Sumários  
             
            
		    
    
        
                            
                     
                    29 Novembro 2023, 08:30 
                    •
                    André Maria da Silva Dias Moitinho de Almeida
                
                        
            * Goal: to assign data to discrete classes or categories. 
* Overview of unsupervised classification
* Overview of supervised classification
* Performance metrics: Completeness, Contamination, Precision, Recall 
* Unsupervised methods: clustering methods for unsupervised classification
* Supervised methods:
	- K-Nearest Neighbours
	- Support Vector Machines (SVM)
	- Decision Trees
	- Random forests
* Semi-supervised methods
                        
        
     
		    
    
        
                            
                     
                    22 Novembro 2023, 11:00 
                    •
                    André Maria da Silva Dias Moitinho de Almeida
                
                        
            Computational exercises in optimisation
                        
        
     
		    
    
        
                            
                     
                    22 Novembro 2023, 08:30 
                    •
                    André Maria da Silva Dias Moitinho de Almeida
                
                        
            * Goal: minimum/maximum search of cost function, likelihood, posterior, etc
* Approaches
	- Brute force (curse of dimensionality)
	- Gradient descent and its generalizations: Stochastic Gradient Descent (SGD) with mini-batches; Adding momentum (GDM); AdaGrad (Adaptive Gradient Algorithm); RMSprop; ADAM (Adaptive Gradient Algorithm)
	- Markov Chain Monte-Carlo (MCMC, also gives confidence intervals)
	- Integrated Nested Laplace Approximations (INLA, also gives confidence intervals)
                        
        
     
		    
    
        
                            
                     
                    15 Novembro 2023, 11:00 
                    •
                    André Maria da Silva Dias Moitinho de Almeida
                
                        
            Computational exercises in maximum likelihood and bayesian inference
                        
        
     
		    
    
        
                            
                     
                    15 Novembro 2023, 08:30 
                    •
                    André Maria da Silva Dias Moitinho de Almeida
                
                        
            * Statistical Inference: Frequentist and Bayesian views
* Bayes theorem revisited: Likelihood, prior, posterior, evidence
* Some properties: 
	- inclusion of previous knowledge
	- Updating the posterior with new knowledge
	- Error propagation for free
* Maximum Likelihood Estimation (MLE)
	- Detailed cases of Gaussian Homoscedastic and Heteroscedastic errors
* Bayesian addressing of Malmquist, Eddington and Lutz-Kelker biases