Disciplina Curricular

Introdução à Teoria dos Conjuntos ITCon

Licenciatura Bolonha em Matemática - 3_Plano 2015/16 a 2021/22

Contextos

Grupo: 3_Plano 2015/16 a 2021/22 > 1º Ciclo > Tronco Comum OU Minor > - > 3º Ano > 498_Lic. em Matemática (3º Ano) > 1º Semestre

Período:

Peso

6.0 (para cálculo da média)

Objectivos

Introduzir o aluno aos conceitos fundamentais da teoria axiomática dos conjuntos e explicar como a teoria dos conjuntos (Zermelo-Fraenkel com o axioma da escolha) pode ser considerada uma fundamentação da matemática. O curso cobre certos princípios e técnicas típicas da teoria dos conjuntos (por exemplo, indução e recursão transfinita, ordinais, aléfes, etc.) e a hierarquia cumulativa. Também mostra como formalizar em ZFC as estruturas fundamentais da matemática (os números naturais e os números reais). Após esta disciplina optativa, o aluno fica a dominar os princípios fundamentais da teoria dos conjuntos, o suficiente para proceder para disciplinas mais especializadas e/ou ficar à vontade com alguns temas básicos dos fundamentos da matemática.

Programa

Os axiomas de ZFC. Conjuntos notáveis. Boas-ordens e ordinais. Indução e recursão transfinita. Aritmética ordinal. Equipotência. O princípio da boa ordenação e o lema de Zorn. Álefes. Aritmética cardinal. Cofinalidade. Operações cardinais infinitárias. O universo cumulativo. Cortes de Dedekind. O corpo dos números reais. O conjunto de Cantor. A haver tempo também se falará doutro material.

Métodos de ensino e avaliação

A avaliação consiste em três testes em sala de aula, cada um valendo três valores. Ao valor dos dois melhores testes é adicionada a nota de um exame final para catorze valores. O regente reserva-se o direito a efetuar orais sempre que o julgar necessário.

Disciplinas Execução

2022/2023 - 1 Semestre

2021/2022 - 1 Semestre

2020/2021 - 1º semestre

2019/2020 - 1 Semestre

2018/2019 - 1 Semestre

2017/2018 - 1 Semestre