Disciplina Curricular

Álgebra Linear e Geometria Analítica I ALGAna-I

Licenciatura Bolonha em Matemática - 3_Plano 2015/16 a 2021/22

Contextos

Grupo: 3_Plano 2015/16 a 2021/22 > 1º Ciclo > -

Período:

Peso

6.0 (para cálculo da média)

Objectivos

Facultar conceitos e resultados fundamentais de Álgebra Linear e Geometria Analítica, promovendo a aprendizagem e as capacidades de manipulação algébrica e de abstracção e raciocínio matemáticos, seja nas aulas teóricas, seja com a resolução de problemas nas aulas teórico-práticas e autonomamente. Os alunos deverão compreender as noções, resultados e técnicas básicos inerentes a matrizes, sistemas de equações lineares e espaços vectoriais assim como desenvolver a capacidade de os aplicar.

Programa

1. Matrizes e sistemas de equações lineares reais e complexos: definições básicas; operações algébricas com matrizes e suas propriedades, transformações elementares sobre matrizes e matrizes elementares; característica de uma matriz; método de eliminação de Gauss e de Gauss-Jordan; inversão de matrizes. 2. Determinantes: definição; casos de matrizes de ordem 2 e de ordem 3; Teorema de Laplace; propriedades; aplicação à resolução de sistemas de equações lineares: regra de Cramer; aplicação à inversão de matrizes: matriz dos cofactores. 3. Espaços vectoriais abstractos: definição, subespaços vectoriais; combinação linear e independência linear; geradores; bases e dimensão; coordenadas; espaço das linhas e espaço das colunas de uma matriz; soma e soma directa de subespaços vectoriais e suas dimensões; mudança de base. 4. Transformações lineares: definição; representação matricial; núcleo e imagem; sobrejectividade e injectividade; isomorfismos; mudança de base. 5. Valores e vectores próprios: definições; subespaços próprios; polinómio característico; multiplicidades algébrica e geométrica; condições de diagonalização de matrizes; matrizes simétricas. 6. Espaços euclidianos: produto interno; norma, ângulo, projecções ortogonais, Desigualdade de Cauchy-Schwarz; bases ortogonais e ortogonalização de Gram-Schmidt; complementos ortogonais; produto externo de vectores em ℝ3. 7. Introdução às formas quadráticas.

Métodos de ensino e avaliação

Métodos de ensino: Aulas teóricas e aulas teórico-práticas. As aulas teóricas são explanatórias e as aulas teórico-práticas consistem na discussão e resolução de exercícios sobre a matéria dada nas aulas teóricas. Avaliação: A avaliação é escrita, eventualmente seguida de um exame oral. A componente escrita tem duas opções: • um conjunto de pequenas provas escritas realizadas ao longo do período de leccionação e uma prova escrita realizada na época de exames; • um exame final.

Disciplinas Execução

2022/2023 - 1 Semestre

2021/2022 - 1 Semestre

2020/2021 - 1º semestre

2019/2020 - 1 Semestre

2018/2019 - 1 Semestre

2017/2018 - 1 Semestre

2016/2017 - 1 Semestre