adquirir conhecimentos básicos fundamentais para o desenvolvimento de modelos geodinâmicos através de métodos numéricos (diferenças finitas) utilizando programação em MATLAB. Atingir e/ou consolidar uma compreensão mecânica (intuitiva i.e.: enraizada na realidade geológica) dos principais princípios físicos (principais equações) que regulam os processos geodinâmicos selecionados em cada caso como alvos da modelação. Desenvolver autonomia e proficiência prática na manipulação dos princípios adquiridos na modelação numérica geodinâmica (diferenças finitas) através da aplicação dos conhecimentos acima citados à resolução de problemas concretos (ainda que simples e exemplificativos). Estabelecer e/ou consolidar a relação chave entre a realidade geológica, a partir da qual todos modelos numéricos deverão ser construídos, e a importância instrumental das técnicas de programação de modelos numéricos assentes nos princípios físicos que governam os processos geológicos observados à partida.
Programa
- Princípios básicos da observação geológica-estrutural de afloramentos chave no campo; - Princípios básicos de programação em MATLAB; - Equação da continuidade: dedução e noção intuitiva/mecânica do seu significado; - Métodos numéricos de diferenças finitas aplicados à resolução de equações do tipo Poisson (a 1D e 2D); Tensor das tensões, da distorção e da taxa de distorção: significado mecânico e descrição quantitativa; - Equação do momento: dedução da equação de Stokes na forma de uma equação de Poisson para a situação de um fluido incompressível e gradiente de pressão constante. - Comportamento viscoso das rochas: descritores empíricos quantitativos ("empirical flow laws"); - Soluções numéricas da equação do momento e da continuidade (2D, viscosidade constante e variável); - A equação da advecção; - Solução numérica da equação da difusão (conservação do calor); - Estrutura de um código (de programação) termo-mecânico
Métodos de ensino e avaliação
Aulas teóricas expositivas; Aulas teórico-práticas de programação computacional (linguagem MATLAB); Aulas práticas de campo. Exame teórico final; Exame teórico-prático ou trabalho (modelo termo-mecânico em MATLAB); Relatório de campo.