Disciplina Curricular

Integral e Aplicações IApli

Licenciatura Bolonha em Estatística Aplicada - 5_Plano 2015/16 a 2021/22

Contextos

Grupo: 5_Plano 2015/16 a 2021/22 > 1º Ciclo > Tronco Comum OU Minor > Minor em Matemática > Optativas > 3º ano > 559_Minor em Matemática

Período:

Peso

6.0 (para cálculo da média)

Objectivos

Os objetivos desta unidade curricular são: (i) familiarização com conceitos e argumentos fundamentais da teoria do integral de funções, com particular ênfase no estudo do integral de Lebesgue; (ii) o papel da medida na teoria do integral e na definição de espaços das funções somáveis; (iii) aplicações do integral de Lebesgue e transformações integrais.

Programa

O Integral de Riemann em R^n. Conjuntos de medida nula. Caraterização de Lebesgue da integrabilidade segundo Riemann. Teoria geral do integral: funções elementares e funções somáveis. Propriedades do integral e teoremas de  convergência (de Levi, de Fatou e de Lebesgue). O teorema de Fubini. O teorema de Riesz-Fisher da completude do espaço das funções somáveis. O integral de Lebesgue num espaço euclidiano de dimensão n.  Funções mensuráveis. Espaços de medida abstratos e integração: Espaços de medida abstratos; funções mensuráveis e integral. Exemplos:  integração para a medida de contagem e séries; integrais impróprios de Lebesgue. Aplicações: Espaços de Banach e de Hilbert. Espaços Lp. solução do problema das séries de Fourier. A transformação de Fourier.

Métodos de ensino e avaliação

As aulas teóricas são expositivas. Nas aulas teórico-práticas os alunos são chamados a participar activamente na resolução e discussão dos exercícios. Os recursos utilizados nas aulas são disponibilizados na plataforma Fenix. A avaliação consiste num exame final escrito. A avaliação contínua pode ser um factor positivo na nota final. Exame oral pode ser considerado necessário.

Disciplinas Execução

2022/2023 - 2 Semestre

2021/2022 - 2 Semestre

2020/2021 - 2º semestre